
382 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002

Automatic Construction of Online Catalog Topologies
Wing-Kin Sung, David Yang, Siu-Ming Yiu, David W. Cheung, Wai-Shing Ho, and Tak-Wah Lam

Abstract—Given a set of products, where each is characterized
by a set of attribute values, an online catalog is an organization of
a set of product pages on the web through which users can access
their required product information. A good online catalog is cru-
cial to the success of an e-commerce web site.

Traditionally, an online catalog is mainly built by hand. To what
extent this can be automated is a challenging problem. Recently,
there have been investigations on how to reorganize an existing
online catalog based on some criteria, but none of them has ad-
dressed the problem of organizing an online catalog automatically
from scratch. This paper attempts to tackle this problem.

We model an online catalog organization as a decision tree struc-
ture and propose a metric, based on thepopularityof products and
the relative importanceof product attribute values, to evaluate the
quality of a catalog organization. The problem is then formulated
as a decision tree construction problem. Although traditional deci-
sion tree algorithms, such as C4.5, can be used to generate online
catalog organization, the catalog constructed is generally not good
based on our metric. An efficient greedy algorithm (GENCAT) is
thus developed, and the experimental results show that GENCAT
produces better catalog organizations based on our metric.

Index Terms—Decision tree, metrics, online catalog, tree opti-
mization.

I. INTRODUCTION

M ORE and more companies are putting information about
their products onto the Web. The users can use search en-

gines or browse the online catalog structures to retrieve product
information that interests them. Traditional online catalog re-
search such as [1]–[3] focused on providing better searching
strategies for search engines to retrieve the information in an
existing online library catalog. Other research such as [4]–[6]
focused on building an interface to make the searching easier.
However, search engines are considered more useful only for
those users who know exactly what they are seeking, while a
browsable online catalong is more useful when the users are less
certain. A good online catalog that allows users to get required
product information easily and efficiently is crucial to the suc-
cess of an e-commerce website.

Manuscript received September 22, 2000; revised September 17, 2002. This
paper was recommended by Associate Editor R. Rada.

W.-K. Sung was with the E-Business Technology Institute, University of
Hong Kong. He is now with the School of Computing, National University of
Singapore, Singapore (e-mail: ksung@comp.nus.edu.sg).

D. Yang was with the Department of Computer Science and Information Sys-
tems, University of Hong Kong, Hong Kong and was on leave from the Depart-
ment of Mathematics and Computer Science, St. Joseph’s University, Philadel-
phia, PA. He is now with the Department of Mathematics and Computer Science,
California State University at Hayward, CA, USA (e-mail: dyang@mcs.csuhay-
ward.edu).

S.-M. Yiu, D. W. Cheung, W.-S. Ho and T.-W. Lam are with the Department
of Computer Science and Information Systems, University of Hong Kong, Hong
Kong (e-mail: smyiu@csis.hku.hk, dcheung@csis.hku.hk, wsho@csis.hku.hk,
twlam@csis.hku.hk).

Digital Object Identifier 10.1109/TSMCC.2002.806055

At present, the organization of an online catalog is largely
treated as an art form and typically done by hand (see, for ex-
ample, Rosenfeld and Morville [7]). To what extent this com-
plicated task can be automated is still a challenging problem,
although recent progress has been made. Perkowitz and Etzioni
[8] supplement an existing organization by constructing index
pages for related pages automatically. These related pages are
identified by mining the visitors’ logs. Green [9], on the other
hand, adds some crosslinks between pages that are likely to be
related by studying the contents of the pages.

While these works enhance the existing structure, they do
not consider the quality of the existing structure. Garofalakiset
al. [10] address this quality issue usingpage popularity. They
reorganize the existing structure locally by swapping children
and parent pages if the child page is more popular. This ap-
proach assumes that there are no semantic relationships between
pages thus making the swapping of pages inappropriate. In gen-
eral, this is untrue. None of these approaches has addressed
the problem of organizing an online catalog automaticallyfrom
scratch. While consultation with users is of course essential, we
suggest that it is possible to do this in conjunction with auto-
matic methods.

An online catalog suggests a topology of products while the
root page represents the entire set of products. By following
the links to the next level, products are divided into different
subsets according to some properties (attributes), and a single
product is finally identified. In this sense, the construction of
online catalogs bears a resemblance to classification, and the
problem is formulated as a decision tree construction problem.

There are many approaches in classification including neural
networks [11], example-based classification [12], decision trees
[13], and Bayesean classification [14]. However, except for
decision trees, these approaches do not construct a catalog-like
topology and, therefore, cannot be directly applied to our
problem. Even though decision tree construction algorithms
can build a catalog, it may not be able to build agoodonline
catalog.

A good online catalog organization should allow visitors to
locatepopularproductseasilyandefficiently. According to our
knowledge, however, there does not currently exist any quanti-
tative method to evaluate a catalog tree. We propose, therefore,
a metric to evaluate the quality of online catalog organization.
The metric takes two important factors into account. One is the
popularityof each product so that fewer “clicks” are needed to
get to more popular products. The other is how likely a visitor
can get to the right product by following the links provided by
the catalog. In deciding which link to follow, visitors often need
to answer a question related to an attribute of that product. If vis-
itors do not care about the question, they could end up following
the wrong link. To ask more important attribute questions ear-

1094-6977/02$17.00 © 2002 IEEE



SUNGet al.: AUTOMATIC CONSTRUCTION OF ONLINE CATALOG TOPOLOGIES 383

TABLE I
CHARACTERISTICS OFFIVE DIFFERENTMOBILE PHONES

lier, that is, nearer to the root page makes more sense. If this
were the case, visitors would have a higher chance of getting to
the right products.

To ensure the proposed metric is a feasible one, we also de-
velop a quantitative framework using a well-established mar-
keting methodology calledconjoint analysis[15] to capture re-
liable measures of the relative importances of attributes.

In general, based on the proposed metric, traditional decision
tree algorithms, such as C4.5, do not give us a good solution.
An efficient greedy algorithm, (GENCAT), has been developed.
Experimental results show that GENCAT does give better cat-
alog organizations under our metric. It is also emphasized that
the output from GENCAT can be used as an initial design, and
we provide a subsequent approach to modify this design.

Section II presents the problem of automatic online catalog
construction. Section III discusses the metric, the greedy algo-
rithm, and the analysis of the proposed solution. Other related
issues such as conjoint analysis and how to change the design
produced by GENCAT will be discussed in Section IV. Discus-
sion and conclusion will be given in Section V.

II. PROBLEM DESCRIPTION

A. Model for Online Catalog Design

When visitors try to locate product information from an on-
line catalog, either they make use of the search engine or they
follow the structure of the catalog going from one web page to
another. Since the vocabulary used by the visitor may not match
that used by the site, or the visitor does not know exactly what
they are looking for, the search engine, will not always be able
to produce satisfactory results. The organization of the catalog
is especially important in cases such as these.

Although a real online catalog may have crosslinks between
product pages, usually characterized by “related items,” the un-
derlying structure of a catalog is basically a tree. The root page
(or main page) represents the entire set of products and variety
of choices to follow, represented by the parent-child links that
indicate a subset of products. In other words, an online catalog
can be regarded as a topology of the set of products. When visi-
tors navigate through an online catalog, they essentially traverse
a tree to find the product that most interests them. If we ignore
all those cross- and backward links, the product information
pages are usually seen at the leaves of the tree. We model, there-
fore, a catalog structure as a tree with leaves corresponding to
the product pages and the inner nodes corresponding tonaviga-
tional pages. By navigational, the primary purpose means pages
that guide the user toward the appropriate product pages.

Each navigational page implicitly represents a subset of
product pages. The links provided in the navigational page

further classify the corresponding subset into smaller subsets.
The decision regarding which link to follow usually depends
upon the answer to the initial question regarding properties
(attributes) of products that interest the user. In a clothing
web site, for example, a particular navigational page may
want to subdivide the set of clothing into men’s clothing and
women’s clothing. This navigational page would make use
of the gender attribute to classify its clothing. The gender
attribute has two attribute values: man and woman. The set of
clothing is partitioned into two sets depending on whether the
gender attribute is equal to man or woman. In other words,
when a visitor navigates through this page, the question “Are
you interested in men’s clothing or women’s clothing?”may be
asked in order for the visitor to choose the next link.

To simplify discussion, the following assumptions on product
pages are made. Consider a set of product pages.

1) All product pages in are characterized by the same set
of non-null attributes .

2) Each product page can be uniquely identified by its set of
corresponding attribute values.

Table I shows an example of five mobile phones which are
characterized by three attributes: size, access wap, and call
waiting. Note that we regard a mobile phone of dimension
5 10 2 as large and dimension 35 0.5 as small.

An online catalog organization is formulated as acatalog tree
as follows.

Definition of Catalog Tree:Given a set of product pages,
a catalog tree for is a tree where is the set of
nodes and , is the set of edges such that we have the following.

1) Every product page in is mapped to a unique leaf node
in .

2) Each internal node in is labeled by an attribute in .
3) For each edge , where is the parent, if is

labeled by an attribute, then the edge must be labeled
by a valid attribute value of.

4) For each product page, if the attributes
with corresponding attribute values, , ap-
pears on the path from the root to, then can be uniquely
identified by the attribute set, with corre-
sponding attribute values, .

Fig. 1 shows three different catalog trees for the set of product
pages described in Table I. In order to know which catalog
tree is better, we need some quantitative measurements. In Sec-
tion II-B, we will propose the metrics to measure the quality of
the catalog trees.

B. Metric

As shown in the mobile phone example, for the same set of
products, there are more than one possible catalog trees. The



384 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002

Fig. 1. Different catalog trees for same set of products.

question of which one is the best is not easy to answer. Ac-
cording to our knowledge, there are no quantitative measures
proposed to evaluate the quality of a catalog tree. Basically, a
good catalog tree should help users locatepopularproduct in-
formationefficientlyandeasily. In this section, based on this
idea, we try to define a reasonable metric which allows us to
evaluate how good a catalog tree is.

To quantify this measurement idea, we need to have a quan-
titative measure for the popularity of the product pages. For a
company that has been in business offline, the popularity of
product pages can be approximated using past sales figures.
These figures could either be in number of units sold or in the
monetary value of the products sold. For a company that has
been online for a while, the number of visits to each product
page can provide an approximation to its popularity. For new
products, we can project the popularity of each product by using
marketing techniques.

To address the efficiency issue, one approach is to minimize
the number of “clicks” the visitor uses to get to the popular
product pages. Minimizing this number also relieves the loading
of the web server as visitors do not then need to traverse through
too many web pages before getting to their target page. In our
model, the number of clicks to get to a product page can be mea-
sured by the depth of the page in the catalog tree. For example,
if referring to Table I, Fig. 1(a) is certainly not a good tree as

is a popular product, but the corresponding product page has
the longest path. Based on this observation, the next paragraph
proposes the metric , which tries to measure the average
weighted depth of a catalog tree. A good catalog tree should try
to minimize .

Definition of the Average Weighted Depth Metric:Consider
a catalog tree for a set of product pages. For every product

page , let be the popularity of and let be
the depth of in . We define the average weighted depth of,

as

depth

Out of the three catalog trees in the mobile phone example,
Fig. 1(c) is the best based on . We believe that in [10], the
rationale behind swapping the parent and child page if the child
page is more popular is similar to the underlying concept of.

However, does miss one element for good catalog trees,
that is, it does not address the easiness issue. When visitors
browse through the catalog tree level-by-level, they need to pick
a link in each level by answering an abstract question: “which
value of attribute interests you the most?” If the attribute does
not appear to be of interest, it may not be easy for the visitor to
locate the right product page. For example, in Fig. 1(c), consider
the left child of the root; the user is asked to select the type of
phone with or without the call-waiting function. If the user does
not really care about this function, but wants to get a small size
mobile phone without access to WAP, however, then the user
may end up with product page A instead of product page C.

To make this concept more concrete among the attribute
values which describe a particular product, some are important
(key features), while others are not. A good catalog tree should
avoid using attributes in the navigational pages that are not
important.

The importance of an attribute value can be assigned by the
designer of the online catalog but this is undesirable and can
be quite subjective. Instead, let us borrow a concept, called



SUNGet al.: AUTOMATIC CONSTRUCTION OF ONLINE CATALOG TOPOLOGIES 385

part-worth, from the marketing research. Part-worth of an
attribute value measures the contribution this particular attribute
value has on the overall utility of a product [16]. In other words,
it reflects upon the attribute-value’s relative importance to the
product. The higher the part-worth of an attribute value, the more
people will think that this attribute value is important (see a more
in-depth discussion of part-worth in Section IV-A). Assuming
that we have obtained the part-worths of the attribute values, we
show a better metric which also takes this into account.

Let be a set of products andbe the set of attributes used
to characterize . For every attribute , let be the set of
attribute values of . Observe that each product can be
described using an attribute value vector , where

for every attribute . Among the attribute values
in the vector, some of them are critical (important) characteristic
of while the other are noncritical (unimportant). Our aim is to
build a catalog tree for (i.e., is the set of leaves of )
which tries to achieve two things. Let be the set of attribute
values appearing along the path from the root ofto for any
product page .

• We try to reduce the depth of every product in, espe-
cially for the popular products.

• For each product , we try to minimize the number of
unimportant attribute values in .

To achieve the above two things, we proposes the metric
, which tries to measure the average weighted unimpor-

tance of a catalog tree.
Definition of the Average Weighted Unimportance

Metric: We define a measurement unimport, for every
attribute value, such that unimporthas a large value if is
unimportant. Then, we define the metric as

unimport

Subsequently, for any product , if unimport
is large; then may have a high depth in or the number
of unimportant attribute values in is large. So, reducing

unimport captures the above two criteria.
What remains is to define the measurement unimportfor

every attribute value. There are many different ways to achieve
this. Here, we try to define unimportbased on the part-worth
of , that is, . It is nature to deduce that the larger the,
the more important the is. Hence, we denote

where is a constant which is larger than the part-worth
of all the attribute values.

Table II shows the values of part-worths and unimportances
for the mobile phone example. Based on this table, Fig. 1(b)
should give the best organization under metric .

C. Problem Definition

Formally speaking, the automatic online catalog construction
problem can be defined as follows. Letbe the set of attributes
that characterize the set of product pages.

Input: A set of product pages and the metric ;
Output:A catalog tree for which minimizes .

TABLE II
PART-WORTHS OFATTRIBUTE VALUES IN THE MOBILE PHONE EXAMPLE

The automatic online catalog construction problem is NP-
hard, so in Section III, we will present a greedy algorithm for
constructing a local optimal catalog tree under the proposed
metric.

III. OUR PROPOSEDSOLUTION

Since a catalog tree bears a resemblance to a decision tree,
traditional decision tree construction algorithms, such as C4.5
[17], can be used to build a catalog tree. The catalog constructed,
however, is generally not good based on our metric because the
information gained through the importance measurement was
not considered. In this section, we present the greedy algorithm
GENCAT for constructing a local optimal catalog tree under the
proposed metric. The running time of the algorithm will then be
analyzed and the performance of the algorithm will be compared
with those of other decision tree construction algorithms.

A. Greedy Algorithm–GENCAT

The algorithm consists of two steps. The first step generates
an initial catalog tree for the product pages. The next step
restructures the tree by considering different attribute choices
at each node in an in-depth manner. The output of the algo-
rithm will then be a local optimal catalog tree with respect to the
metric, .1 The following gives the details of these steps.

We start by building an initial catalog tree. Different initial
trees can be used. One way to generate the initial tree is that
we start building it by arbitrarily choosing an attribute at the
root. The product pages will be partitioned into different subsets
according to the corresponding attribute values. A child node
will be created for each subset. For each child node with more
than one product page, we arbitrarily pick another attribute and
continue the partitioning process until every leaf node contains
a single product page. Fig. 2 shows an initial catalog tree based
on a selection of tires from Table IV.

After getting the initial tree , the second step, which is the
core of the algorithm, tries to restructureto optimize the value
of . Starting from the root, we do the restructuring in an
in-depth manner. For each node, we consider every possible
attribute . Then, the subtree rooted atis reorganized using
as the attribute for the node. This reorganization will modify
the structure of the subtree based onthe original structure of .
This restructuring will be shown as always feasible using a pro-
cedure called Rebuild . Among all these possible alternatives,
we choose the one that gives the best value of . When the

1In fact, the algorithm is quite general in the sense that if we substitute the
metricf (T ) by another appropriately defined metric, the algorithm still works



386 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002

Fig. 2. Initial catalog tree for tires S1, S3, S5, G2, G4, G6, and R5 (m = 10,
f (T ) = 22:24).

TABLE III
COMPARISONBETWEEN GENCAT AND C4.5

algorithm stops, we end up with a local optimal catalog tree with
respect to the metric .

The procedure Rebuild will restructure the subtree
of rooted at using attribute in node . The details are as
follows.

1) Change the attribute in nodeof to .
2) Partition the product pages in the leaves of the subtree

rooted at into groups according to the
corresponding attribute values of

3) For each group , let be a tree constructed fromas
follows.

a) All the product pages not in are removed.
b) All the inner nodes which have one child are re-

moved.
4) Replace all the subtrees which are attached toby

.
Fig. 3 shows an example how Rebuildrestructures the sub-

tree rooted at using attribute to replace in node . The
second step shows the result of partitioning leaf pages rooted at

according to the attribute values of . The third step shows
the result of restructing the subtree rooted atbased on the orig-
inal structure of . The final output is obtained by removing in-
ternal nodes which have only one child (for example, the nodes
using attributes and ).

Fig. 4 shows the algorithm for GENCAT. We can make use
of GENCAT even if not all attributes apply to every product.
We can deal with this by first limiting ourselves to the attributes
which do apply to all products. Next, the remaining products
within each of the subtrees can be grouped by the groups of
products which each have the same more specialized attributes.

GENCAT can also help if the catalog tree must start with a
standard classification. An example of this situation would be

a clothing retailer who wants to pre-divide the products into
groups, say clothing for women, men, girls, boys, and infants.
There can be shirts or blouses in each of these categories with
the same set of attribute values. In such a case, the site designer
would divide up the products into the appropriate subsets, then
run GENCAT on each subset.

B. Example

This section shows an example of the resulting catalog after
the restructing by GENCAT. Consider the table of tires in
Table IV again. If for simplicity we assume the popularity of
the tires is all the same (we arbitrarily set the popularity to 1),
our catalog organization routine yields the catalog tree in Fig. 5.
The aim of this example is to see the effect of unimportance of
attribute values on the structure of the catalog tree.

In comparing Fig. 5 with the original tree, we note that using
the sidewall attribute at the root produces a tree with a longer
path for four of the seven products. Also, according to the part-
worth values, brand and tread mileage are more important than
sidewall and price, therefore, it is no good to put sidewall and
price near the top of the catalog tree.

C. Performance Analysis

In this section, we will discuss the performance of the al-
gorithm. It is shown that the time complexity of GENCAT is
polynomial in the number of product pages and the number of
attributes per product page. Then, we will compare the perfor-
mance of our algorithm with those of other decision tree con-
struction algorithms.

1) Time Complexity:Before analyzing the whole algorithm,
we first show that Rebuild can be computed in
time where is the subtree of rooted at .

Lemma 1: Rebuild can be computed in
time.

Proof: It can be proved using the same technique as in [18]
Lemma 4.1.

It is obvious that the metric can be computed in
time. The next lemma concludes the time complexity

of GENCAT.
Lemma 2: GENCAT requires time where is

the set of attributes and is the set of products in the catalog.
Proof: Recall that GENCAT can be divided into two parts.

The first part tries to build an initial catalog tree. By picking
an arbitrary attribute to partition the product pages recursively
until every partition contains only one product, we can build the
initial tree in time. Note that the size of the initial tree
constructed is smaller than .

The second part tries to refine the structure of the catalog
tree by the procedure Improve . As shown in Fig. 4,
the first step of Improve is to compute Rebuild

for every attribute . It requires time
based on Lemma 1. The second step finds which min-
imizes for all . Since can be computed
in time, this step needs time.
Hence, can be computed in time. After updating
the attribute used in, we call Improve recursively to update
the attributes used in the descendents of. As the catalog tree



SUNGet al.: AUTOMATIC CONSTRUCTION OF ONLINE CATALOG TOPOLOGIES 387

TABLE IV
TIRES TABLES

Fig. 3. Example which demonstrates Rebuild(T; w; A ).

has at most nodes, the total time required by Improveis
.

2) Performance Tests on Synthetic Data:The performance
tests were divided into two parts. We first compared the results
from GENCAT with those from C4.5. Then, we tested the per-
formance of GENCAT over different input data sets.

Data Generation: The input data were generated using the
following parameters:

• number of product pages ;
• number of attributes per product page;
• maximum number of values per attribute.

The number of product pages in a test set is ranged from 20
to 1000. The number of attributes per page is fixed for each test
set. The number of attributes per product page is ranged from

4 to over 30. The maximum number of values per attribute is
ranged from 1 to over 30.

The actual number of attribute values is chosen randomly.
The attribute values are assigned according to either, a uniform
distribution or a normal distribution. The uniform distribution
models those cases where manufacturers offer all, or almost all,
permutations of the attribute values. The normal distribution,
models those cases where some attribute values are more pop-
ular. Popularity of the product pages are assigned according to
the Zipf distribution.

The part-worth for each attribute value is generated randomly.
Each attribute is also chosen to be, on the whole, important
or unimportant. An attribute which is important has a single
attribute value with a part-worth of zero and several attribute



388 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002

Fig. 4. GENCAT algorithm for automatic catalog organization.

values which all have relatively high part-worths. An unimpor-
tant attribute has a single value with a part-worth of zero as well,
but the other values of this attribute all have low part-worths.
For our tests, 30% of the attributes were chosen to be important
while 70% were chosen to be unimportant. The boundaries of
the ranges of part-worths can also be specified. An unimportant
attribute had part-worths ranged from 0 to 4 while an important
attribute had part-worths ranged from 4 to 8 in our tests.

Comparison Between C4.5 and GENCAT:For the compar-
ison between C4.5 and GENCAT, we tried 50 data sets, and each
data set has 500 pages, and 20 attributes, and there are at most
four possible values per attribute. Table III shows the means and
standard deviations of the experiment results. It shows that al-
though C4.5 could give similar result as GENCAT in terms of

, the trees from C4.5 gives a much higher values than
those from GENCAT. This means that C4.5 does not consider
the unimportance of the attribute values and tries to ask the users
more questions on unimportant attributes, forcing a choice be-
tween unimportant attribute values in the internal nodes of the
catalog trees.

Performance of GENCAT:We also tested two other aspects
of the performance (performance ratio and computation time) of
GENCAT over different input data sets. The performance ratio is
defined as the ratio of value of the catalog tree produced by
GENCAT to that by an optimal tree generator which uses a brute
force optimal algorithm with dynamic programming. Figs. 6 and
7 show the effects on the changes ofand to the perfor-
mance ratios.

We found that the increase of or would make GENCAT
slightly less effective. However, GENCAT still has an average
ratio less than 1.1 in our test cases, which means that our trees
are just 10% deeper than the optimal ones. We only performed
tests for up to 100 pages or 12 attributes because it is nearly
infeasible (the running time for a single test case is more than
2 hrs.) to find an optimal tree for test cases with more product
pages or attributes.

Figs. 8–10 show that GENCAT has a good scalability over the
parameters. The running time was only slightly quadratic (nealy
linear) to the number of product pages or the number of at-
tributes per page . For a data set with 1500 product pages and
20 attributes per product page, the time for running GENCAT
was only 20 min.

IV. OTHER ISSUES

In this section, we will describe a framework based on a well-
developed marketing methodology, called conjoint analysis, to
capture the necessary data, namely, the importance of attributes,
for the calculation of . Then, we will show how the output
from GENCAT can be used as an initial design and be altered
by the designer.

A. Conjoint Analysis

It is not desirable to leave the assignment of the actual impor-
tance values to a site-designer. There are many different ways
to achieve this. One way is to use the marketing concept of
part-worth, which measures the contribution of a particular at-
tribute value to the overallutility of a product [16]. This estab-
lishes a uniform scale for comparing the contribution of dif-
ferent attributes to the overall valuation of the product. The
higher the part-worths of the attribute values of the product, the
more people will be willing to spend for that product.

To accurately determine the values of part-worths is not easy
because it is not feasible to ask humans to rate each individual at-
tribute value. Researchers in marketing will make use of a well-
developed methodology called conjoint analysis to deduce the
values of part-worth. In our case, based onmetric conjoint anal-
ysis[16], a variant of conjoint analysis, we can capture the part-
worths of the attribute values for the calculation of unimport.
The idea is quite simple. A selected set of products is chosen
and a test group of consumers is asked to rate each product on
a numerical scale, such as one to ten. For each attribute value,
we assign a variable to denote the value of the corresponding
part-worth. Depending on the underlying model, a set of equa-
tions will be obtained.

For example, assuming the effects of any two attribute values
are independent, then the utility of a product is the sum of the
part-worths of all its attribute values. Consider a product with
two attributes and . The possible attribute values for are

and , while the possible attribute values for are and .
We are thus trying to solve for four variables, , , and ,
which are the part-worths of the four attribute values. If we were
to generate the four products with the possible combinations, we
would have the following overdetermined set of equations:

(1)

(2)

(3)

(4)

where represents the utility of the product with the attribute
values of and equal and , respectively. We can find a
solution with the least-squared error by using regression.

One concern is that the number of equations can become very
large as the number of attribute values increases. Part of the



SUNGet al.: AUTOMATIC CONSTRUCTION OF ONLINE CATALOG TOPOLOGIES 389

Fig. 5. Decision tree obtained based on average weighted unimportance (m = 10, f (T ) = 15:29).

Fig. 6. Effect of number of attributes on the performance ratio.

Fig. 7. Effect of number of product pages on the performance ratio.

reason conjoint analysis has succeeded is that the number of
permutations of attribute values tested is much smaller than the
total possible permutations.

Table IV shows an example adapted from [16] which can
be used to calculate unimportin our case. The products in
this example are automobile tires made by three manufacturers
(the Brand attribute). The Tread Mileage attribute indicates how
many miles the tire is expected to last. Three possible prices are

Fig. 8. Effect of number of attributes on running time.

Fig. 9. Effect of number of product pages on running time.

considered. The Sidewall attribute indicates if there are white
radial strips on the sides of the tires.

The Utility column represents the rating given to the tire. The
18 listed combinations in the table are designed to extract the
rater’s valuation of the individual attribute values. Note that this
is only a third of the total possible combinations, but it is suf-
ficient for determining the part-worths, which are found in the
second table.



390 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002

Fig. 10. Effect of number of attribute values on running time.

Subtracting the part-worths from a constantyields a mea-
sure of unimportance. The unimportance becomes the weight on
each edge in the catalog tree. If we set the constant and
let the popularity of each page equals 1, the initial tree in Fig. 2
thus has an average weighted unimportance22.24.

B. Changing the Design

Design is subjective. The catalog tree proposed by our algo-
rithm may not suit the taste of the web designer. However, the
output can be used as an initial design and modified by the de-
signer. In this section, we give one approach on how the de-
signer can modify the catalog tree. More precisely, one way
to reorganize the tree is to replace the attribute of a nodeby
an attribute . This can be done easily by calling the proce-
dure Rebuild in Fig. 4. This routine not only replaces
the attribute in by but also maintains the correctness of the
topology of . In other words, designers have the flexibility to
choose any of the attributes to be used in any of the internal
nodes.

V. DISCUSSION ANDCONCLUSION

This paper introduces the problem of automatic online cat-
alog construction which is formulated as a decision tree con-
struction problem. A metric is proposed to evaluate the quality
of a catalog organization. The metric is defined on the popu-
larity of product pages and the unimportance of product attribute
values. It is found that traditional decision tree algorithms do
not give good catalog organizations under the proposed metric.
An efficient greedy algorithm (GENCAT) is developed. Experi-
ments show that GENCAT does product better catalog organiza-
tions. As part of the solution, we develop a methodology using
a well-established marketing technique to obtain the values of
unimportance of attribute values which are then used in the cal-
culation of the metric.

GENCAT is intended to produce a correct and efficient or-
ganization but may of course be modified further by users. The
procedure Rebuild can readily be modified to do straightfor-
ward restructuring as decided by the site designer. We note that
restructuring an online catalog or any other part of a website is
not generally a trivial process as pages need to be reclassified.

It is a simple matter to create semantically nonsensical results
with pages being put where they do not belong or being made
inaccessible.

Our approach does assume that the attributes for the in-
formation pages are provided. We have several justifications
for this assumption. Many companies already use a database
to store product information. Each field of a relational table
corresponds to an attribute. Furthermore, XML seems destined
to overtake HTML as the language of choice for web data.
XML supports easy extraction of attributes from a page. There
is already great support in the marketplace for XML (e.g.,
http://www.xmledi.org, http://www.biztalk.org).

For existing product pages which are written in HTML, we
note that Sahuguet and Azavant [19] have already presented
a wrapper-based solution for extracting complicated structure
from HTML documents to convert them to XML.

GENCAT can process a large database of products but not
in real-time. We are interested in finding faster alternatives that
still produce an efficient organization. We also want to study the
impact of the initial tree on the results and develop a better way
to create the initial tree.

While multivalued attributes (e.g., the color of a striped shirt)
can be processed by GENCAT, the impact of these attributes
on the metrics has not been fully analyzed. Another potential
problem is how to handle users who do not care about, or do not
understand, an attribute used on a navigational page or one of
the attribute’s values.

A practical implementation of our approach should also con-
sider attributes with a large domain. The standard solution of
using ranges of values or subsets of the domain may not always
be satisfactory. A consumer is more likely to be interested in a
set of choices like, “less than $20,” “less than $40,” and “any
price” instead of “less than $20,” “$20–$40,” and “over $40.”

Even without further features, GENCAT provides a useful
tool for website design. It helps select a good subset of attributes
to use and supports revision of the results if the designer is dis-
satisfied with them or simply wants to consider alternatives.

ACKNOWLEDGMENT

The authors would like to thank V. Iyengar and C.-K. Yim for
their useful comments.

REFERENCES

[1] M. K. Buckland, M. H. Buttler, B. A. Norgard, and C. Plaunt, “OASIS:
A front-end for prototyping catalog enhancements,”Library Hi Tech,
vol. 10, no. 4, pp. 7–22, 1993.

[2] C. R. Hildreth, “Online Catalog Design Models: Are we Moving in the
Right Direction?,” Council Library Res., 1995.

[3] B. A. Norgard, M. G. Berger, M. K. Buckland, and C. Plaunt, “The online
catalog: From technical services to access services,”Ad. Librarianship,
vol. 17, no. 1, pp. 111–148, Jan. 1994.

[4] M. Spenke, C. Beilken, and T. Berlage, “FOCUS: The interactive table
for product comparison and selection,” inACM Symp. User Interface
Software Technol., 1996, pp. 41–50.

[5] M. Stolze, “Soft navigation in product catalogs,” inin Proc. Res. Adv.
Technol. Digital Libraries, Second Euro. Conf., 1998, pp. 385–396.

[6] J. Lee, H. S. Lee, and P. Wang, “analytical product selection using a
highly-dense interface for online product catalogs,” IBM Inst. Advan.
Comm., 2001.

[7] L. Rosenfield and R. Morville,Information Architecture for the World
Wide Web. Cambridge, MA: O’Reilly, 1998.



SUNGet al.: AUTOMATIC CONSTRUCTION OF ONLINE CATALOG TOPOLOGIES 391

[8] M. Perkowitz and O. Etzioni, “Adaptive web sites: Automatically syn-
thesizing web pages,” inAAAI, 1998, pp. 727–732.

[9] S. J. Green, “Automated link generation: Can we do better than term
repetition?,”Comput. Net. ISDN Syst., vol. 30, no. 1–7, pp. 75–87, 1998.

[10] J. Garofalakis, P. Kappos, and D. Mourloukos, “Web site optimization
using page popularity,”IEEE Inter. Comp., vol. 3, no. 4, pp. 22–29, 1999.

[11] G. P. Zhang, “Neural networks for classification: A survey,”IEEE Trans.
Syst., Man Cybern, C, vol. 30, pp. 451–462, Nov. 2000.

[12] R. Rada, H. Mili, E. Bicknell, and M. Blettner, “Development and appli-
cation of a metric on semantic nets,”IEEE Trans. Syst., Man Cybern.,
vol. 19, pp. 17–30, Jan./Feb. 1989.

[13] J. R. Quinlan, “Introduction of decision trees,”Machine Learning, vol.
1, no. 1, pp. 81–106, 1986.

[14] J. Han and M. Kamber,Data Mining: Concepts and Techniques. San
Francisco, CA: Morgan Kaufmann, 2000.

[15] J. P. Guilford,Psychometric Methods, 2nd ed. New York: McGraw-
Hill, 1954.

[16] P. E. Green, D. S. Tull, and G. Albaum,Research for Marketing Deci-
sions, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 1988.

[17] J. R. Quinlan,C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufman, 1993.

[18] M. Farach and M. Thorup, “Optimal evolutionary tree comparison by
sparse dynamic programming,” inProc. 35th Annu. IEEE Symp. Foun-
dations Comput. Sci., 1994, pp. 770–779.

[19] A. Sahuguet and F. Azavant, “Building light-weight wrappers for legacy
web data-sources using w4f,” inProc. VLDB, 1999, pp. 730–733.

Wing-Kin Sung received the B.Sc. degree and Ph.D. degree in computer sci-
ence from the University of Hong Kong, Hong Kong. He is currently an Assis-
tant Professor with the Department of Computer Science, National University of
Singapore (NUS). Prior to joining NUS, He worked as a Post-Doctoral Fellow
at Yale University, New Haven, CT, and worked as a Senior Technology Officer
in the E-Business Technology Institute (ETI) Hong Kong. His research interests
include algorithms, combinatorial optimization, and computational biology.

David Yang received the B.A. degree in 1986, from Harvard University, Cam-
bridge, MA, the M.S. degree in 1989, from the University of Illinois at Ur-
bana-Champaign, and the Ph.D. degree in 1994 from Columbia University New
York, NY in computer science.

He was visiting the CIS Department, University of Hong Kong, and the
e-business Technology Institute, Philadephia, PA, on leave from a faculty
position at St. Joseph’s University at the time of this work. He is currently
an assistant professor of computer science at California State-Hayward. His
research interests are in the areas of computer science education and databases.

Siu-Ming Yiu received the B.Sc. degree in computer science from the Chinese
University of Hong Kong, Hong Kong, the M.S. degree in computer and infor-
mation science from Temple University, Philadephia, PA, and the Ph.D. degree
in computer science from the University of Hong Kong, Hong Kong.

He is currently a Teaching Consultant with the Department of Computer Sci-
ence and Information Systems of the University of Hong Kong. His research
interests include computational biology and data mining.

David W. Cheung received the B.Sc. degree in mathematics from the Chinese
University of Hong Kong. He also received the M.Sc. and Ph.D. degrees in com-
puter science from Simon Fraser University, Barnaby, BC, Canada, in 1985 and
1989, respectively.

From 1989 to 1993, he was with Bell Northern Research, Ottawa, Canada,
where he was a senior member of scientific staff. Since 1994, he has been a fac-
ulty member of the Department of Computer Science and Information Systems,
The University of Hong Kong, Hong Kong. He is also the Director of the Center
for E-Commerce Infrastructure Development at HKU. His research interests in-
clude database, data mining, XML technology and e-commerce standardization.

Dr. Cheung was the Program Committee Chairman of the Fifth Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD01) and an
Industry Track Chair of VLDB 2002. He is also the program chair of the
Hong Kong International Computer Conference 2003 (HKICC2003) and is the
steering committee chair of the Freebxml.org, which promotes ebXML open
source projects. He was a recipient of the HKU Outstanding Researcher Award
in 1998.

Wai-Shing Ho received the B.Eng. degree in computer engineering from the
University of Hong Kong in 1999. He is pursuing the Ph.D. degree with the
Department of Computer Science of the University of Hong Kong.

His research interests include XML indexing, XML query optimization, XML
storage, and data mining.

Tak-Wah Lam received the M.S. and Ph.D. degrees in computer science from
the University of Washington, Seattle.

He is now an Associate Professor with the Department of Computer Science,
the University of Hong Kong. His research interests include algorithms, com-
putational biology, parallel computation, and data mining.


