Automatic construction of reactive control systems
using symbolic machine learning

CLAUDE SAMMUT

Department of Artificial Intelligence, University of New South Wales, Sydney Australia 2052

(email: claude @ cse.unsw.edu.au)

Abstract

This paper reviews a number of applications of Machine Learning to industrial control
problems. We take the point of view of trying to automatically build rule-based reactive
systems for tasks that, if performed by humans, would require a high degree of skill,
yet are generally performed without thinking. Such skills are said to be sub-cognitive.
While this might seem restrictive, most human skill is executed subconsciously and
only becomes conscious when an unfamiliar circumstance is encountered. This kind of
skill lends itself well to representation by a reactive system, that is, one that does not
create a detailed model of the world, but rather, attempts to match percepts with actions
in a very direct manner.

1. Introduction

Traditional control theory requires a mathematical model of a physical process to predict
its behaviour so that appropriate control decisions can be determined. Unfortunately,
many processes are either too complicated to model accurately or insufficient
information is available about the process’ environment. In such cases, heuristic
methods often prove useful. But where do the heuristics come from? They may be
hand-crafted, based on the knowledge of experts, but this is often not possible since
many control skills are sub-cognitive, that is, they are performed without thinking and
without any conscious knowledge of the skill. For this reason, machine learning plays
an important role in building knowledge-based control systems.

How a dynamic system is controlled depends very much on the time scales
involved. A good example of a highly dynamic system is an aircraft. Suppose we wish
to control a large plane, such as a 747. This system is so large that the response time
for a control decision may be quite long. Say, for example, that the pilot wishes to
lower the flaps on a landing approach. Depending on the angle of the flaps, this may
take quite a few seconds. Given the inertia of such a large aircraft, the effect of

lowering the flaps is further delayed. In fact, piloting a large commercial aircraft, under
normal circumstances, requires a high degree of conscious planning and forethought.
On the other hand, suppose we are piloting a highly responsive aircraft, such as a
fighter or aerobatics plane. In this case, the aircraft responds to control decisions very
quickly and therefore, much of the pilot’s decision making must be correspondingly
fast, in fact, so fast that conscious thought is not possible.

Many of our skills are sub-cognitive, just like the fighter pilot’s skill. In 1911, the
mathematical philosopher A.N. Whitehead wrote:
It is a profoundly erroneous truism ... that we should cultivate the habit of thinking what
we are doing. The precise opposite is the case. Civilisation advances by extending the
number of important operations which we can perform without thinking about them.
In this paper, we are concerned, not with the conscious planning and control that a 747
pilot might engage in, but rather in the subconscious control of a fighter pilot.

Such skills are not limited to exotic domains. When we do not have good model of a
dynamic system, we usually resort to “seat-of-the-pants” control. As an example,
consider a system such as a container crane. Very large gantry cranes are used to
transport heavy loads, on a swinging rope, from the dock to a ship and vice versa.
Because of their non-linear nature, traditional control theory is unable to provide
optimal control strategies to maximise the throughput of these cranes, yet some human
operators are known to perform much better than others and better than automated
systems. Somehow, they have acquired a skill that enables them to perform very
efficiently, yet they are unable to articulate that skill because it is sub-cognitive.

Human sub-cognitive skills are “tacit” in the sense that the owner of such a skill is
unaware of its mode of operation. However, a skilled human operator of a plant is
usually conscious of the goals and sub-goals he or she is attempting to achieve. Each of
these goals may be served by a separate sub-cognitive procedure. Machine-executable
forms of such sub-cognitive skills can be used to simplify the construction of practical
control systems by introducing a “multi-agent” architecture where low-level agents may
be regarded as expert solvers for a particular problem. A chairman, who has global
access to the problem-solving environment, selectively invokes members of a
committee of specialists each of which has access to a different, very limited, part of the
environment. The chairman embodies explicit knowledge that is easily articulated and
therefore can be hand-crafted. The specialists implement low-level real-time control
skills that, in a human, are not performed at a conscious level and therefore cannot be
articulated. To create this kind of knowledge, each agent may be separately derived by
inductive learning of production rules from recorded human performance of the skilled
task.

Complex control skills in humans are built of components which their possessors
cannot explicitly communicate. However, given sufficient sampling of subarticulate
input-output, machine learning programs can construct rules which result in behaviours
similar to those of the original exemplars (Michie, 1986). These “clones”, i.e.
exemplar-derived agents, are in effect, symbolic representations of subsymbolic
behaviours.

In this paper, we first look briefly at heuristic control systems and at how control
skills can be specified by a symbolic representation. We then review systems that learn
such control rules. Note that we confine ourselves to a discussion of techniques for
learning symbolic representations. One of the primary aims of the work surveyed is to
produce explicit descriptions of sub-cognitive skills that can be read and understood.
There are two reasons for this: one is that such explicit representations may shed light
on the nature of the skill; the second is that the skill’s description may lead to improved
training methods. There is a considerable body of literature on neural, genetic and
reinforcement learning for control problems. While much of this work has been
extremely productive, we do not include it in our survey since the output from these
algorithms are often difficult to interpret.

2. Reactive Procedures

Tacit skills can be represented by “situation-action” rules. We illustrate this with a new
formalism developed by Nilsson (1994).

A teleo-reactive(T-R) sequence is an agent control program that directs the agent toward a
goal (hence feleo) in a manner that takes into account changing environmental

circumstances (hence reactive). In its simplest form, it consist of an ordered set of
production rules.

Two T-R procedures for controlling a mobile robot are shown below:

goto (Loc)
position = Loc — nil
heading = course (position, Loc) — move
otherwise — rotate
amble (Loc)
position = Loc — nil
clear_path (position, Loc) — goto(Loc)
otherwise — amble (new_point (position, Loc))

The left hand side of a production rule consists of tests on sensor data and the right
hand side consists of calls to action procedures. The first rule of the goto procedure
simply states that if the robot is at the desired location then do nothing. If the heading
of the robot is the same as the course required to reach the desired location then move
forward, otherwise rotate. These production rules are continuously evaluated in the
order they are written. As the robot rotates, the heading is continuously compared with
the required course. When they are the same, the second production rule takes priority,
so rotation stops and the robot moves forward. If the robot drifts off course then the
third rule will be invoked until the heading is correct again.

The amble procedure describes a simple plan for obstacle avoidance. If the robot is
at the desired location then do nothing. If there is a clear path from the current position
to the desired location then go to that location, otherwise determine a new point to one

Table 1. Yaw Control Rule

1 1 1
Yaw positive 4 thrust no thrust 4 thrust) thrust — full thrust
1 1
Yaw ok 5 thrust no thrust no thrust no thrust 5 thrust
1 1 1
Yaw negative full thrust > thrust 4 thrust no thrust 4 thrust
Yaw rate very Yaw rate Yaw rate ok Yaw rate Yaw rate very
negative negative positive positive

side of the obstacle and call amb1e recursively. Some procedures, either sensor or
motor, are built it. For example, the current heading may be determined by reference to
an onboard compass which is accomplished by special purpose code. Primitive actions
include move, rotate, etc. Actions, whether primitive or user defined, can be used in
planning provided that additional information is available, namely, the preconditions
necessary for an action to achieve a goal, the postconditions of the action and side
effects, such as conditions which become true or false after performing the action.

In effect, the current situation is used as an index into a set of pre-arranged action
sequences. If the rules cover all possible situations in which an agent can find itself,
these plans are said to be universal (Schoppers, 1987). We give a simple, but practical
example of a universal plan in the following section.

2.1. Satellite Control

If the attitude of a satellite in Earth orbit is to be kept stable by means of thrusters, the
control system must contend with many unknown factors. For example, although very
thin, the Earth' s atmosphere can extend many hundreds of kilometres into space. At
different times, the solar wind can cause the atmosphere' s density to change, thus
altering the drag on the space craft. Indeed, the solar wind, itself highly variable, can
affect the satellite' s attitude. These are factors which earth-bound designers cannot
predict, and even after nearly four decades of space flight, attitude control is still a
major problem.

Sammut and Michie (1991) developed a strategy for firing roll, pitch and yaw
thrusters by using a simple table look up, which corresponds very closely to Nilsson’s
T-R paradigm. We illustrate this with the yaw table, reproduced in Table 1. Pitch and
roll have similar control strategies.

Using a high-fidelity simulator of a space craft, Sammut and Michie found that
although roll, pitch and yaw are coupled, the control systems for each can be separated.
Each axis is discretised so that when the state variables indicate that the system falls in a
particular table entry or box, the appropriate action is taken. Roll, pitch and yaw are
treated independently, but even though a torque in one direction can cause precession in
another, the rules implicitly correct for interactions. Originally, Sammut and Michie
used pure bang-bang control. While this was able to control the satellite, it wasted fuel

and caused unnecessary accelerations. The strategy shown in Table 1 is fuel efficient
and relatively smooth.

Discretisation of the state space was a trivial matter. The designers of the spacecraft
indicated regions of optimum performance; acceptable performance and unacceptable
performance. These specifications were used to set the boundaries of the boxes.

This application illustrates some advantages of a reactive control system. Because
system builders are often unable to predict variations in environment, a system may be
designed so that it responds in reaction to the current situation rather than following a
pre-defined plan which may become inappropriate when conditions change. The
attitude control problem is one in which it is relatively easy to cover all expected
situations, provided that all the thrusters are operating normally. Later we will discuss
how failures can be handled.

In this example, it was possible to write comprehensive control rules, however, an
obvious difficulty with reactive control systems, especially universal ones, is that
number of rules required may become impossibly large in some domains. How can we
anticipate all possible circumstances? Where will all of these rules come from? Machine
Learning provides one answer.

3. Learning Situation-Action Rules by Behavioural Cloning

Behavioural cloning seeks to build situation-action rules by learning from the traces of a
skilled operator’s behaviour. Thus, if a human is capable of performing some task,
rather than ask him or her to explain how the task was performed, we ask to be shown
how. Machine learning is used to create a symbolic description of the skill where
introspection by the human operator fails because the task is performed without
thinking. The first demonstration of behavioural cloning was by Michie, Bain and
Hayes-Michie (1990) on the task of pole balancing. Since then, a number of practical
applications have been developed. The method of behavioural cloning is best
understood by looking at some of these applications.

3.1. Learning to Fly

Sammut, Hurst, Kedzier and Michie (1992) modified a flight simulation program to log
the actions taken by a human subject as he or she flies an aircraft. The log file is used to
create the input to an induction program. The quality of the output from the induction
program is tested by running the simulator in autopilot mode where the autopilot code is
derived from the decision tree formed by induction.

The central control mechanism of the simulator is a loop that interrogates the aircraft
controls and updates the state of the simulation according to a set of equations of
motion. Before repeating the loop, the instruments in the display are updated.

3.1.1. Logging Flight Information

The display update was modified so that when the pilot performs a control action by
moving the control stick or changing the thrust or flaps settings, the state of the
simulation is written to a log file. Three subjects each ‘flew’ 30 times.

At the start of a flight, the aircraft points North, down the runway. The subject is
required to fly a well-defined flight plan that consists of the following manoeuvres:

1. Take off and fly to an altitude of 2,000 feet.
2. Level out and fly to a distance of 32,000 feet from the starting point.

3. Turn right to a compass heading of approximately 330°. The subjects were actually
told to head toward a particular point in the scenery that corresponds to that
heading.

4. At a North/South distance of 42,000 feet, turn left to head back towards the run-
way. The scenery contains grid marks on the ground. The starting point for the turn
is when the last grid line was reached. This corresponds to about 42,000 feet. The
turn is considered complete when the azimuth is between 140° and 180°.

5. Line up on the runway. The aircraft was considered to be lined up when the
aircraft’ s azimuth is less than 5° off the heading of the runway and the twist is less
that +10° from horizontal.

6. Descend to the runway, keeping in line. The subjects were given the hint that they
should have an ‘aiming point’ near the beginning of the runway.

7. Land on the runway.

During a flight, up to 1,000 control actions can be recorded. With three pilots and 30
flights each, the complete data set consists of about 90,000 events. The data recorded in
each event are:

on_ground boolean: is the plane on the ground?

g_limit boolean: have we exceeded the plane’s g limit
wing_stall boolean: has the plane stalled?

twist integer: 0 to 360° (in tenths of a degree, see below)
elevation integer: 0 to 360° (in tenths of a degree, see below)
azimuth integer: 0 to 360° (in tenths of a degree, see below)
roll_speed integer: 0 to 360° (in tenths of a degree per second)
elevation_speed integer: 0 to 360° (in tenths of a degree per second)
azimuth_speed integer: 0 to 360° (in tenths of a degree per second)
airspeed integer: (in knots)

climbspeed integer: (feet per second)

E/W distance real: E/W distance from centre of runway (in feet)
altitude real: (in feet)

N/S distance real: N/S distance from northern end of runway (in feet)
fuel integer: (in pounds)

rollers real: 4.3

elevator real: 3.0

rudder real: not used

thrust integer: 0 to 100%

flaps integer: 0°, 10° or 20°

The elevation of the aircraft is the angle of the nose relative to the horizon. The azimuth
is the aircraft’s compass heading and the twist is the angle of the wings relative to the
horizon. The elevator angle is changed by pushing the mouse forward (positive) or
back (negative). The rollers are changed by pushing the mouse left (positive) or right
(negative). Thrust and flaps are incremented and decremented in fixed steps by
keystrokes. The angular effects of the elevator and rollers are cumulative. For example,
in straight and level flight, if the stick is pushed left, the aircraft will roll anti-clockwise.
The aircraft will continue rolling until the stick is centred. The thrust and flaps settings
are absolute.

When an event is recorded, the state of the simulation at the instant that an action is
performed could be output. However, there is always a delay in response to a stimulus,
so ideally we should output the state of the simulation when the stimulus occurred
along with the action that was performed some time later in response to the stimulus.
But how do we know what the stimulus was? Unfortunately there is no way of
knowing. Human responses to sudden piloting stimuli can vary considerably but they
take at least one second. For example, while flying, the pilot usually anticipates where
the aircraft will be in the near future and prepares the response before the stimulus
occurs.

Each time the simulator passes through its main control loop, the current state of the
simulation is stored in a circular buffer. An estimate is made of how many loops are
executed each second. When a control action is performed, the action is output, along
with the state of the simulation as it was some time before. How much earlier is
determined by the size of the buffer.

3.1.2. Data Analysis

Quinlan’s C4.5 (Quinlan, 1993) program was used to generate flight rules from the
data. Even though induction programs can save an enormous amount of human effort
in analysing data, in real applications it is usually necessary for the user to spend some
time preparing the data.

The learning task was simplified by restricting induction to one set of pilot data at a
time. Thus, an autopilot has been constructed for each of the three subjects who gener-
ated training data. The reason for separating pilot data is that each pilot can fly the same
flight plan in different ways. For example, straight and level flight can be maintained by
adjusting the throttle. When an airplane’s elevation is zero, it can still climb since higher
speeds increase lift. Adjusting the throttle to maintain a steady altitude is the preferred
way of achieving straight and level flight. However, another way of maintaining
constant altitude is to make regular adjustments to the elevators causing the airplane to
pitch up or down.

The data from each flight were segmented into the seven stages described
previously. In the flight plan described, the pilot must achieve several, successive
goals, corresponding to the end of each stage. Each stage requires a different

manoeuvre. Having already defined the sub-tasks and told the human subjects what
they are, the learning program was given the same advantage.

In each stage four separate decision trees are constructed, one for each of the
elevator, rollers, thrust and flaps. A program filters the flight logs generating four input
files for the induction program. The attributes of a training example are the flight
parameters described earlier. The dependent variable or class value is the attribute
describing a control action. Thus, when generating a decision tree for flaps, the flaps
column is treated as the class value and the other columns in the data file, including the
settings of the elevator, rollers and thrust, are treated as ordinary attributes. Attributes
that are not control variables are subject to a delay, as described in the previous section.

C4.5 expects class values to be discrete but the values for elevator, rollers, thrust
and flaps are numeric. A preprocessor breaks up the action settings into sub-ranges that
can be given discrete labels. Sub-ranges are chosen by analysing the frequency of oc-
currence of action values. This analysis must be done for each pilot to correctly reflect
differing flying styles. There are two disadvantages to this method. One is that if the
sub-ranges are poorly chosen, the rules generated will use controls that are too fine or
too coarse. Secondly, C4.5 has no concept of ordered class values, so classes cannot
be combined during the construction of the decision tree.

An event is recorded when there is a change in one of the control settings. A change
is determined by keeping the previous state of the simulation in a buffer. If any of the
control settings are different in the current state, a change is recognised. This
mechanism has the unwanted side-effect of recording all the intermediate values when a
control setting is changed through a wide range of values. For example, the effects of
the elevator and rollers are cumulative. If we want to bank the aircraft to the left, the
stick will be pushed left for a short time and then centred, since keeping it left will
cause the airplane to roll. Thus, the stick will be centred after most elevator or roller
actions. This means that many low elevator and roller values will be recorded as the
stick is pushed out and returned to the centre position.

To ensure that records of low elevator and roller values do not swamp the other
data, another filter program removes all but the steady points and extreme points in
stick movement. Control engineers are familiar with this kind of filtering. In their
terms, the graph of a control’s values is differentiated and only the values at the zero
crossings of the derivative are kept.

3.1.3. Generating the Autopilot

After processing the data as described above, they can be submitted to C4.5 to be
summarised as rules that can be executed in a controller.

Decision tree algorithms are made noise tolerant by introducing pruning. If the data
contain noise, then many of the branches in a decision tree will be created to classify
bad data. The effects of noise can be reduced by removing branches near the leaves of
the tree. This can either be done by not growing those branches when there are
insufficient data or by cutting back branches when their removal does not decrease
classification accuracy.

The flight data are very noisy, so decision trees are generated using conservative
setting for pruning and then tested in the simulator. Pruning levels are gradually
increased until the rule ‘breaks’, ie. it is no longer able to control the plane correctly.
This procedure results in the smallest, and thus most readable, rule the succeeds in
accomplishing the flight goal.

3.1.4. Linking the Autopilot with the Simulator

To test the induced rules, they are used as the code for a autopilot. A post-processor
converts C4.5’s decision trees into if-statements in C so that they can be incorporated
into the flight simulator easily. Hand-crafted C code determines which stage the flight
has reached and decides when to change stages. The appropriate rules for each stage are
then selected in a switch statement. Each stage has four, independent if-statements, one
for each action.

When the data from the human pilots were recorded, a delay to account for human
response time was included. Since the rules were derived from these data, their effects
should be delayed by the same amount as was used when the data were recorded.
When a rule fires, instead of letting it effect a control setting directly, the rule’s output
value is stored in a circular buffer. There is one for each of the four controls. The value
used for the control setting is one of the previous values in the buffer. A lag constant
defines how far to go back into the buffer to get the control setting. The size of the
buffer must be set to give a lag that approximates the lag when the data were recorded.

Rules could set control values instantaneously as if, say, the stick were moved with
infinite speed from one position to another. Clearly this is unrealistic. When control
values are taken from the delay buffer, they enter another circular buffer. The controls
are set to the average of the values in the buffer. This ensures that controls change
smoothly. The larger the buffer, the more gentle are the control changes.

3.1.5. Flying on Autopilot

An example of the rules created by cloning is the elevator take-off rule generated from
one pilot’s data:

elevation > 4 : level_pitch

elevation <= 4 :

| airspeed <= 0 : level_pitch

| airspeed > 0 : pitch_up_5
This states that as thrust is applied and the elevation is level, pull back on the stick until
the elevation increases to 4°. Because of the delay, the final elevation usually reaches
117 which is close to the values usually obtained by the pilot. pitch_up_5 indicates a
large elevator action, whereas, pitch_up_1 would indicate a gentle elevator action.

A more complex case is that of turning. Stage 4 of the flight requires a large turn to
the left. The rules are quite complex. To make them understandable, they have been
greatly simplified by over-pruning. They are presented to illustrate an important point,
that is that rules can work in tandem although there is no explicit link between them.
The following rules are for the rollers and elevator in the left turn.

Take off and outward leg

Return leg and landing

Figure 1. Flight profile

azimuth > 114 : right_roll 1
azimuth <= 114 :

| twist <= 8 : left_roll 4

| twist > 8 : no_roll

twist <= 2 : level pitch

twist > 2 :

| twist <= 10 : pitch_ up_1

| twist > 10 : pitch_up_2
A sharp turn requires coordination between roller and elevator actions. As the aircraft
banks to a steep angle, the elevator is pulled back. The rollers rule states that while the
compass heading has not yet reached 114°, bank left provided that the twist angle does
not exceed 8°. The elevator rule states that as long as the aircraft has no twist, leave the
elevator at level pitch. If the twist exceeds 2° then pull back on the stick. The stick must
be pulled back more sharply for a greater twist. Since the rollers cause twist, the
elevator rule is invoked to produce a coordinated turn. The profile of a complete flight
is shown in Figure 1.

Like Michie, Bain and Hayes-Michie (1990), this study found a “clean-up effect”.
The flight log of any trainer contains many spurious actions due to human inconsis-
tency and corrections required as a result of inattention. It appears that the effects of
these inconsistent examples are pruned away by C4.5, leaving a control rule which flies
very smoothly.

3.2. Container Crane Control

Urbanci€ and Bratko (1994) also used behavioural cloning to construct a control system
for a container crane, illustrated in Figure 2.

The task of the operator is to pick up a load from some point and transport the load
to a specified goal point. The operator can control the speed of the trolley and can
change the length of the rope to lift and deposit the load. The dynamics of this system
are quite complex since the load can swing on the rope, thus causing the trolley to

10

Figure 2. A container crane

accelerate and decelerate. In addition, the load must not be swinging when it is lowered
to the ground, thus, the operator must dampen all swing to succeed.

Beginners in this task perform very slowly because they cannot predict the effects of
the swing and therefore must wait for oscillations to dampen by slowing the trolley
down. An experienced operator anticipates the swing by starting the trolley going, then
slowing down, allowing the load to overtake the trolley and then speeding up again to
catch up with load just above the target location so that the load can be deposited with
minimal swing.

Because of the non-linearities involved, this crane control is still a challenging
problem for traditional control theory. Thus, there is considerable economic advantage
to be gained from “cloning” expert human operators.

In their experiments, Urbanc¢i¢ and Bratko, volunteers trained on a simulator of an
actual crane. The parameters of the simulator were made as realistic as possible. There
are six measured variables: the position and velocity of the trolley, the rope angle and
angular velocity and the rope length and velocity. Two control actions are available to
the operator: applying a horizontal force to the trolley and applying a vertical force to
the rope.

The simulator had two modes of display. It could show the state of the system as a
graphical reproduction of the crane (similar to Figure 1) or it could show “instruments”
indicating the values of the six state variables. Six volunteers learned to control the
crane using the graphical display and six learned using the instrument display. The
latter group did not know that the system was a crane at all. They were only told to
bring all of the state variables to certain values using two controls of an unspecified
nature. The interesting point of this experiment is that the second group did just as well
as the first. This indicates that having a physical model of the system gave no
advantage. This conforms with what we would expect of a sub-cognitive skill since the
time required to make a decision is shorter than the time required for consciously
reasoning about a physical model.

Once the volunteers had become skilled in the task, traces of their behaviour were
recorded as in learning to fly. Rather than using a classification tree method (such as
C4.5), Urbanci¢ and Bratko experimented with regressions trees, ie. the output of the
decision rules are numeric values rather than discrete classes. These experiments

11

succeeded and also avoided the problem of discretising the class variable. Other than
the learning algorithm, the only significant difference between the cloning methods was
that crane control does not have to be divided into different stages, since there does not
appear to be any advantage to creating sub-goals for this task.

Like Sammut ef al, experiments with the crane also showed the clean-up effect
where the clone out-performed the trainer. Also, like learning to fly, these experiments
created control rules that are brittle. That is, the rules cannot deal with much variation in
the initial conditions or disturbances during the performance of the task. Later work on
flight control by Arentz (1994) showed that in order to build a more robust clone, the
training examples must be acquired from a “noisy” simulator that includes disturbances
such as turbulence. For example, in straight and level flight, if there is no turbulence
then once the aircraft is at the desired altitude and heading, the pilot need do no more.
The induction program will not be given sufficient examples of how to recover when
the aircraft is not in the desired state. Arentz showed that the introduction of random
disturbances leads to the production of robust control rules that can cope with variations
in the operating conditions of the aircraft.

The crane control rules have another problem in common with the flight control
rules. They do not always correspond to human intuition. In attempting to construct
pure situation-action rules, we have ignored goal-directed behaviour. Taking the
example of straight-and-level flight again, a pilot will know that if the aircraft is below
the desired altitude then a positive climb rate is required. In order to achieve that the
pilot may increase the throttle or the elevation of the aircraft. The reactive behaviour
takes place in using that strategy to achieve that goal. However, the cloning methods
described so far use only very gross goal specifications and rely almost solely on
reactive behaviour for the entire task.

Later, we will discuss how goal-directed behaviour can be combined with reactive
behaviour, more in keeping with Nilsson’s feleo-reactive systems. However, before we
do, we will discuss one more application of behavioural cloning, namely, learning to
schedule a production line.

3.3. Learning to Schedule an Unbalanced Production Line

The complexity and variability in manufacturing systems makes it difficult to develop

automated scheduling systems using analytical methods. To manufacture competitively

however, it is important to react rapidly to changes in the manufacturing environment.,

using current shop floor status so as to minimise the effects of disruptions (Kerr &

Kibira, 1994).
Kerr and Kibira have developed a reactive scheduler for a telephone manufacturing
plant using behavioural cloning of a skilled human scheduler.

A simulation model was developed so that data could be obtained from the human

scheduler more quickly than by performing observations of the actual process. A
schematic diagram of the plant is shown in Figure 3.

12

The resources on the shop floor are organised as a flowline consisting of a series of
workstations that execute different operations. 90% of the assembly is done
automatically by equipment that inserts components into printed circuit boards. The
remaining odd-shaped components are inserted manually, followed by soldering. The
printed circuit board assemblies (PBAs) are inspected for defects, repaired and retested.
Final assembly consists of adding a keypad and fitting the assembly to the telephone
casing. The completed telephone and already assembled handsets are packed in the
same box. A conveyor belt links the various workstations.

Each workstation has “buffer” or storage area for incoming boards, yet to be
processed. There is also a start-of-shift buffer and an end-of shift-buffer. The
scheduling operations consists of assigning labour to the various workstations in order
taking into account the size of the start-of-shift buffer, the desired size of the end-of
shift-buffer and the volume throughput.

Reactive scheduling is useful because process times may vary, component failures
lead to unpredictable delays, machines breakdown or go down due to planned
maintenance and labour absenteeism is also unpredictable. The task of the scheduler is
to allocate labour to balance the line and thus improve throughput while reducing
inventory levels.

A general scheduling strategy is predetermined as:

if beginning of shift or
any of scheduled breaks or
any buffer level exceeds a given threshold or
any buffer level falls below a given threshold or
here is an equipment breakdown or
repairs in previously broken down equipment have completed or
there is a sudden drop in the total labour capacity

then reallocate labour on the entire production line on the basis of current buffer
levels, additional phones to be produced, time into the shift, equipment status
and labour capacity.

To construct the clones, the decisions of the human scheduler were logged each time
labour was reallocated. Four sets of decision trees were constructed, one for each of the
workstations: Automatic Insertion, Manual Assembly, Solder Touch Up and handset
assembly and test. In addition, a shift is divided into three stages for the beginning,
middle and end since different scheduling strategies are used to begin a process, end the
process and for the steady-state. The attributes used to build each of the sets of
decision trees are shown in Table 2. Examples were taken from 200 shifts.

Once the clone was built, it was tested on simulations of 25 shifts, which included

Printed Circuit Automatic Manual Solder Final
(?oon?;%:ggts_b Insertion _’ Assembly _’ Touch-Up_b PBA Test _> Assembly _> Packing

Figure 3. Basic stages in the manufacturing process.

13

random variations to test the robustness of the scheduler. In comparison with an
automatic scheduler built using traditional optimisation techniques, the clone gave
significantly better throughput with better balanced line. According to Kerr and Kibira
(1994), the clone also did as least as well as the human who provided the training
examples.

Table 2. Attributes used to build scheduler

Workstation Attributes

Automatic Insertion » Difference in buffer levels at: Manual Assembly,
Solder Touch Up and PBA test.

* Number of phones left to meet shift production target
+ Time into shift

Manual Assembly « Difference in buffer levels at: Solder Touch Up and
PBA test.

* Number of phones left to meet shift production target
» Time into shift

Solder Touch Up » Difference in buffer levels at: PBA test.
* Number of phones left to meet shift production target
+ Time into shift

Handset Assembly and Test » Difference in buffer levels at: packing.

» Number of phones left to meet shift production target

4. Learning to Achieve Goals

One of the interesting features of behavioural cloning is that the method can develop
working controllers that have no representation of goals. The rules that are constructed
are pure situation-action rules, i.e. they are reactive. However, this feature also appears
to result in a lack of robustness. When a situation occurs which is outside of the range
of experience represented in the training data, the clone can fail entirely. To some
extent, a clone can be made more robust by training in the presence of noise. However,
because the clone does not have a representation of how control action can achieve a
particular goal, it cannot choose actions in a flexible manner in totally new situations.

In this section, we discuss a different application of machine learning in which goals
are learned explicitly and then a second phase of learning constructs rules for applying
actions to achieve the desired goals. We conclude the section with a discussion on how
cloning a learning goal structures can be combined.

4.1. Leech

Leech (1986) describes an application of machine learning to controlling a chemical
process which consists of converting Uranium hexa-fluoride gas to Uranium dioxode

14

powder and then pressing the powder into cylindrical pellets which are sintered.
According to Leech, the process is so complex that no human expert understands the
integrated process behaviour. Also, the results of standard statistical analysis are
difficult for the plant’s operators to interpret and use. Thus, prior to the application of
machine learning, much of the control of the plant was done by ‘“seat-of-the-pants”
adjustment by the operators.

Machine learning was applied in two stages to produce a simple and understandable
control system which resulted in very significant improvements in the process yield.
The first stage of learning was concerned with identifying the variables that determine
high, medium or low yield. Seven attributes of the process were measured during the
normal operation of the plant. At the same time, the yield of the plant was also
recorded. These example were input to a decision-tree learning program, similar to ID3.
The output was a decision tree which predicts the yield of the plant based on the values
of the measured variables. An example of such a tree is shown below.

if (Y1 < 5865)
if (Y7 < 585)
yield = very_low
else

yield high

else
yield = high
Y1 and Y7 are the names of variables measured from the plant. The decision tree was
converted into a set of rules, such as:

yield = very_low if Y1 < 5865 & Y7 < 585

yield = high if Y1 < 5865 & Y7 >= 585

yield = high if Y1 >= 5865
One of the immediate benefits of this analysis was that it revealed that many of the
measure variables were irrelevant to determining the yield of the plant. The next step
was to work out the correct settings for the control variables so that they achieve the
values of the measured variables that result in high yield.

It was found that only three measured variables were significant in determining
yield. Training examples were collected for each of these three variables. The attributes
of the examples were the values of the eleven control variables for the plant and the
class value was the measure variable. Thus, decision trees were built which would
predict the value of each measured variable, given the control settings for the plant. An
example of the decision tree for Y1 is shown below.

if (C4 < 172.5)
if (C2 < 134.5)
if (C7 < 294.5)
Y1l = low
else
Yl = ok
else

else
if (C2 < 127.5)
Y1 low

15

A—p Goals Effector set allocations
— X | Controls|| X Y Z

B —P A [osJo1]o2] | SETL_X Y Z

c v B 00 oaoal el — _ _

C 00]|07]0.2

D—p| D [lo4 o400 | MEfL A c F
—» Z F 01102]06]|se| DF |BDFA|BAC

. , ,D,F, A,

Figure 4. (a) An example of a plant (b) perceived influences between control inputs

and output goals (c) agent’s effector view of system
else
if (C8 < 143.5)
if (C2 < 131.0)
Y1l = low
else
Yl = ok
else
Yl is ok
Note that the Y1 values have been discretised into the ranges ‘low’, ‘ok’ and ‘high’.

Again, the decision tree is converted into a set of rules:

Yl = low if C4 < 172.5 & C2 < 134.5 & C7 < 294.5

Yl = ok if C4 < 172.5 & C2 < 134.5 & C7 >= 294.5

Y1l = ok if C4 < 172.5 & C2 >= 134.5

Yl = low if C4 >= 172.5 & C2 < 127.5

Yl = low if C4 >= 172.5 & C2 >= 134.5 & C8 < 143.5 & C2 < 131

Yl = ok if C4 >= 172.5 & C2 >= 134.5 & C8 < 143.5 & C2 >= 131

Yl = ok if C4 >= 172.5 & C2 >= 134.5 & C8 >= 143.5
We now have two sets of rules. The first tells the control system the desired values of
the plant outputs (or measured variables). The second set of rules tells the control
system the values of the plant inputs (or control variables) required to obtain the desired
outputs. From these, it is relatively straight forward to build the complete control
system.

Leech’s work demonstrates that goal-directed behaviour for reactive systems can be
learned. However, the method used for the chemical plant cannot be directly applied to
other control tasks such as flying or driving container cranes, since the concept of
“yield” is not present. In the next section, we describe a semi-automatic method for

building goal-directed controllers.

4.2. CHURPS

CHURPS (or Compressed Heuristic Universal Reaction Planners) were developed by
Stirling (1995) as a method for capturing human control knowledge. Particular
emphasis was placed on building robust controllers that can even tolerate actuator
failures.

Where behavioural cloning attempts to avoid questioning an expert on his or here
behaviour, Stirling’s approach is to obtain from the expert a starting point from which a

16

controller can be generated automatically. The expert is asked to supply “influence
factors”. These are numbers in the range 0 to 1 which indicate how directly a control
input affects an output goal. This is illustrated in Figure 4. Here, control action, A, has
an influence of 0.8 on goal variable, X. This means that, A, is the main effector that
influences that value of the measure variable, X. Action, A, also has lesser effects on
variables Y and Z. A is also classed as the main effector for goal variable X. From the
influence matrix, control actions are grouped into three sets for each goal variable:

A Unique Effector (UE) is the only effector which has any influence on a goal variable.

A Maximal Effector (ME) has the greatest influence over a particular goal variable.
However, other effectors may have secondary influence over that goal variable.

Secondary Effectors (SE) are all the effectors for a goal variable, except the main
effector

The UE, ME and SE sets are used by Stirling’s Control Plan generator CPG algorithm
to generate operational control plans. The algorithm assigns appropriate effectors to
control various output goals in order of importance. Informally, the CPG algorithm is:

Create an agenda of goals which consist of output variables whose values deviate from a
set point. The agenda may be ordered by the importance of the goal variable.

while the agenda is not empty
select the next goal
if deviation is small then
attempt to assign an effector in the order, UE, SE, ME.
if deviation is large then
attempt to assign an effector in the order, UE, ME, SE.
examine influencee’s of the effector that was invoked and add them to the agenda.
remove selected goal

The selection of an effector is qualified by the following conditions:

* A controller which is a UE of one goal should not be used as an ME or SE for
another goal.

* When choosing an SE, it should be one that has the least side-effects on other goal
variables.

This procedure tells us which control actions can be used to effect the desired change in
the goal variables. However, the actions may be executed in a variety of ways. Stirling
gives the following example. Suppose variables X, Y and Z in Figure 4, are near their
desired values. We now wish to double the value of Y while maintaining X and Z at
their current levels. Following the CPG algorithm:

1. Y initially appears as the only goal on the agenda.

2. Y had no unique effector and since the required deviation is large, we try to apply
an ME, namely, C.

3. Since C also affects Z, Z is appended to the agenda.

17

PD
Controller

Influence | o} oG plans —p| ca5 |—p

Matrix

Figure 5. CHURPS Architecture

4. Since Y is the current goal and an effector has successfully been assigned to it, Y is
removed from the agenda.

5. Z becomes the current goal. Let us assume that the deviation in Z is small.

6. We attempt to assign as SE to control Z. B is selected since C is already assigned to
control Y. A could have been selected, but it would have a side effect on variable
X, causing a further expansion in the agenda.

7. The agenda is now empty and terminates with the assignments {Y/C, Z/B}, which
can be read as “control goal Y to its desired state via effector C and control goal Z to
its desired state via effector B”.

This plan can be executed sequentially, by first using C to bring Y to its desired value
and then using C to bring Z to its desired value. A loop would sample the plant at
regular intervals terminating each phase when the desired value is reached.
Alternatively, both actions could be executed in parallel. The first strategy corresponds
to one that might be followed by a novice, whereas experts tend to combine well
practised behaviours since they do not have to think about them.

As a model of human sub-cognitive skill, the CPG method does not capture the
notion that pre-planning is not normally carried out. That is, a skilled operator would
not think through the various influences of controls on outputs, but would act on the
basis of experience. This is usually faster than first trying to produce a plan and then
executing it. To try to simulate this kind of expert behaviour, Stirling used the CPG
algorithm as a plan generator which exhaustively generated all combinations of actions
for different possible situations. This large database of plans was then compressed by
applying machine learning to produce a set of heuristics for controlling the plant. The
architecture of this system is shown in Figure 5.

To create the input to the learning system (Quinlan’s C4.5) each goal variable was
considered to have either a zero, small or large deviation from its desired value. All
combinations of these deviations were used as initial conditions for the CPG algorithm.
In addition, Stirling considered the possibility that one or more control action could fail.
Thus plans were also produced, for all of the combinations of deviations and all
combinations of effector failures.

In a style somewhat similar to Leech’s, Stirling devised a “goal centred” control
strategy in which learning was used to identify the effectors that are required to control
particular goal variables. Thus if there is a deviation in goal variable Y, a decision tree
is built to identify the most appropriate control action, including circumstances in which
some control actions may not be available due to failure. An example of a tree for goal
variable X, is shown below:

if (control A is active)

18

if (deviation of X is non-zero)
use control A
else
if (control D is inactive)
use control A
else
if (control F 1is active)
use control D
else
use control A
else
if (control D is active)
use control D
else
use control F
Once the control action has been selected, a conventional proportional controller is used
to actually attain the desired value.

The CHURPS method has been successfully used to control a simulated Sendzimir
cold rolling mill in a steel plant. It has also been used to control the same aircraft
simulation used by Sammut et al. Like that work, the flight was broken into seven
stages. However, one major difference is that CHURPS required the goals of each
stage to be much more carefully specified than in behavioural cloning. For example, the
original specification of stage 4, the left turn was:

At a North/South distance of 42,000 feet, turn left to head back to the runway. The turn
is considered complete when the compass heading is between 140° and 180°

In CHURPS this is translated to

At a North/South distance of 42,000 feet, establish a roll of 25° +2° and maintain pitch
at 3 +5°, airspeed at 100 knots 140 knots and climb speed at 1 ft/sec 5 ft/sec.

When the plane’s compass heading is between 140° and 180°, return the roll to 0° +2°

and maintain all other variables at the same values.
Recalling that the influence matrix was constructed by hand, CHURPS requires much
more help from the human expert than behavioural cloning. However, so far,
CHURPS have produced smoother and more robust controllers. The question arises,
can some combination of behavioural cloning and the CHURPS method used to
produce robust controllers requiring minimal advice from the expert?

In preliminary experiments, Bain (Bain & Sammut, 1995) has shown that it is
possible to use induction on behavioural traces to produce a controller similar in style to
CHURPS and Leech’s method. The purpose of the influence matrix is to determine
which control inputs should be assigned to which goal outputs. Suppose we have a
behavioural trace of a pilot flying an aircraft, rather than try to map situations to actions
directly, an induction algorithm can be applied to determine the effect of controls on
output variables. For example, if we wish to know how to control climb speed, we
may preprocess the behavioural trace to distinguish changes in climb speed as the class
variable that we wish to predict. The control actions available become the attributes of
the example (along with the other measured variables). The result is a decision tree
which tells us which control to apply to affect a change in climb speed under different
circumstances. The CPG algorithm can then proceed as before.

19

A more difficult problem, which is still being investigated is how the goal structure
of a complex task can also be learned by induction.

5. Conclusion

In this paper, we have reviewed recent research in the application of symbolic
machine learning techniques to the problem of automatically building controllers for
dynamic systems. By capturing traces of human behaviour in such tasks, it is possible
to build controllers that are efficient and robust. This type of learning has been applied
in a variety of domains including the control of chemical processes, manufacturing,
scheduling, and autopiloting of diverse apparatus including aircraft and cranes.

Learning control by observing expert behaviour is best suited to tasks where there is
little articulated knowledge about the problem but there is a source of tacit knowledge in
the expert. This approach contrasts with other systems that can learn control tasks but
which assume that background knowledge is available. For example DeJong’s (1994,
1995) Explanation-Based Control system builds a controller by using a domain specific
theory of qualitative physics to explain an observed trace and then generalise to a
control strategy. Behavioural cloning starts with no such knowledge.

Pure behavioural cloning attempts to capture simple situation-action rules from
traces. However, situation-action rules have their limitations in that there must be a rule
for every likely situation, otherwise the control will not be robust. One of the major
directions for future research is the coupling of goal-directed behaviour with pure
cloning. This has the effect of breaking a complex task in to more manageable sub-
tasks. Several promising methods were for achieving this synthesis were discussed but
it remains for future research to demonstrate their success.

References

Arentz, D. (1994) The Effect of Disturbances in Behavioural Cloning. Computer
Engineering Thesis, School of Computer Science and Engineering, University of
New South Wales.

Bain, M., & Sammut, C. (1995). A framework for behavioural cloning. In K.
Furukawa, D. Michie, & S. Muggleton (Eds.), Machine Intelligence 15. Oxford:
Oxford University Press.

Benson, S., & Nilsson, N. J. (1995). Reacting, planning and learning in an
autonomous agent. In K. Furukawa, D. Michie, & S. Muggleton (Eds.),
Machine Intelligence 15. Oxford: Oxford University Press.

DeJong, G. (1994). Learning to plan in continuous domains. Artificial Intelligence,
64(1), 71-141.

20

DeJong, G. (1995). A case study of explanation-based control. In A. Prieditis & S.
Russell (Ed.), International Conference on Machine Learning, (pp. 167-175).
Tahoe City, California: Morgan Kaufmann.

Kerr, R.M. & Kibira, D. (1994). Intelligent reactive scheduling by human learning and
machine induction. IFAC Conference on Intelligent Manufacturing Systems.
Vienna.

Leech, W. J. (1986). A Rule Based Process Control Method with Feedback. In
Proceedings of the ISA/86. Research Triangle Park, NC 27709: The
Instrumentation Society of America.

Michie, D. (1986). The superarticulacy phenomenon in the context of software
manufacture. Proceedings of the Royal Society of London, A 405, 185-212.
Reproduced in D. Partridge and Y. Wilks (1992) The Foundations of Artificial
Intelligence, Cambridge University Press, pp 411-439.

Michie, D., Bain, M., & Hayes-Michie, J. E. (1990). Cognitive models from
subcognitive skills. In M. Grimble, S. McGhee, & P. Mowforth (Eds.),
Knowledge-base Systems in Industrial Control. Peter Peregrinus.

Michie, D., & Camacho, R. (1994). Building symbolic representations of intuitive real-
time skill from performance data. In K. Furakawa, D. Michie, & S. Muggleton
(Eds.), Machine Intelligence 13. (pp. 385-418). Oxford: The Clarendon Press,
OUP.

Nilsson, N. J. (1994). Teleo-Reactive programs for agent control. Journal of Artificial
Intelligence Research, 1, 139-158.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.

Sammut, C., & Michie, D. (1991). Controlling a ‘Black-Box’ simulation of a
spacecraft. Al Magazine, 12(1), 56-63.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learning to fly. In D.
Sleeman & P. Edwards (Ed.), Proceedings of the Ninth International Conference
on Machine Learning, Aberdeen: Morgan Kaufmann.

Schoppers, M. J. (1987). Universal plans for reactive robots in unpredictable domains.
In Proceedings of IJCAI-87. San Francisco: Morgan Kaufmann.

Stirling, D., & Sevinc, S. (1992). Automated operation of complex machinery using
plans extraced from numerical models: Towards adaptive control of a stainless
steel cold rolling mill. In Proceedings of the 5th Australian Joint Conference on
Artificial Intelligence,

Stirling, D. (1995) CHURPs: Compressed Heuristic Universal Reaction Planners.
Ph.D. Thesis, University of Sydney.

21

Urbancic, T., & Bratko, 1. (1994). Reconstructing human skill with machine learning.
In A. Cohn (Ed.), Proceedings of the I1th Europena Conference on Artificial
Intelligence, John Wiley & Sons.

Whitehead, A. N. (1911). An Introduction to Mathematics.

22

