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Automatic Construction of Multiple-Object
Three-Dimensional Statistical Shape Models:

Application to Cardiac Modeling
Alejandro F. Frangi*, Daniel Rueckert, Julia A. Schnabel, and Wiro J. Niessen

Abstract—A novel method is introduced for the generation of
landmarks for three-dimensional (3-D) shapes and the construc-
tion of the corresponding 3-D statistical shape models. Automatic
landmarking of a set of manual segmentations from a class of
shapes is achieved by 1) construction of an atlas of the class,
2) automatic extraction of the landmarks from the atlas, and
3) subsequent propagation of these landmarks to each example
shape via a volumetric nonrigid registration technique using
multiresolution B-spline deformations. This approach presents
some advantages over previously published methods: it can treat
multiple-part structures and requires less restrictive assumptions
on the structure’s topology. In this paper, we address the problem
of building a 3-D statistical shape model of the left and right
ventricle of the heart from 3-D magnetic resonance images.
The average accuracy in landmark propagation is shown to be
below 2.2 mm. This application demonstrates the robustness and
accuracy of the method in the presence of large shape variability
and multiple objects.

Index Terms—Atlas, cardiac models, model-based image anal-
ysis, nonrigid registration, statistical shape models.

I. INTRODUCTION

S
TATISTICAL models of shape variability or active shape

models (ASMs) [1] have been successfully applied to per-

form segmentation and recognition tasks in two-dimensional

(2-D) images. In building statistical models, a set of segmenta-

tions of the shape of interest is required, as well as a set of cor-

responding landmarks defined over the set of training shapes.

Manual segmentation and determination of point correspon-

dences are time-consuming and tedious tasks. This is particu-

larly true for three-dimensional (3-D) applications, where the
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amount of image data to analyze and the amount of landmarks

required to describe the shape increase dramatically in compar-

ison to 2-D applications. This work aims at automating the land-

marking procedure. That is, we still rely on the existence of a

manual segmentation of the shapes, but the process of landmark

extraction will be automated.

Several authors have proposed techniques to find point (land-

mark) correspondences, but only a few of them have indicated

or investigated their applicability in the field of statistical shape

models. Wang et al. [2] use a surface registration technique to

find 3-D point correspondences based on a metric matching

surface-to-surface distance, surface normals, and curvature.

The authors suggest that this technique could be used to build

3-D ASMs, but they do not report any results on statistical

model building. Kelemen et al. [3] report on the construction

of 3-D ASMs of neuroradiological anatomical structures. In

this method, the authors use a correspondence-by-parameteri-

zation approach to establish surface landmarks. The landmark

correspondence is defined in the parameter domain of an

underlying spherical harmonic parameterization. Although this

approach has been used to build ASMs, no explicit volumetric

or surface registration takes place. Lorenz and Krahnstover

[4] show an improved method for building dense surface

models that is similar to the one proposed in this paper. All the

input meshes corresponding to several examples are warped

onto the hand-placed landmarks of a single example; then a

coating procedure is used to resample each surface to solve

the correspondence problem. A mesh regularization step is

included to ensure that folds in the surface introduced by the

coating procedure do not appear in the final model. Unfortu-

nately, this technique does handle multiple-part objects as a

whole; therefore, it cannot be guaranteed that it is free from

inconsistencies arising from collisions between objects when

treating the parts separately.

To our knowledge, only a few authors have addressed

the problem of automatic construction of 3-D ASMs using

nonrigid registration [5]–[9]. The frameworks proposed by

Brett and Taylor [5], [6] are closely related to this work. In

these approaches, each shape is first converted into a polyhe-

dral representation. In the first approach [5], shape pairs are

matched using a symmetric version of the iterative closest point

(ICP) algorithm by Besl and McKay [10]. Using this method,

the authors were able to build 3-D ASMs by automatically

finding corresponding landmarks between surfaces. Surfaces

are represented by dense triangulations that are matched to

sparse triangulations (obtained by triangle decimation). The

0278-0062/02$17.00 © 2002 IEEE
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nodes of the sparse triangulation become the final landmarks.

One problem acknowledged by the authors is the possibility

of obtaining shape models with surface folding due to some

landmark groups (triples) matched in different order between

training examples. This is a consequence of the use of the

ICP technique, which is a purely local registration technique

and does not incorporate any connectivity constraints. In the

work by Brett and Taylor [6], this problem is addressed by

transforming the surface to a planar domain using harmonic

maps where connectivity constraints can be explicitly enforced.

This technique avoids invalid cross-correspondences but is

only applicable to single-part shapes that are topologically

isomorphic to a disk. The work by Fleute and Lavallée [7], [8]

is also closely related to our work. They use a multiresolution

nonrigid registration technique based on octree-splines. This

approach is a surface-based technique that registers shapes by

minimization of a distance measure. In contrast to their work,

we use a free-form volumetric nonrigid registration technique

based on maximization of two novel similarity measures,

coined label consistency and statistic. In addition, we provide

experiments that give empirical evidence of the convergence

of the atlas generation procedure, which is missing in [7], [8].

Finally, Subsol et al. [9] reported on a method for automatically

constructing 3-D morphometric anatomical atlantes that is

based on the extraction of line and point features and their

subsequent nonrigid registration. This method is very attractive

for applications where line features are evenly spread over the

whole object, as is the case in the skull for which the authors

illustrated their method. However, these features can be insuf-

ficient in modeling the heart since the cardiac chambers are

rather smooth. Moreover, the extraction of line features is not

trivial and may hamper the use of this technique in large-scale

databases due to lack of robustness.

Recently, Davies et al. [11] published a method to automati-

cally extract a set of optimal landmarks using the minimum de-

scription length (MDL) principle. Although this is a promising

method that has a sound mathematical formulation, it is still re-

quired to elucidate whether the optimal landmarks in the MDL

sense are also optimal in the sense of anatomical correspon-

dence. On the other hand, although the authors sketch how to

extend this method to 3-D, the extension does not seem trivial.

Experiments with 3-D shapes still need to be performed to show

its usefulness and computational feasibility, in particular with

multiple-part objects.

In this paper, a technique is introduced that tries to address

the shortcomings of point- or surface-based registration where

no overall connectivity constraints are imposed. Our method in-

troduces global constraints by matching shapes via a volumetric

nonrigid registration technique using multiresolution B-spline

deformation fields [12], [13]. Owing to the multiresolution na-

ture of the deformation field, the mappings between matched

shapes have been shown to be smooth [13]. Although in our ex-

perience this is not essential, an additional smoothness penalty

can be incorporated, which further prevents folding when re-

covering the deformation field. An important feature of our ap-

proach is that the same method for establishing correspondences

can be simultaneously applied to all the parts of a composite ob-

ject. This has not been previously investigated in [5]–[8].

This paper makes two main contributions. The first contri-

bution is methodological and lies in providing a generic frame-

work for automatic selection of corresponding landmarks in 3-D

shapes. The second contribution is of a more practical value and

lies in applying this technique to the construction of 3-D shape

models from 3-D cardiac magnetic resonance imaging (MRI) as

well as in addressing a number of application-specific issues.

Model-based analysis of cardiac images is an active area of

research—see e.g., a recent literature survey on 3-D model-

based techniques for functional analysis of cardiac images [14].

Model-based approaches have been used for several applica-

tions ranging from computation of global cardiac functional

parameters, mainly ejection fraction and left ventricular mass

[15]–[21], to local estimation of cardiac motion [22]–[26] and

stress [27]–[31]. Some authors have applied cardiac models to

cardiac scan planning [32] or to derive new descriptors of car-

diac function [26], [33]–[39]. A common denominator of these

methods is that shape description is performed using standard

modeling primitives such as, for instance, superquadrics [15],

[26], [39], [40], series expansions [17], [40], [41], constructive

solid geometry [32], or polyhedral representations [21], [23],

[35], [42], [43]. Shape constraints are either explicitly enforced

by the selected primitive (e.g., superquadrics) or via ad hoc reg-

ularization terms in the shape recovery process.

In this paper, the use of 3-D statistical shape models to de-

scribe the shape of the left and right ventricle of the heart is pro-

posed. Although shape representation is based on standard trian-

gulated meshes, the model contains information of the average

location of each node in the mesh, its variability, and the cor-

relation between node locations inferred from a set of training

shapes. This information can be used to regularize the problem

of model recovery or image segmentation without the need of

any ad hoc smoothing constraints. However, this paper focuses

on the automatic construction of statistical shape models and

does not address the problem of shape recovery or segmenta-

tion, which is one of our future research issues.

This paper is organized as follows. Section II provides a sum-

marized background on statistical shape models. Section III fo-

cuses on a multiresolution free-form registration algorithm that

will be used in the landmarking procedure. In Section IV, our

proposed method for automatic landmarking is described. In

Section V, the method is applied to construct statistical models

of the left and right ventricle of the heart from 3-D MRI; em-

pirical evidence is given on convergence properties and recon-

struction errors. Finally, Section VI closes the paper with some

conclusions and directions for future research.

II. STATISTICAL SHAPE MODELS

Let denote shapes. Each shape consists

of 3-D landmarks,

that represent the nodes of a surface triangulation. Ob-

taining those 3-D landmarks is a nontrivial task

and presents the main topic of this paper. Each vector

is of dimension 3 and consists of the landmarks

. Moreover,

assume that the positions of the landmarks of all shapes are

expressed in the same coordinate system. These vectors form
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a distribution in a 3 -dimensional space. The goal is to

approximate this distribution with a linear model of the form

(1)

where is the average landmark vector,

is the shape parameter vector of the model, and is a

matrix whose columns are obtained by performing a prin-

cipal component analysis (PCA) of the covariance matrix

. The principal

components of are calculated as its eigenvectors , with

corresponding eigenvalues (sorted so that ). If

contains the eigenvectors corresponding to the

largest nonzero eigenvalues, we can approximate any shape of

the training set using (1), where and

is a -dimensional vector given by .

The vector defines the shape parameters of the ASM. By

varying these parameters, we can generate different instances of

the shape class under analysis using (1). Assuming that the cloud

of landmark vectors follows a multidimensional Gaussian dis-

tribution, the variance of the th parameter across the training

set is given by . By applying limits to the variation of , for

instance, , it can be ensured that a generated shape

is similar to those contained in the training class.

Although in this paper the statistical analysis is carried out

using PCA, there are other alternatives that may be considered,

such as independent component analysis [44].

III. MULTIRESOLUTION NONRIGID REGISTRATION

In this section, a multiresolution free-form nonrigid registra-

tion algorithm is presented. This technique is employed in this

paper tofindcorrespondencesbetweenshapes. Incontrast tomost

registration literature, our aim here is to match labeled rather than

gray-level images, i.e., image segmentations where each voxel

value indicates the type of structure this voxel belongs to.

The matching algorithm summarized here is a multiresolu-

tion free-form nonrigid registration algorithm, which was for-

mulated by Rueckert et al. [12] and further developed by Schn-

abel et al. [13]. This algorithm manipulates a shape by embed-

ding it into a subsequently refined volumetric mesh, which de-

fines a continuous deformation field through a set of B-spline

basis functions. For each location in the reference shape, the

corresponding locations in the individual shapes are found to

obtain an optimal match. The corresponding optimal deforma-

tion field is obtained by maximizing a voxel similarity measure

on the basis of the corresponding labels. This maximization is

carried out using a standard gradient ascent algorithm. The reg-

istration method and two novel similarity measures for labeled

images are briefly summarized in the following paragraphs.

A. Transformation Model

Let be a transformation that maps

any point ( ) in the source image into the corresponding

target image coordinates ( ). The target image could be

an atlas or average shape defining the coordinate system in

which all other images will be expressed.

To accommodate for nonrigid deformations, will consist

of a global transformation and a nonrigid transformation ob-

tained in a coarse-to-fine manner , where is the number of

mesh subdivisions that take place in the multiresolution strategy

(2)

B. Global Transformation

The global transformation describes the pose and size of the

transformed shape with respect to the atlas. This can be accom-

plished with a global transformation in the form of a quasi-affine

model

(3)

where the coefficients parameterize the 12 degrees of

freedom of a generic affine transformation. In a quasi-affine

transformation only nine parameters are independent: transla-

tion , rotation , and anisotropic scaling

. The computation of these parameters is accom-

plished with a modified version of the method by Studholme

et al. [45]. The main modification is that we do not use a reg-

istration measure based on mutual information but either label

consistency or the statistic similarity measure, as described

in Section III-D. However, we employ the same multiresolution

strategy for computing the registration parameters.

C. Local Transformation

To accommodate for detailed shape differences, the global de-

formation field has to be supplemented with a local deformation

model. The local deformation field is represented by a free-form

deformation (FFD) based on B-splines. The basic concept of

FFDs is to deform an object by embedding it into a volumetric

mesh of control points and subsequently manipulating the nodes

of the mesh. The mesh is deformed in a multiresolution fashion

by subsequently subdividing the mesh (i.e., decreasing the mesh

spacing). At any mesh resolution level, the control points are

smoothly interpolated by a set of B-spline basis functions that

define a continuous deformation field.

At each level of mesh resolution , the FFD is represented by

a tensor-product B-spline. Assume that we denote the domain

of the image volume as

. Let denote an mesh of

control points at level and with uniform spacing

, where is the initial mesh spacing. Then, the FFD at

level can be written as the 3-D tensor product of the familiar

one-dimensional cubic B-splines

(4)

where , , ,

, , ,

and where represents the th basis function of the B-spline

[46].

The control points act as parameters of the B-spline, and

the degree of nonrigid deformation that can be modeled depends

on the resolution level . The smaller the associated spacing
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, the more local the deformation is allowed to be. On the

other hand, the computational complexity of the algorithm is

approximately inversely proportional to the spacing parameter.

The tradeoff between deformation flexibility and computational

complexity is mainly an empirical choice, which is determined

by the accuracy required to deform the atlas into the individual

shapes. In our experiment with cardiac data sets, we have used

a deformation field with three mesh subdivisions ( ) and

an initial spacing mm.

D. Similarity Measure for Labeled Image Registration

Since the correspondences of structures across both images

are encoded explicitly in the labeling, we are only interested

in maximizing the overlap of structures denoted by the same

label in both images. Therefore, we have used two registration

measures that favor the mapping of identical labels. We have

coined these measures label consistency and statistic.

1) Label Consistency: Assume that is the joint

probability of labels and in the source (A) and target (B)

shapes, respectively. This can be estimated as the number of

voxels with label in image and label in image divided by

the total number of voxels in the overlap region of both images.

The label consistency measure is then defined as

(5)

Label consistency is a measure of how many labels of all the

labels in the source shape are correctly mapped into the target

shape. When the label consistency measure is zero, none of the

source labels has been correctly mapped into the target shape. If

all reference labels are correctly matched, the label consistency

measure yields one.

2) The Statistic: The measure is inspired in a statistic used

frequentlyinbiomedicalresearchtoassesstheagreementbetween

tworatersmeasuringthesamequantityorperformingaclassifica-

tion task [47]. For a given voxel, each image can be considered as

an observer who assigns a class label to it. Therefore, comparing

labeled images isequivalent tocomparing theagreementbetween

two observers. This statistic is defined as follows:

(6)

(7)

(8)

where , , and are the joint probability den-

sity and marginal probability densities for the labels in the im-

ages and . The statistic is a measure of agreement between

two classifications that is corrected for chance agreement .

To interpret the values of the statistic, one can refer to standard

tables provided in the literature [47]. This statistic has a max-

imum value of one, and values above 0.9 are usually regarded

as very good agreements.

IV. AUTOMATIC LANDMARKING

A. Overview

Ideally, a landmark is an anatomically characteristic point that

can be uniquely identified on a set of shapes. However, anatom-

ical landmarks are usually too sparse to accurately describe a 3-D

shape. Therefore, we will consider pseudo-landmarks, i.e., land-

marks lying on the shape’s surface and determining its geometry.

Assume that segmented shapes of the structure of interest

are available. These segmentations constitute the training set

, where . Each shape in the training set is

represented by a labeled image whose voxel values belong to a

label set . To generate the landmarks for the shapes, a shape

atlas is constructed and landmarked; these landmarks are fi-

nally propagated back to the shapes (Fig. 1). The following

sections describe these three steps in detail.

B. Preprocessing

The automatic landmarking algorithm can be applied to a

set of previously segmented structures. In our application, three

main structures of the heart have been segmented from a number

of volunteer scans. Each segmentation consists of manual iden-

tification of the background (BG), the left ventricular blood pool

(LV ) and myocardium (LV ), and right ventricular blood

pool (RV ) (see Fig. 2). In the segmentation of the left ven-

tricle, the papillary muscles are considered part of the blood

pool, as is customary in functional cardiac analysis. Each seg-

mentation is represented as a labeled image, where each voxel

is labeled according to the tissue type to which it belongs (

BG LV LV RV ).

Owing to the large voxel anisotropy in MR short-axis acquisi-

tions of functional cardiac data sets, manual segmentations have

significant staircase artefacts in the direction of the long axis

of the heart. To facilitate image registration and to smooth out

those artefacts, shape-based interpolation [48], [49] has been ap-

plied to obtain labeled images of isotropic voxel size (Fig. 3).

To preserve the diameter of the ventricles in the basal segmen-

tation slices, this slice was copied (repeated) again toward the

base prior to computing the distance transform required to per-

form shape-based interpolation. Once the distance transform is

linearly interpolated, it is thresholded to obtain a binary volume

and subsequently masked to remove the extra slice. In this way,

the segmentations before and after interpolation have the same

basal diameter. In our opinion, this is a conservative way of re-

specting the ventricular dimensions in the absence of label in-

formation beyond the most basal slices.

C. Atlas Construction

Given a set of labeled images that are instances of an anatom-

ical structure, a shape atlas can be viewed as an average labeled

image representationof theshapeunderconsideration. In thenext

section, a method to obtain an atlas for bivalued labeled images is

introduced, which will be subsequently extended to labeled im-

ages containing multiple, and possibly nested, structures.

1) Atlas Construction in Single Object Shapes: Let us as-

sume that a set of training shapes is available and that

each shape is represented by a bivalued labeled image . That



FRANGI et al.: AUTOMATIC CONSTRUCTION OF MULTIPLE-OBJECT 3-D STATISTICAL SHAPE MODELS 1155

Fig. 1. Overview of the automatic landmarking framework. All individual data sets are matched to an atlas via a quasi-affine transformation (T ) and a nonrigid
transformation (T ). The landmarks in the atlas can then be copied to the individual patients. The nonrigid deformation is subsequently reversed. Thus, PCA is
carried out in a space where all shapes are aligned with the atlas (the natural coordinate system, explained in Section IV-C3). The principal modes of variation will
therefore account for nonrigid deformations and not for pose or size differences.

(a)

(b)

Fig. 2. Example MR image and manual segmentation from the training set
(short-axis and simulated long-axis view). The labeled images in (b) were
manually extracted from 3-D cardiac MR scans in (a) and subsequently
interpolated using shape-based methods. In each slice, the LV blood pool (dark
gray), LV myocardium (light grey), and RV blood pool (white) were manually
outlined. The papillary muscles were included in the segmentation of the blood
pool, as is customary in clinical practice. The labeled image shown in (b) has
been resampled using shape-based interpolation.

is, the label set contains only two labels corresponding to the ob-

ject and background segmentations. For the sake of simplicity,

we assume that is the set of shapes after they have been

aligned to a reference coordinate system.

Let and denote the shape in atlas-aligned

coordinates and its signed Euclidean distance trans-

form [50], respectively. The signed distance transform

of an average shape can be obtained by computing

. The average shape can

be retrieved by thresholding the distance transform map to its

zero-level set. We coin this averaging procedure shape-based

blending.

As was mentioned earlier, prior to shape-based blending,

all shapes have to be aligned into an atlas-aligned coordinate

system. As the atlas is still to be constructed, the initial coor-

dinate system can be chosen arbitrarily to coincide with that

of any of the shapes in the training set . To reduce the bias

introduced by the selection of the initial reference shape, an

iterative algorithm has been developed. In the first iteration,

one shape of the training set is randomly selected to be the

atlas. Subsequently, all other shapes in the set are registered

to the current atlas using the global registration technique

presented in Section III-B and the label-based similarity

measures introduced in Section III-D. After registration, all

shapes are blended and a new atlas is generated. This new atlas

then becomes the current atlas, and the process is iterated until

the difference between the current and new atlas falls below

a certain threshold. This can be monitored, for instance, by

defining a suitable measure of label agreement between two

images. In the results section, the convergence properties of

this algorithm and the influence of the randomly selected initial

reference are investigated.

2) Atlas Construction in Multiple-Part Shapes: Let us as-

sume that a set of training shapes is available and that each

shape is represented by a labeled image , in which objects

are represented by distinctive labels.

The atlas construction algorithm as described above applies

to bivalued labeled images for which the distance transform is
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(a)

(b)

(c)

Fig. 3. Owing to voxel anisotropy, the labeled images were resampled to
create isotropic geometric models. (a) shows an original labeled image with
large anisotropy in the axial direction. (b) shows the corresponding shape-based
interpolated image. (c) overlays the two previous images for comparison.

defined. However, it is possible to generalize the method to mul-

tiple-part shapes, which is needed for cardiac modeling. In fact,

to extend the method of the previous section, we only need to

specify a method for shape-based blending of multivalued im-

ages. The atlas alignment procedure used in this paper readily

extends from single-object to multiple-object labeled images. In

the following, we discuss our method for shape-based blending

in cardiac labeled images.

Fig. 4 schematically represents a typical arrangement of

LV , LV , and RV as extracted manually from cardiac

MR images. This figure also indicates how the cardiac shape

can be decomposed into three subshapes: LV , LV LV ,

and RV . By construction, LV LV always embeds

LV , and both of them are nonoverlapping structures with

respect to RV . Each one of these subshapes can now be rep-

resented as a separate bivalued labeled image. This transforms

the problem of shape-based blending of a multivalued labeled

image into problems of shape-based blending of bivalued

labeled images. After the average subshapes have been

generated, all of them are combined into a new labeled image

by taking the initial arrangement and labeling into account. An

example of shape-based blending with two shapes consisting

of three objects is shown in Fig. 5.

3) Natural Coordinate System: The atlas construction phase

is iterative in order to reduce the bias toward the initial shape

used as the initial “atlas.” However, the pose and size of the atlas

are still biased toward those of this initial shape. This fact can

have a negative influence on the landmark propagation, as we

will explain in the following. An atlas whose pose is biased to-

ward a specific subject may lead to a privileged situation of that

subject in the nonrigid warping phase. To remove any remaining

bias, we use a method similar to that presented in Rueckert et

al. [51] to define a natural coordinate system for statistical de-

formation models.

Suppose that we have deformation fields . They map the

atlas constructed with the iterative algorithm of Section IV-C2

into each individual in . These deformation fields can be re-

covered with the nonrigid registration algorithm described in

Section III.

We define now a natural coordinate system, which will be the

coordinate system requiring the least residual nonrigid deforma-

tion to explain the anatomical variability across all individuals.

Based on a point in the space of the reference subject, we can

find the corresponding point in its natural coordinates by ap-

plying the average deformation to

(9)

An interpretation of this natural coordinate system is shown

in Fig. 6. Applying the average deformation vector , a point

in the coordinate system of subject should map the point

into the point in natural coordinates. Applying the average

deformation vector to the corresponding point in the co-

ordinate system of subject should also map it to the point

in natural coordinates. Thus, assuming a perfect nonrigid reg-

istration that establishes a one-to-one correspondence between

the anatomies of different subjects, the choice of the reference

subject becomes irrelevant when constructing a natural coordi-

nate system, since points are independent of the choice of the

reference subject.

In conclusion, before proceeding with the actual autoland-

marking, the atlas is warped into its natural coordinate system,

where there is no influence of the initial shape. This unbiased

atlas is the one used as a template to extract landmarks and sub-

sequently propagate them according to Fig. 1.

D. Landmark Extraction

After an atlas has been constructed and mapped into natural

coordinates, it needs to be landmarked. In this paper, we shall
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Fig. 4. Two-chamber model decomposition. To apply shape-based blending, the heart is decomposed into three bivalued labeled images representing, from left
to right, the right ventricular blood pool (RV ), the left ventricular interior (LV LV ), and the left ventricular blood pool (LV ), respectively.

(a) (b)

(c) (d)

Fig. 5. Shape-based blending of label images. (d) illustrates the blending result of the two shapes of (a) and (b). (c) shows the two blended images mixed for
comparison. All figures contain short-axis and simulated long-axis views.

(a) (b)

Fig. 6. Natural coordinate system. In this space, the coordinates of the atlas are not biased toward the initial shape under the assumption of a perfect nonrigid
registration.
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(a) (b)

Fig. 7. Atlas construction and landmarking. (a) shows the result of the iterative atlas construction algorithm as three orthogonal views. (b) visualizes a
surface rendering of the atlas with the wire frame joining the extracted landmarks. The landmarks have been extracted using marching cubes with subsequent
mesh decimation (95% decimation factor). The examples shown were generated using the � statistic measure, although similar results were obtained for the
label-consistency registration measure.

consider surface landmarks only. For cardiac modeling, land-

marks for the endocardial and epicardial wall of the left ventricle

and for the endocardial wall of the right ventricle can be ex-

tracted. To landmark the atlas automatically, the marching cubes

[52] algorithm is applied. This algorithm generates a dense tri-

angulation of the boundary isosurfaces that can be further dec-

imated to reduce the amount of triangle nodes. The decimation

process can be implemented in such a way that it preserves the

accuracy of the surface representation in the original triangula-

tion to a desired tolerance. We use the method by Schroeder et

al. [53], which takes into account the curvature of the surface to

keep the density of the triangles higher around relevant edges but

decreases the number of triangles in flat areas. The nodes in the

decimated triangulation form the landmarks of the shape. In our

implementation of Schroeder’s algorithm, we specify a target

decimation rate (95%) subject to the constraint that the error of

the decimated mesh is kept to a given tolerance with respect to

the original mesh. The tolerance we used was the in-plane res-

olution of our images (1.2 mm).

By using marching cubes, a dense and approximately even

distribution of landmarks is obtained. Alternatively, any other

automatic algorithm for mesh extraction from a binary (labeled)

image can be applied,such as surface nets [54] or the wrapper

algorithm [55]. Note that, as an alternative to these algorithms,

an expert could manually localize anatomical landmarks in the

atlas. Anatomical landmarks, however, may be too sparse to rep-

resent the shape of 3-D structures and may also be difficult to

accurately localize.

E. Landmark Propagation

Once the atlas is constructed, mapped to the natural coor-

dinate system, and landmarked, its landmarks can be propa-

gated to the individual shapes. This is carried out by warping

each sample labeled volume into the atlas with a transformation

that is composed of a quasi-affine ( ) and a

nonrigid ( ) transformation. The transformation accounts

for global (pose and size) differences between the atlas and each

sample volume, while the transformation accounts for local

shape differences. The recovering of is carried out using the

algorithms described in Section III.

Once the full transformation has been found, the landmarks

of the atlas can be propagated to the natural coordinate system

by applying the inverse of the nonrigid transformation ( ).

This process is repeated for each sample shape. As a result, a

set of landmarks is obtained that describes shape variations with

respect to the atlas. Since these landmarks are now in natural co-

ordinates, pose and size variations are explicitly eliminated from

further analysis. These transformed landmarks are subsequently

used as the input for PCA, as indicated in Fig. 1.

Fig. 1 suggests that each sample shape is warped to the atlas.

In this case, the inverse of the deformation field has to be com-

puted to propagate the landmarks. However, this mapping does

not necessarily exist. This was illustrated for the sake of con-

ceptual simplicity only. From a computational point of view, it

is more convenient to warp the atlas to each sample shape and

use the direct deformation field for landmark propagation.

V. RESULTS

A. Data Sets and Preprocessing

Fourteen adult subjects, free of clinical cardiovascular dis-

ease, were scanned on a 1.5-T MR scanner (Philips ACS-NT,

PowerTrak 6000 Gradient System, Philips Medical Systems,

Best, The Netherlands) using an ECG-triggered Echo Planar

Imaging (FFE-EPI) sequence. Cine acquisitions consisting of

eight to ten short-axis slices of the heart in 18–20 phases of

the cardiac cycle were performed. Scan parameters were repeti-

tion time: TR – ms; echo time: TE – ms; flip

angle: ; slice thickness: 10 mm; a 256 256 image

matrix; and a 300 -mm field-of-view.

From the acquired temporal sequence of each volunteer, the

end-diastolic frame was manually segmented, as indicated in

Section IV-B. Subsequently, all segmentations were resampled

to isotropic voxels with size equal to the in-plane resolution (1.2

mm) using shape-based interpolation [48], [49], as described in

Section IV-B.

B. Atlas Construction

Fig. 7 shows the result of the atlas building process described

in Section IV-C. The shape-based blending procedure captures
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Fig. 8. Convergence of the atlas construction algorithm. � statistic and the label consistency similarity measures between two consecutive atlases as a function of
the iteration number n. In the inset of each plot, the similarity measure is indicated. The graph denoted with (�) corresponds to the evolution of the label consistency

measure, while the graph with (�) corresponds to the evolution of the � statistic. Each curve is the average of the convergence curve resulting from initializing the
atlas building procedure with one of the 14 shapes.

the global shape of the ventricles without an apparent bias in the

wall thickness at any particular sector.

The convergence of the iterative atlas construction and the ef-

fect of different initial shapes in the generation of the atlas have

also been studied. Fig. 8 plots the statistic between two suc-

cessive iterations of the algorithm of Section IV-C. The same

curves were generated for the 14 atlantes obtained by using

each of the 14 subjects as initial shapes. For each atlas and both

registration measures used in the atlas building procedure, we

show the evolution of both metrics as a function of the iter-

ation number. After two iterations, the agreement is excellent

( ) and the label consistency very high (LC ). It

is notable that both metrics seem to have a different sensitivity

to matching, as their dynamic range is different. The plots also

indicate that the convergence is not monotonous but tends to

level out after a few iterations. This could be caused by marginal

changes in the registration measure due to small mismatches at

boundaries when working with labeled images. In fact, there is

hardly any visual difference between atlantes in successive iter-

ations after the third iteration. Given that this process is reason-

ably fast and to avoid any residual bias, we used the atlas of the

fifth iteration in this study.

Another way of assessing the influence of the initial shape

is to create atlantes with all possible initial shapes, map all of

them into natural coordinates, and compute the corresponding

shape-based average atlas. Subsequently, the mean, standard de-

viation, and maximum distance between the boundaries of each

atlas and those of the average atlas can be computed and aver-

aged (Fig. 9). Table I shows the average mean, standard devia-

tion, and maximum error for each part of the model. The average

maximum error is always below 4 mm and, therefore, is on the

order of the voxel dimensions (1.2 1.2 10 mm ).

C. Statistical Shape Models

To construct a statistical model from the cardiac atlas,

landmarks were extracted automatically from the atlas using

marching cubes and subsequent mesh decimation (95% deci-

mation ratio). This procedure yielded 1352 (Kappa) and 1304

(LC) landmarks for the left ventricular epicardial surface, 679

(Kappa) and 631 (LC) landmarks for the endocardial surface,

and 1841 (Kappa) and 1693 (LC) landmarks for the right

ventricular endocardial surface.

This table reports on the errors of a left ventricle model

and a combined left and right ventricle model, respectively.
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(a)

(b)

Fig. 9. Contours in three planes of the atlantes created starting with all
possible initial shapes after mapping into natural coordinates overlaid on the
atlas image. There is very little difference between shapes, as indicated by the
close agreement between contours.

In the former, only the left ventricle segments (LV and

LV ) were taken into account in the nonrigid registration

and landmark propagation procedures. In the latter, both the

left ventricle (LV and LV ) and the right ventricle (RV )

were nonrigidly registered to the atlas, and the landmarks were

subsequently propagated.

Figs. 10 and 11 show the first five modes of variation of the

two-chamber model constructed using the kappa statistic and

label consistency as registration measures, respectively. It is re-

TABLE I
AVERAGE MEAN, STANDARD DEVIATION, AND MAXIMUM DISTANCES

BETWEEN THE ATLANTES CREATED STARTING WITH ALL POSSIBLE

INITIAL SHAPES AND THE AVERAGE ATLAS OF ALL ATLANTES IN

NATURAL COORDINATES

markable that there is hardly any difference in the modes. This

seems to support the idea of a high independency of the model

construction procedure with respect to the matching metric.

Fig. 12 indicates the percentage of the total explained vari-

ance as a function of the number of modes. Once corresponding

landmarks are available, one is free to include or exclude the

landmarks corresponding to a certain substructure. The more

substructures that are incorporated, the larger the required

number of modes to explain a given variance since the overall

shape variability has been increased.

To quantitatively assess the performance of the constructed

models, we have analyzed the reconstruction error by performing

several leave-one-out experiments. The landmarks of all but one

data set were used to build a statistical model. This model was

subsequently used to reconstruct the set of landmarks not in-

cluded in the PCA. The same experiment was repeated by taking

out from the PCA, one in turn, each of the sets of landmarks.

Finally, the average reconstruction error over the leave-one-out

experiments was computed. Fig. 13 shows the mean square

reconstruction error as a function of the number of modes used

in shape reconstruction. Since our training set is relatively small

and the shape variability is quite large, these experiments do

not reveal much information on the generalization ability of the

models. However, they provide a first estimate that could be

refined by enlarging the database of shapes.

D. Automatic Landmark Propagation Performance

To quantify the ability of the technique to map corresponding

landmarks, we have selected a set of seven landmarks in each

subject and in the atlas built thereof. They are indicated in

Fig. 14(a). Three observers were asked to identify these points

twice for each subject in two independent sessions. The same

point set was pinpointed twice in the atlas. Subsequently, the set

of landmarks in the atlas was mapped into each subject using

the deformation fields that were computed in Section IV-E, and

a number of performance measures were computed [Fig. 14(b)].

We have calculated the intraobserver variability of the 3-D

position of the landmarks placed manually in subject space.

Also, we computed the intraobserver variability, measured in

subject space, corresponding to the landmarks of the atlas after

propagation through the deformation field. For each landmark,

we calculated the average intraobserver variability over all

subjects. Table II reports the mean intraobserver variability of

the three observers. The variability in the automatic landmarks

indicates how the uncertainty in manual placement in the

atlas—of a similar magnitude to that of manual placement in

subject space—propagates through the deformation fields as an

uncertainty in the location of automatic landmarks.
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Fig. 10. Shape instances generated using the 3-D two-chamber model and the� statistic registration measure from 14 cardiac data sets. The instances are generated
by varying a single shape parameter, fixing all others at zero standard deviations from the mean shape. This two-chamber model consists of 679 LV endocardial
nodes, 1352 LV epicardial nodes, and 1841 RV endocardial nodes.

Table III reports on the interobserver variability for manual

landmarking in subject space and that of the landmarks manu-

ally placed in the atlas and then propagated into subject space.

The latter variability measures the effective uncertainty in the

position of the automatic landmarks when considering that they

have been obtained from the propagation of already uncertain

(manual) landmarks.

Finally, it is interesting to compute an estimate of the average

distance (error) between the landmarks placed manually in sub-

ject space and those propagated to subject space from the atlas.

To this end, the average position of the landmarks of all ob-

servers and all sessions has been used as the “gold standard”

[textured bullet in Fig. 14(b)]. Table IV gives the average dis-

tance in subject space between the gold-standard landmarks in

subject space and in atlas space after being mapped into subject

coordinates. From these experiments, it is possible to state that

the error in the automatic landmark placement is, on average,

2.2 mm. This is about two pixels with the current in-place

image resolution and only moderately worse than the interob-

server variability in manual landmarking.

VI. DISCUSSION AND CONCLUSION

This paper has presented a method for the automatic construc-

tion of 3-D statistical shape models. The technique is based on

the automatic extraction of a dense mesh of landmarks in an
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Fig. 11. Shape instances generated using the 3-D two-chamber model and the label-consistency registration measure from 14 cardiac data sets of the heart. The
instances are generated by varying a single shape parameter, fixing all others at zero standard deviations from the mean shape. This two-chamber model consists
of 631 LV endocardial nodes, 1304 LV epicardial nodes, and 1693 RV endocardial nodes.

atlas constructed from a set of training shapes. These landmarks

are subsequently warped by a nonrigid deformation field to each

shape in the training set. The method is able to treat single- and

multiple-part shapes.

The first part of the proposed technique involves the building

of an atlas from a set of example shapes. In Section V, we have

presented experimental results supporting the hypothesis that

this procedure is convergent. Moreover, different initial shapes

seem to bias only marginally the final atlas when it is mapped

into natural coordinates. Therefore, for practical purposes, the

procedure of atlas construction can be considered to yield a

unique solution. In the work by Fleute and Lavallée [7], [8],

a similar algorithm was used for building the average model

(atlas). However, the atlas construction was performed on a sur-

face representation of the shapes and required a high-resolution

reference shape to initialize the iterative procedure. Finally, no

experimental evidence was reported with respect to the conver-

gence of the atlas construction algorithm nor to the selection of

the initial shape (uniqueness).

An alternative to our iterative method of atlas construction is

the tree-based approach presented by Brett and Taylor [5]. This

hierarchical strategy is attractive since it gives a unique (noniter-

ative) way to build an atlas from a given set of examples. How-

ever, one problem of Brett’s method is that the training shapes
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Fig. 12. Percentage of total shape variance versus the number of modes used
in the 3-D ASM. The total number of landmarks was 3872 (kappa) and 3628
(LC) landmarks for the two-chamber heart model and 2550 (kappa) and 2324
(LC) landmarks for the left ventricular model, respectively. Note that as the
two-chamber and LV models were constructed (landmarked) independently,
marching cubes does not yield exactly the same number of nodes for a given
substructure (e.g., LV epicardial surface) in both models.

(a)

(b)

Fig. 13. Reconstruction error in the leave-one-out experiments for the left
ventricle and two-chamber models and different registration measures used in
model building.

have to be ranked according to a pairwise match quality. This

requires that all possible pairs have to be matched and scored

before the tree is built. Brett presented results with only eight

shapes [5], but ordering the examples according to the matching

quality would be cumbersome for a more realistic amount of

training shapes. For a total number of shapes, it is necessary

to compute pairwise matches to build

the average shape. Our approach obtains the average shape in

matches, where is the total number of it-

erations required for convergence. Section V provides experi-

mental evidence that after about five iterations, the atlas shape

stabilizes.

Our method for building the mean shape model is based on

averaging shapes in the domain of their distance transforms. A

similar strategy was proposed by Leventon et al. [56] to incor-

porate statistical constraints into the level-set approach to image

segmentation. However, in that work, PCA is applied on the dis-

tance transform domain and not on a surface representation. As a

consequence, the number of degrees of freedom is considerably

larger than in our method. There is an intrinsic limitation in both

our method and that of Leventon et al. Averaging distance trans-

forms of several shapes does not necessarily yield a valid mean

shape representation. It is easy to show, for instance, that in the

case of a large misalignment between the averaged shapes, this

procedure can introduce topological changes. Although we did

not observe this problem in our experiments, this can be a po-

tential source of failure of the technique when building models

of very complex structures.

The proposed technique could be used with any nonrigid reg-

istration algorithm. In this sense, the method is a generic frame-

work open to future investigation. Currently, a multiresolution

version of the FFD nonrigid registration of Rueckert et al. [12] is

used to match labeled images. Two novel registration measures

suitable for labeled images were used. The atlantes and models

built with both measures were hardly distinguishable from each

other, yielding, on average, a similar performance in terms of

landmark propagation accuracy. We believe that both metrics

are equally useful for automatic landmarking, although label

consistency is a computationally slightly more efficient mea-

sure.

The use of nonrigid registration as a method to establish shape

correspondences imposes a constraint on the type of shapes that

can be handled. It is assumed that the class of shapes has a

well-defined topology. If there are substructures in one image

not represented in the other image to be matched, the transfor-

mation would have to “destroy” those parts. This situation could

arise when building a model of normal and abnormal medical

structures where some parts in the latter are missing because

of a diseased state or surgical procedure. However, establishing

correspondences in these mixed models also remains an ill-de-

fined problem with any of the previously published approaches

[5]–[9].

Results of the construction of a one- and two-chamber

cardiac model have been presented. Experiments were carried

out to establish the ability of the models to generalize to shapes

not present in the training set. The average reconstruction error

in the two-chamber model was below 3.8 mm when the number

of nodes was sufficient to explain 90% of the shape variability.
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(a) (b)

Fig. 14. Autolandmarking performance evaluation. (a) Seven landmarks were identified at the basal and apex level: LV apex epicardial (Lmk # 1), LV apex
endocardial (Lmk # 2), RV apex epicardial (Lmk # 3), LV basal endocardial centroid (Lmk # 4), anterior basal septum (Lmk # 5), posterior basal RV-septum (Lmk
# 6), middle basal RV-septum (Lmk # 7). (b) Definition of the computed performance measures for one of the landmarks: landmarks marked with � are the original
manual landmarks of a subject (left) or the manual atlas landmarks propagated to subject space (right); the points marked with � are the average location of two

sessions for a given observer (one to three). Finally, the textured bullet is the average landmark location over all three observers. Here �intra and �inter are
the intra- and interobserver variability for observer i, respectively, and " is the error between the centroids of the manual and propagated landmark clouds.

TABLE II
INTRAOBSERVER VARIABILITY DUE TO MANUAL AND

AUTOMATIC LANDMARKING

TABLE III
INTEROBSERVER VARIABILITY DUE TO MANUAL AND

AUTOMATIC LANDMARKING

TABLE IV
AVERAGE DISTANCE BETWEEN MANUAL AND AUTOMATIC LANDMARKS

In our experiments, we have not observed any problems of

wrong correspondences leading to flipping of triangles or

surface folding. This is an important improvement compared

to the method of Brett and Taylor [5]. Also, our method is less

restrictive in terms of the shapes that can be modeled. This is

an important advantage over the extended method of Brett and

Taylor [6], which is based on harmonic maps and therefore

limited to shapes that are isomorphic to a disc. The proposed

3-D extension of the recent method by Davies et al. [11] has a

similar problem, as it relies on a surface parameterization only

applicable to shapes isomorphic to a sphere.

Our model can be classified as a statistical surface model. One

of the main differences between our approach and the work by

Brett and Taylor [5], [6] and Fleute and Lavallée [7], [8] is that

we use a volumetric nonrigid registration algorithm as opposed

to their surface-based approaches. As a consequence, after non-

rigid registration, we are able to recover a dense volumetric dis-

placement field. This could be used to propagate landmarks lo-

cated inside the myocardium or blood pools producing a statis-

tical solid model. To achieve this goal, most likely gray-level in-

formation will have to be included in the atlas construction and

landmark propagation procedures. This information could pro-

vide the required textural information to match internal struc-

tures.

This paper has shown that the combination of our atlas gener-

ation method and the multiresolution FFD nonrigid registration

algorithm is able to cope with the large deformations involved

in intersubject matching of cardiac shapes. We had previously

experimented with a single-level version of the FFD registra-

tion technique. Although with that approach we were able to

propagate the landmarks of anatomical structures with moderate

shape variability (deep structures of the brain and bone struc-

tures) [57], it was unsuccessful in the application presented in

this paper. To cope with large shape variations, a multiresolu-

tion extension [13] of the free-form registration algorithm pro-

posed by Rueckert et al. [12] was applied. In this approach, the

nonrigid transformation is recovered by increasing the mesh res-

olution by subsequent subdivision. Gross shape warping takes

place at the coarsest resolution, while shape details are captured

at the finest resolution.

With this technique, we have been able to automatically place

a set of specific landmarks with an average accuracy of about 2.2

mm and a precision of about 1.5 mm. In the same experiments,

the precision intrinsic to manual landmarking was of about 0.8

mm. These figures are quite encouraging and indicate that au-

tomatic landmarking is feasible. To the best of our knowledge,

this is the first study where the errors in automatic landmark

placement are quantitatively assessed.
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Our future work will focus on applying our method to model-

based cardiac image segmentation and analysis. First, we are in-

terested in enlarging the database of training shapes to capture

the main modes of shape variation of cardiac chambers for a

large population and not only for those of our reduced training

set. Although this paper provides a proof-of-concept for our au-

tomatic landmarking algorithm, it is necessary to improve the

statistics of the model to achieve an accurate segmentation. For

this purpose, we have recently completed a study in which a

previous version of this algorithm was applied to images of 100

subjects of the Framingham heart study,1 of which the 14 shapes

of this manuscript are a subset. This study will be published else-

where.

All the shapes in our training set were acquired at end dias-

tole. However, the fact that the nonrigid registration algorithm

can cope with large intersubject variability suggests that the

same experiments could be repeated for different phases of the

cardiac cycle to build a statistical spatio temporal model of the

heart. This is a line of future investigation.

Finally, a strategy has to be devised to adapt the model mesh

to segment cardiac MR images. This could be achieved, for in-

stance, by applying a method similar to the 2-D deformation

procedure of active shape models [1]. For each landmark in

the model, a statistical model of the intensity profile (or some

other suitable image feature) along the surface normal can be

computed. The model mesh could be deformed by moving the

nodes along the direction of the normals to the position best

matching the intensity with the statistical profile model. This

method would provide an image-derived displacement for each

node. The displacements applied to update the mesh can be ob-

tained by projecting the suggested displacements onto the sub-

space spanned by the main modes of variation. This projection

step would naturally incorporate shape constraints in the defor-

mation of the mesh.

In conclusion, a method was presented to construct a shape

atlas and to derive a statistical model of 3-D shape variability.

We have demonstrated that this method is applicable to the con-

struction of a statistical shape model of the cardiac chambers.

To the best of our knowledge, this work is the first that uses 3-D

statistical shape models to describe the left and right ventricle

of the heart. Our future work will concentrate on the application

of this model to cardiac image segmentation and analysis.
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