
AUTOMATIC CONSTRUCTION OF ROADMAPS FOR PATH PLANNING IN

GAMES

A. Kamphuis M. Mooijekind D. Nieuwenhuisen M.H. Overmars

Institute of Information and Computing Sciences

Utrecht University, The Netherlands

Email: {arnok,mmooijek,dennis,markov}@cs.uu.nl

KEYWORDS

Path planning; Roadmap; Probabilistic Roadmap Method;

Games; Camera movement; Groups

ABSTRACT

Path planning plays an important role in many computer

games. Currently the motion of entities is often planned us-

ing a combination of scripting, grid-search methods, and re-

active approaches. In this paper we describe a new approach,

based on a technique from robotics, that computes a roadmap

of smooth, collision-free, high-quality paths. This roadmap

can be used to obtain instantly good paths for entities. We also

describe applications of the technique for planning the motion

of groups of entities and for creating smooth camera move-

ment through an environment.

INTRODUCTION

In many computer games, entities like enemies, NPCs, and

vehicles, must plan their motions between locations in the vir-

tual world. Currently this is typically achieved using a com-

bination of scripting, A∗-like grid search, and local reactive

methods.

In scripting the designer explicitly described the paths that

can/must be followed by the entities. This is normally part

of level design. Scripting is a time consuming process for the

designer. Also it can lead to repetitive behavior that is easily

observed by the player. Scripting gets increasingly compli-

cated when many entities move in the same space.

Grid based methods divide the world in a grid of cells and plan

motion using an A∗-like search on the free cells (see e.g. (De-

Loura 2000; Russell and Norvig 1994)). It is often used in

real-time strategy games where there is a natural division of

the world in cells. When the world becomes complicated and

large and many entities must move around, grid based method

take a large amount of computer time. Pruning the search re-

duces the time but might lead to wrong paths. Also, motions

created by grid search tend to be unnatural, as can be observed

in many RTS games.

Reactive method adapt a previously computed motion to ob-

stacles found near the path that were not taken into account

Figure 1: An example of a smooth roadmap computed by our

technique.

during initial planning; for example other entities or small,

movable objects (see e.g. (Lamiraux and D. Bonnafous 2004;

Stout 1996; Baert 2000; Pinter 2001)). Even though theoreti-

cally reactive methods can be used to compute full paths this

normally leads to dead-lock situations in which the entities no

longer know where to move (e.g. they get stuck in a corner of

the room). Another problem with reactive methods is that it is

often difficult to adapt the internal animation of the character

to the motions produced.

In robotics many other path planning approaches have been

developed that might be applicable to path planning in games.

In robotics though the emphasis is often on the motion of a

complicated robotic system in a relatively simple environment.

In games the opposite is true. From a path planning perspec-

tive, the entity can often be modeled as a simple vertical cylin-

der, while the environment can be very complicated with tens

of thousands of obstacles.

One popular path planning technique in robotics is the Proba-

bilistic Roadmap Method (PRM). It has been studied by many

authors, see e.g. (Kavraki et al. 1996; Švestka and Overmars

1998; Kavraki and Latombe 1994; Holleman and Kavraki

2000). In a preprocessing phase this method builds a roadmap

of possible motions of the robot through the environment.

When a particular path planning query must be solved a path

is retrieved from this roadmap using a simple and fast graph

search. The PRM approach is suited for very complicated en-

vironments. Unfortunately though the roadmap produced by



(a) A group of five characters should attack the site pointed to by the

arrow.

(b) The group inappropriately splits up, loosing some of its troops.

Figure 2: One of the problems with the current techniques for motion planning for multiple units is that the group splits up to reach

the goal. This scene was taken from Command and Conquer: Generals from EA Games.

the method can be rather wild, leading to ugly paths that re-

quire a lot of time-consuming smoothing to be useful for gam-

ing applications.

In this paper we will describe a new path planning approach,

building on the PRM method, that can be effectively applied in

gaming applications. The approach also constructs a roadmap

of possible motions but guarantees that the paths are short,

have enough clearance from the obstacles, and are C1 con-

tinuous, leading to natural looking motions. See Figure 1 for

an example of a roadmap computed with our approach. After

building the roadmap, which can be done as a preprocessing

phase, paths can be retrieved almost instantaneously, and do

not require any postprocessing.

Besides the standard application, in which the roadmap is

used for planning the paths for individual entities, we describe

two additional applications. First, we consider the motion of

groups of entities. In games this problem is often solved using

a combination of grid-based planning and flocking (Reynolds

1987; Reynolds 1999). Unfortunately, this can lead to un-

wanted behavior where the group of entities splits up (see Fig-

ure 2 for an example). We will use the smooth paths computed

by the new planning approach as a backbone path and then use

a social potential field approach to guide the flock through a

corridor around this path (extending our earlier work in (Kam-

phuis and Overmars 2004)). This results in a naturally looking

motion in which the group is guaranteed to stay together.

In games also the virtual camera, through which we observe

the world, moves through the environment. Currently the cam-

era is often under direct control of the user (in first person

games) or under indirect control of the user (in third person

games). Direct camera control is difficult, easily leads to mo-

tion sickness due to redundant motions, and is often not re-

quired. Building on our earlier work in (Nieuwenhuisen and

Overmars 2004a) we describe a method in which the user only

specifies positions of interest and the camera automatically

moves to such positions using a smooth, collision free motion.

For computing the camera path we will use the new planning

approach described. This is then combined with techniques

to control the view direction and the speed of the camera to

obtain a camera motion that is pleasant to watch.

ROADMAP GENERATION

In this section we will describe how, in a preprocessing phase,

a roadmap of possible motions for the entities can be com-

puted. A roadmap is normally represented as a graph in which

the nodes correspond to placements of the entity and the edges

represent collision-free paths between these placements. A

standard technique for automatic roadmap creation is the prob-

abilistic roadmap method (PRM).

Unfortunately the PRM method leads to low quality roadmaps

that can take long detours. This is due to the random nature of

the PRM method. Techniques exist to improve paths in a post-

processing stage but this is time-consuming and can still lead

to long detours. Here we present a variant of the PRM method

that leads to short, smooth and high quality roadmaps. These

roadmaps can then during the game be used to solve path plan-

ning queries almost instantaneous using a simple shortest path

graph search algorithm (for example Dijkstra’s shortest path

algorithm).

In the preprocessing phase we create the roadmap graph, con-

sisting of vertices (V ) and edges (E). For the placement of

the entity we only take its position (x, y) into account since

these are the only parameters that are important for planning

the path. Later, the other parameters (such as orientation) can

be added depending on the application. The edges of the graph

will represent straight line and circular paths between the ver-

tices. Only vertices and edges that are collision free are al-

lowed in the graph.

In order to be able to use the graph for as many different



Figure 3: An example of a Voronoi diagram. We treat all four

boundaries of the workspace as separate obstacles.

queries as possible, we need a good coverage of the space.

Many improvements for the PRM method have been proposed

in order to achieve this (see e.g. (Bohlin and Kavraki 2000;

Boor et al. 1999; Nissoux et al. 1999; Wilmarth et al. 1999;

Hsu et al. 2003; Branicky et al. 2001; Isto 2002)), but all are

based on the same underlying concept and lead to roadmaps

consisting of straight line segments only that result in low path

quality.

For a roadmap that is used to steer entities in games, we can

formulate the following criteria:

• The paths generated by the roadmap should always keep

some minimum amount of clearance from the obstacles

in the scene.

• The paths should be smooth i.e. it should be C1 continu-

ous.

• A path needs to be created very fast (not delaying the

motion) and should be short, not taking any detours.

Creating Samples on the Voronoi Diagram

The Voronoi diagram of a scene defines for every obstacle a

set of points in the free space that are closer to this obstacle

than to any other obstacle in the scene; together these points

form the Voronoi diagram (see Figure 3 for an example).

Here, we propose a new variant of the PRM method that uses

the Voronoi diagram as a guide. The method works as follows.

In every iteration of the algorithm we randomly pick a sample

(placement) of the entity. Then we check whether this sample

is collision free for the entity. If this is the case, we continue by

retracting it to the Voronoi diagram using the following proce-

dure. We calculate the closest point on an obstacle from c, we

call this point cc (Figure 4(a)). We now move another sample

c′ from c in the opposite direction of cc using as a step size

the distance between c and cc (Figure 4(b)). We proceed until

the closest obstacle to c′ changes. We now have two samples

c and c′, both having another closest obstacle. The above pro-

cedure guarantees that the Voronoi diagram passes through a

point between c and c′.

We continue by using binary search between c and c′, with

precision ǫ until we have found a sample that has two obsta-

cles at the same distance. This sample, called cv , is at most a

cc

c

(a) Creating a random sample c and

finding the closest point on an obsta-

cle cc.

c

c
′

c
′

(b) Moving c
′ away from c until

the closest obstacle changes, here we

need two steps.

c

c
′

cv

(c) Finding the sample cv that is on

the Voronoi diagram using binary in-

terpolation.

Figure 4: Retracting samples to the Voronoi diagram.

distance ǫ away from the Voronoi diagram (Figure 4(c)). Now,

we add cv to the list of vertices V in the roadmap graph.

After adding a sample as a vertex to the graph, we determine

its neighbor vertices. The set of neighbor vertices of vertex v,

called Nv is defined as all vertices V that are closer to v than

some choosen maximum neighbor distance. For each vertex

vn in Vn we test whether the straight line connection between

v and vn is collision free. If this is the case, then we add

the connection (v, vn) as an edge to the set of edges E of the

graph. If two vertices are already connected in the graph (via

other vertices), then we only add the new edge if the path be-

tween v and vn is shortened considerably by at least some con-

stant K (for more details see (Nieuwenhuisen and Overmars

2004b)).

Retracting Edges

We have retracted the nodes of the graph to the Voronoi di-

agram (within a certain boundary ǫ) but when connecting the

samples with edges, these edges are usually not on the Voronoi

diagram and can get very close to obstacles (Figure 5(a)). In

order to solve this problem, edges are retracted to the Voronoi

diagram until every part of the edge is at least some pre-

specified distance away from the obstacles. We achieve this

by proceeding in the following manner: if (a part of) an edge

is too close to an obstacle, this edge is split in two equal length

parts and the middle point is retracted to the Voronoi diagram

using the same procedure as described above. This procedure

is recursively repeated for the two new edges until every edge

has enough clearance with the obstacles. An example of this

procedure is shown in Figure 5. In some cases (when the edge

goes through a very narrow corridor) the clearance threshold

will never be reached and the edge will be split an infinite num-

ber of times. In order to prevent this, we stop retracting the

edge if its length is shorter than some predefined value.



a

b

c

d

e

(a) Although the vertices are on the

(dotted) Voronoi diagram, the edges

can get very close to obstacles.

(b) Edge a will be retracted to the

Voronoi diagram.

(c) We retract the center point of the

edge to the Voronoi diagram, creating

two new edges.

(d) The process is repeated for one of

the new edges. Now all (new) edges

have enough clearance with the obsta-

cles.

Figure 5: Retracting an edge to the Voronoi diagram.

Retracting edges to the Voronoi diagram may result in some

edges overlapping each other. For example in Figure 5(a) if

edges c and d are already retracted,‘ then retracting e will re-

sult in overlap. Fortunately, detecting overlapping edges is

easy. For every pair of edges ei and ej , we check how far their

endpoints are away from the other edge. If this distance is

smaller than some predefined distance, then we try to project

the vertices of ei on ej and vice versa. If at least one of these

projections is successful we call the two edges overlapping and

we can join them. We can distinguish four different kinds of

overlapping edges. In Figure 6 these are shown together with

the situation after removing the overlap.

Improving the Roadmap

The roadmap graph obtained has enough clearance from the

obstacles. It can though be improved further. In particular

we want to make sure that it has paths running through all the

corridors between obstacles. On one hand we can apply some

of the known techniques for finding paths in narrow passages

(see e.g. (Geraerts and Overmars 2004; Boor et al. 1999; Hsu

et al. 2003)). We can also use the special structure of our

roadmaps by trying to connect nodes with degree 1 to other

nodes, using techniques as described in (Nieuwenhuisen and

Overmars 2004b).

Another problem with our graph is that is contains many de-

gree two vertices. This can easily be remedied by remov-

ing such vertices if the merged edge is collision free and has

enough clearance.

e0 e1

(a)

e0

e1

(b)

e0

e1

(c)

e0

e1

(d)

(e) (f) (g) (h)

Figure 6: Merging two overlapping edges e0 and e1. Four

different cases can be distinguished (a..d). The results after

merging are shown in (e..h).

Circular Blends

After retracting the vertices of the graph to the Voronoi dia-

gram and after adding some minimal amount of clearance to

the edges we still end up with a graph that consists of straight

line segments. Following such a path will have C1 discontinu-

ities at the vertices that cause sudden directional changes to an

object that follows the path. In order to solve this problem we

will replace parts of the straight line edges by circular blends.

The degree of a vertex is defined as the number of edges that

is connected to this vertex. If a vertex has degree 1, it is an

endpoint of a path segment, and no circular blend needs to be

added. If a vertex has degree 2, the addition of the circular

blend is straightforward. We create a circle arc that touches

both edges and use this to replace a part of the path (see Figure

7(a)). If the degree of a vertex v is higher than 2, we need to

add blends between every pair of edges. Let e1, ..., ek be the

incoming edges for the vertex v. We add a vertex vi at the

middle of each edge ei. Now for each pair of new vertices

vi, vj we replace the path vivvj with a circular blend. Finally

we remove v. It is easy to show that this makes every path in

the roadmap graph C1 continous.

In the previous section we retracted the edges of the graph to

the Voronoi until they had at least some predefined clearance.

Adding circular blends may decrease this clearance. Since we

do not want the clearance to be lower than some predefined

value, we check the minimum clearance of each circular blend.

If it is too low, then we replace the blend by another blend that

has a smaller radius. We repeat this until the blend has enough

clearance. This procedure is shown in Figure 7(b).

See Figure 1 for an example of a typical roadmap graph cre-

ated with this method. Computing this roadmap took about



(a) Creating a circular blend be-

tween two edges.

(b) Moving the circular

blend to increase clear-

ance.

Figure 7: Creating the circular blends.

Figure 8: An example of a resulting path.

1 second on a Pentium IV 2.4 GHz. Realize though that

roadmaps can be computed during the creation of the scene

and can easily be stored with it.

Answering Path Queries

During the game, whenever an entity has to move to a new

location, it can search the graph to plan its route through the

environment. Because of the properties of the roadmap, paths

will be short, have enough clearance from the obstacles, and

are smooth. To obtain a path we first need to connect the cur-

rent position of the entity to the graph. This can easily be done

by finding the closest vertex in the graph and connecting the

current placement to this vertex using circular blends. We pro-

ceed in the same way for the goal placement of the entity. Now

we can use a shortest path algorithm in the graph to find the

path between the start and goal positions. See Figure 8 for an

example of such a path.

Computing paths during game play is extremely fast. Even for

a large roadmap graph consisting of 1000 vertices and 3000

edges, the calculation of the shortest path takes less than 10ms

on a Pentium IV 2.4GHz.

PATH PLANNING FOR GROUPS

Games are often populated with a large number of moving en-

tities. The entities should often behave as a coherent group

rather than as individuals. For example, one needs to simulate

the behavior of whole army divisions. Current games solve the

problem of path finding on the entity level, i.e. they plan the

motion of individual entities, using techniques like flocking to

keep the entities together. However, in cluttered environments

this often leads to non-coherent groups. There is no guarantee

that the entities will stay together, albeit that staying together

is not well defined. Even though the entities all have a similar

goal, they try to reach this goal without real coherence. This

results in groups splitting up and taking different paths to the

goal, for example as in Figure 2.

We will briefly describe a novel technique in which groups

do stay together. More details can be found in (Kamphuis

and Overmars 2004). So we are given a game level in which

a group of entities must move from a given start to a given

goal position. The entities must avoid collisions with the envi-

ronment and with each other, and should stay together as one

group. The entities are modeled as discs (or cylinders) and

are assumed to move on a plane or terrain. Later, the result-

ing paths for the cylinders can be used to animate avatars, e.g.

sprites or motion captured human-like avatars.

The method works as follows: First, a so-called backbone path

for a single entity is computed. This path defines the homo-

topic class used by all entities. Two paths P0 and P1 are said to

be in the same homotopic class only if P0 can be continuously

deformed into P1 without intersecting the obstacles. Next, a

corridor is defined around the backbone path in which all en-

tities must stay. Finally, the movement of the entities is gener-

ated using force fields with attraction points on the backbone

path. By limiting the distance between the attraction points for

the different entities, coherence of the group is guaranteed.

Backbone Path Planning and the Corridor

The first phase of the approach consists of finding the back-

bone path. Since every entity should be able to traverse the

path, the clearance on the path should be bounded by a mini-

mum value, namely the radius of the enclosing circle/cylinder

of the largest entity. The backbone path can thus be defined

as follows: A backbone path is a path in the 2D workspace,

where the clearance at every point on the path is at least the

radius of the enclosing circle/cylinder.

Although finding a path with a minimum clearance of the ra-

dius of the enclosing circle is required, we prefer a larger clear-

ance, since a larger clearance leads to more coherent behavior.

Also we prefer the paths to be smooth and short. Hence, the

paths in the roadmap created with the method described above

are very well suited for this application.

From the backbone path, a corridor is created. For this we use

the clearance along the path. On every point along the path the

clearance is defined as the radius of the largest circle around

the point that does not intersect with the environment. The

value of the clearance is upper bound by the maximum group

width, i.e. the clearance used can never exceed the maximum

group width. The union of all the upper-bounded clearance

circles form a corridor around the backbone path. Figure 9(a)

shows a path generated with a technique that produces paths



(a) A backbone path and corri-

dor generated from a non-optimized

roadmap. The path is too close to the

obstacles, creating an artificial nar-

row passage.

(b) A backbone path and corridor

generated from a roadmap generated

on the medial axis. Clearly the path

is optimal in the sense of clearance.

U

a

c

(c) The attraction point a of an entity

U when point a has a clearance c.

(d) A real corridor.

Figure 9: The corridor

too close to obstacles, resulting in artificial narrow passages.

In contrast, the path in Figure 9(b) was generated with the

roadmap approach described above, and lies far from obsta-

cles. The resulting corridor is much more natural.

Generating the Motion inside the Corridor

Once the corridor is created, we need to use it to generate the

motion of the individual entities. The approach used is an ar-

tificial force field technique. Forces are defined that act on

the entities and influence their movement. Every entity in the

group has a corresponding attraction point on the backbone

path. This attraction point is selected as the maximum ad-

vanced point p along the backbone such that the entity is still

inside the circle centered at that point p with radius equal to the

clearance at p (see Figure 9(c)). The attraction points make the

entities move forward and keep the entities inside the corridor.

The entities also repulse each other to avoid collisions between

them. Additional forces could be incorporated, for example to

accomplish formations.

Keeping Coherence in the Group

In order to keep the group coherent the dispersion should be

upper bounded. Due to the manner in which the corridor is

constructed, the lateral dispersion (dispersion perpendicular

to the backbone path) is automatically upper bounded by the

group width. However, the longitudinal dispersion (in the di-

rection of the backbone path) is not yet bounded in this ap-

proach. To achieve this, the distance along the path from the

least advanced attraction point to the most advanced attraction

(a) The group with high longitudinal

dispersion and very low lateral dis-

persion.

(b) The group with medium longitu-

dinal dispersion and medium lateral

dispersion.

(c) The group with low longitudinal

dispersion and larger lateral disper-

sion.

(d) The group moves through a nar-

row passage, making the first wait

for the last ones (movement is from

the lower-left to the upper-right).

Figure 10: A group of 50 entities moving in a virtual world.

These paths and behaviors are created with the same approach,

only by varying the parameters.

point is limited. This results in the entities in front waiting for

the entities at the back.

Results

The behavior of the group can be controlled by adjusting

the coherences parameters, lateral dispersion and longitudi-

nal dispersion. Figures 10(a) to 10(c) show a group of 50 enti-

ties moving through an environment. In these pictures the lat-

eral and longitudinal dispersion is varied, resulting in a longer,

more stretched group (10(a)) or more compact group (10(c)).

Figure 10(d) shows the same group moving through the envi-

ronment from the left lower corner to the right upper corner.

The most advanced entities, i.e. the entities that passed the

narrow passage earliest, wait for the last entity to pass the pas-

sage.

We tested the performance of the approach to show that

the technique is usable in real-time applications as computer

games. For this, we developed a typical implementation. In

this implementation we created numerous paths. The proces-

sor usage to create the paths was very minimal. For groups of

50 to 100 entities the processor usage did not exceed 1 per-

cent. More efficient implementations could further decrease

the processor usage.



PLANNING CAMERA MOTIONS

Every game has a camera through which the player views the

world. Usually this camera moves depending on user input and

place of action. A camera motion directs the camera from one

position to another while controlling camera speed and view

direction. There are many situations in which an automatic

camera motion in a game could be of great use. Think for

example about an RPG where the user has almost completed

a level, but wants to get back to the start of that level to pick

something up she forgot. Without automatic camera motions,

the attention of the user is needed to walk the whole way back

just to get one item. Also in many adventures it would be nice

to be able to specify a location in the interface and have the

game create a fast and efficient motion to that location without

warping directly to it (causing the user to get disoriented).

The roadmap from the previous section can easily be used to

steer a camera. Using this roadmap, the camera is guaranteed

to keep a certain amount of clearance from the obstacles and

the circular arcs make sure that the camera motion is gentle.

The roadmap alone however is not enough to create a smooth

camera motion. Camera theory (Millerson 1973; Wayne 1997)

shows that we need to take care of two more variables. First

the speed of the camera should be adapted according to the

curvature of the path. Otherwise, objects will move too fast

through the view. Secondly, the user should get cues about

where the camera is going. In particular the viewer should

be able to anticipate a camera rotation. We will resolve these

issues in the next two sections.

Adapting the Camera Speed

Smoothness of the path is not enough for a smooth camera mo-

tion. The speed of the camera along the path should be adapted

according to the curvature of the path. Also there should be a

maximum acceleration and deceleration for the camera in or-

der to prevent too abrupt speed changes.

Since our path consists of straight lines and circle arcs, we can

adapt the speed of our camera by making use of the radius of

the arcs. The smaller the radius, the lower the camera speed.

When the camera leaves an arc with a small radius, we accel-

erate until we have reached the maximum speed of the current

arc or straight line. If, on the other hand, the next arc requires

a lower speed than the current camera speed, we must start de-

celerating before we reach this arc such that when we reach

the next arc, our speed is sufficiently low. A speed diagram

can be computed efficiently that satisfies both the constraints

on the maximal speed for each arc and the bounds on acceler-

ation and deceleration. See Figure 11 for an example of such

a speed diagram for a simple path.

Smoothing the Viewing Direction

Intuitively one might think that the viewing direction should

be equal to the direction of the camera motion. As stated be-

fore however, the user should be given cues about where the

Figure 11: A speed diagram. The left image shows the path,

the middle image shows the maximal speed allowed at each

point. The right image shows the actual speed, taking acceler-

ation and deceleration bounds into account.

Figure 12: An implementation of the techniques. The user can

click on a location in the map at the left top and the program

creates a smooth camera motion to that location.

camera is heading to. We can achieve this by always looking

at the position the camera will be in a short time. Experiments

show that about 1 second is the right amount. Note that, as

we fix the time we look ahead, the distance we look ahead

changes depending on the speed of the camera. This is exactly

what we want to achieve as in sharp turns we want to look at

a nearer point than in wide turns. Looking ahead has another

important effect. If we would look in the direction of motion

and the camera reaches a circular arc, then it suddenly starts

rotating at the start of the arc. Stated more formally, the rota-

tion of the camera is only C0 continuous. It can be proved that

looking ahead solves this issue by making the camera rotation

C1 continuous.

Results

We implemented this approach in a walk-through system for

virtual worlds. See Figure 12 for a screenshot. Rather than

letting the user steer the camera directly, we display a map in

the top left corner. By clicking on the map the user indicates

the position she wants to move to. A smooth camera motion

is then calculated in the way described above. The processor

time required for this is minimal. Experiments indicate that

this is a pleasant way to inspect the environment.



CONCLUSIONS

In this paper we have described a new technique for automat-

ically constructing high-quality roadmaps in virtual environ-

ments and we have shown how these can be used the plan the

motion for individual entities, groups of entities, and the cam-

era through which we observe the world.

We described our method as a 2-dimensional approach in

which entities move on a ground plane. It is though easy to

extend it to e.g. terrains and even movement in buildings in

which the roadmap would automatically follow the corridors

and stairs.

Roadmap construction is best seen as being part of the con-

struction of the virtual world. It is easy to incorporate special

requirements from the level designer. For example, the de-

signer can add fake obstacles to force the path to e.g. stay

on the sidewalks of a road. Also the designer can easily ma-

nipulate the roadmap graph by manually adding, changing, or

removing nodes. Moreover, weights can be added to the graph

to e.g. indicate preferred routes.

ACKNOWLEDGEMENTS

This research was supported by the Dutch Organization for

Scientific Research (N.W.O.). This research was also sup-

ported by the IST Programme of the EU as a Shared-cost

RTD (FET Open) Project under Contract No IST-2001-39250

(MOVIE - Motion Planning in Virtual Environments).

REFERENCES

Baert, S. (2000). Motion planning using potential fields.

gamedev.net. url: http://www.gamedev.net.

Bohlin, R. and L. Kavraki (2000). Path planning using lazy

prm. In Proc. IEEE Int. Conf. on Robotics and Automation,

pp. 521–528.

Boor, V., M. Overmars, and A. van der Stappen (1999). The

gaussian sampling strategy for probabilistic roadmap plan-

ners. In Proc. IEEE Int. Conf. on Robotics and Automation,

pp. 1018–1023.

Branicky, M., S. Lavalle, K. Olson, and L. Yang (2001).

Quasi randomized path planning. In Proc. IEEE Int. Conf. on

Robotics and Automation.

DeLoura, M. (Ed.) (2000). Game Programming Gems 1.

Charles River Media.

Geraerts, R. and M. Overmars (2004). A comparative study of

probabilistic roadmap planners. In Algorithmic Foundations

of Robotics V, Springer Tracts in Advanced Robotics 7, pp.

43–57. Springer-Verlag Berlin Heidelberg.

Holleman, C. and L. Kavraki (2000). A framework for using

the workspace medial axis in prm planners. In Proc. IEEE Int.

Conf. on Robotics and Automation, Volume 2, pp. 1408–1413.

Hsu, D., T. Jiang, J. Reif, and Z. Sun (2003). The bridge

test for sampling narrow passages with probabilistic roadmap

planners. In Proc. IEEE Int. Conf. on Robotics and Automa-

tion.

Isto, P. (2002). Constructing probabilistic roadmaps with pow-

erful local planning and path optimization. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, pp. 2323–2328.

Kamphuis, A. and M. H. Overmars (2004, August). Find-

ing paths for coherent groups using clearance. In Eurograph-

ics/ACM SIGGRAPH Symposium on Computer Animation

(2004), pp. to appear.

Kavraki, L. and J.-C. Latombe (1994). Randomized prepro-

cessing of configuration space for fast path planning. In Proc.

IEEE Int. Conf. on Robotics and Automation, pp. 2138–2139.

IEEE Press, San Diego, CA.

Kavraki, L., P. Švestka, J.-C. Latombe, and M. Over-

mars (1996). Probabilistic roadmaps for path planning in

high-dimensional configuration spaces. IEEE Transactions on

Robotics and Automation 12, 556–580.

Lamiraux, F. and O. L. D. Bonnafous (2004). Reactive path

deformation for nonholonomic mobile robots. In IEEE Trans-

actions on Robotics, pp. to appear.

Millerson, G. (1973). TV Camera Operation. Focal Press,

London. ISBN: 0-24050-850-5.

Nieuwenhuisen, D. and M. Overmars (2004a). Motion plan-

ning for camera movements. In Proc. IEEE Int. Conf. on

Robotics and Automation, pp. 3870–3876. IEEE Press, San

Diego, CA.

Nieuwenhuisen, D. and M. Overmars (2004b). Useful cycles

in probabilistic roadmap graphs. In Proc. IEEE Int. Conf.

on Robotics and Automation, pp. 446–452. IEEE Press, San

Diego, CA.

Nissoux, C., T. Siméon, and J.-P. Laumond (1999). Visibil-

ity based probabilistic roadmaps. In Proc. IEEE Int. Conf. on

Intelligent Robots and Systems, pp. 1316–1321.

Pinter, M. (2001, March). Toward more realistic pathfinding.

gamasutra.com. url: http://www.gamasutra.com.

Reynolds, C. (1987). Flocks, herds, and schools: A distributed

behavioral model. Computer Graphics 21(4), 25–34.

Reynolds, C. (1999). Steering behaviors for autonomous char-

acters. In Game Developers Conference.

Russell, S. and P. Norvig (1994). Artificial Intelligence: A

Modern Approach. Prentice Hall.

Stout, W. (1996, October). Smart moves: Intelligent path-

finding. Game Developer.

Švestka, P. and M. Overmars (1998). Coordinated path plan-

ning for multiple robots. Robotics and Autonomous Sys-

tems 23, 125–152.

Wayne, M. (1997). Theorising Video Practice. Lawrence and

Wishart, London. ISBN: 0-85315-827-4.

Wilmarth, S., N. Amato, and P. Stiller (1999). Maprm: A

probabilistic roadmap planner with sampling on the medial

axis of the free space. In Proc. IEEE Int. Conf. on Robotics

and Automation, pp. 1024–1031.


