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AUTOMATIC CONTINUITY OF CONCAVE FUNCTIONS

ROGER HOWE

(Communicated by William J. Davis)

ABSTRACT. A necessary and sufficient condition is given that a semicontin-

uous, nonnegative, concave function on a finite dimensional closed convex set

X necessarily be continuous at a point xc¡ 6 X. Application of this criterion

at all points of X yields a characterization, due to Gale, Klee and Rockafellar,

of convex polyhedra in terms of continuity of their convex functions.

Let V be a real vector space of dimension n < oo. Let X Ç V be a closed convex

body. Let <j> be a concave, nonnegative function on A. (Recall <j> is concave if — <f>

is convex.) Define G~((p), the subgraph of <f>, as the subset of V x R specified by

(1) G~(4>) = {(x,t): xEX, 0 < t < (j>(x)}.

If 0 is not identically zero then G~ ((f)) will be a convex body in V x R. We call <f>

semicontinuous if G~ (4>) is a closed subset of V x R. (This is usually called upper

semicontinuity; since lower semicontinuity is not very important here, we let the

"upper" be understood implicitly.) Observe that this is equivalent to the superlevel

sets

(2) L+(4>,s) = {xE X: s<4>(x)}, s > 0,

being closed. Observe also that the ¿+ (cf>, s) are convex.

We say A is polyhedral if it is specified by a finite number of linear inequalities

(3) X={vEV: Xi(v) <bi,XlEV*,bl G R, 1 < i < m}.

In [GKR] (see also [R, §10]) it is shown that if 0 is a nonnegative, concave,

semicontinuous function on A, and X is polyhedral, then <¡> is in fact continuous.

(Actually, in [GKR], convex functions are considered; but concave and convex are

interchangeable here.) The purpose of this note is to refine the result by giving a

pointwise criterion for automatic continuity. If our condition holds at all points of a

convex set A, then X is close to being polyhedral. (More precisely it is boundedly

polyhedral in the sense of [GKR]; see Proposition 3.)

With X as above, suppose that for some ¡>0we have a closed convex set of

Y Ç V x [0, t] such that

(a)Fn(Kx{0})=Ax{0}
{ ' (h) If (x, r) G Y, then (x, r') G Y for 0 < r' < r.
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Then the recipe

(c) (J>y(x) = max{r: (x,r) E Y}, x E X, defines a concave nonnegative function

on A, and

(d)Y = G-(cpY)-

Denote by SCNC(A) the set of semicontinuous, nonnegative concave functions

on A. It is straightforward to check that the sum of two functions in SCNC(A) is

again in SCNC(A). Also a positive scalar multiple of an element in SCNC(A) is

again an element. Thus SCNC(A) is a cone in the space of all real-valued functions

on X. Also given a family {0¿}¿g/ of functions in SCNC(A) (the index set I may

be infinite), we may form their infimum

(5)(a) inf{0j(x) = inf{0t(x) : ¿ G ¿}, xE X.

It is easy to see that inf{0j} is concave and nonnegative. We also clearly have

(b) G-(M{cPl}) = r)G-(4>i)

i

so that inf{0¿} again belongs to SCNC(A).

Let Z Ç X be an arbitrary subset of A, and let / be an arbitrary real-valued

function on Z. Consider the set of 0 in SCNC(A) such that 0 dominates / on

Z (i.e., <p(z) > f(z) for all z E Z). Evidently, the infimum of such 0 will again

dominate /. Thus if there are any elements of SCNC(A) dominating / on Z, there

is a minimum one. In particular, given a point xq e X, there is a minimum element

of SCNC(A) taking the value 1 at x0.

Proposition 1: Given xn G A, define a function Ex(xo,x) on X by

(6) Ex(x0,x) =sup{(t-l)/t: x0 + t(x-x0) E X},        x E X,

= sup{s E [0,1] : x = sx0 + (1 - s)z for some z G A}.

Then Ex(xo, •) is the minimum among elements of SCNC(A) taking the value 1 at

x0-

REMARK. In pictorial terms we may describe the (closure of the) graph of

Ex(xq, ■) as the surface of the cone with base A x {0} and vertex (xq, 1).

PROOF. InVxR, let C(X, xq) denote the closed convex hull of the points (x, 0),

z G A, and the point (xq, 1). Since A is convex, the convex hull of X x {0} and

(xo, 1) is the set {(sx0 + (1 - s)y, s) : y E X, 0 < s < 1} and C(X, x0) will be the

closure of this set. Suppose x ^ xq, and

(x,r) = (sx0 + (1 - s)y,s).

Then r = s < 1, and

y = x0 + (1 -s)~1(x-x0)

belongs to A. Setting t — (1 — s)_1 we have

r = s = 1 -t'1 = (t- l)/t.

From the convexity of A it is clear that if (x, r) is in C(X, xn), then so is (x, r') for

0 < r' < r. Hence C(X,xn) satisfies conditions (4)(a)(b), and comparing (4)(c)(d)

with (6) shows

C(X,x0) = G-(Ex(x0,-)).

Furthermore, if 0 is any function in SCNC(A) such that 0(xo) > 1, then obviously

C~(<t>) 2 C(X,Xq), whence 0(x) > ¿?x(xq,x). This proves Proposition 1.
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Given a point xn in A, we say A is conical at xo if there exist

(i) a neighborhood U of x0 in V and,

(ii) a closed convex cone C ÇV,

such that

(7) a n u = (C + x0) n u.

That is, near xo, the set A looks like a translated cone. Note that C need not be

a proper, also called pointed, cone. In particular, we could take C = V. Thus X is

conical at all of its interior points.

PROPOSITION 2. (a) If Ex(xo,-) (cf. formula (6)) is continuous at xq, then

all functions in SCNC(A) are continuous at xq.

(b) The function Ex(xq, ■) is continuous at xn. if and only if X is conical at xq.

PROOF, (a) Suppose Ex(xo, •) is continuous at xn- Then given e > 0, there

is a neighborhood U of xo such that Ex(xq, x) > 1 — e for x G U f~l A. Consider

0 G SCNC(A). By semicontinuity the superlevel set ¿+(0,0(xo) + e) (cf. (2)) is

closed, and since it does not contain xo, the set U" = V - ¿+(0,0(xo) + e) is a

neighborhood of x0. If 0(xo) = 0, then since 0 > 0, we see |0(x) - 0(xo)| < £ on

U" n A, so 0 is continuous at xo- If 0(xo) > 0, then it suffices to show 0(x)/0(xo)

is continuous at xq. Hence we may assume 0(xo) = 1. Then on the neighborhood

U fl U" n A of x in A we have 1 + e > 0(x) > Ex(xq, x) > 1 — s. Hence again 0 is

continuous at xo-

(b) Let U be an open convex neighborhood of the origin in V, with compact

closure U. Then any neighborhood of xq contains a set of the form xo + SU for a

suitably small number 6 > 0. Let dU = U — U be the boundary of U. If C is any

closed convex cone in V then we have

C = \Js(C(ldU).
s>0

Suppose Ex(xq, •) is continuous at xn. Then we can find 6 > 0 such that

Ex(x0, x) > i for x G (xo + 6U) n A. Set

B = (x0 + 6(dU))r\X,        C=\Js(B-x0).
s>0

Then C is a cone (a union of rays), and clearly

(8) (C + x0) n (x0 + ÔU) C Xn(x0 + 6U).

For if x G C + xo, then x = xo + sb, b E B, s > 0; and if x G xo + SU, then s < 1.

Hence x = (1 — s)xo + s(xo + è) G A, since A is convex. I claim that in fact the

inclusion (8) is an equality. To verify this, consider a point v in (xo + SU) fl X.

Assume y ^ xo- For suitable t > 1 the point z = xr¡+t(y — xo) will be in xo + S(dU).

If we show z E A, the claim will be established. Suppose z £ X. Since X is closed

and convex, there is a number a, 0 < a < 1 such that the points zr = xr¡+r(z — xo)

are in A for r < a, and are not in X for r > a. We see then that Ex(xq, za) =0.

But since clearly za G An(xo + éi7), this contradicts our choice of 6. Thus inclusion

(8) is an equality, and X is conical at xq.
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Conversely, suppose X is conical at xo- Let U be a convex neighborhood of the

origin, and C a closed convex cone such that

(9) (a)    (x0 + c/)nA = xo + (c7n<7).

Then for 0 < a < 1, the set

(b) U'a = (x0 + aU) n A = x0 + a{C n U)

will be a neighborhood of xo in A. Taking t in formula (6) to be £ we see that

Ex(xq,x) > 1 — a if x G U'a. Hence Ex(xq,-) is continuous at xo- This proves

Proposition 2.

The connection of the above two results with automatic continuity is provided by

the following result. Given a point xo G A, we say X is polyhedral at xo if there is

a polyhedral closed convex subset PXo C X such that PXo contains a neighborhood

of xo in A. We say S is locally polyhedral if A is polyhedral at each of its points.

We say A is semilocally polyhedral or boundedly polyhedral if any compact subset

C Ç X is contained in a polyhedral subset PCX.

This definition may seem superficially different from the definition of boundedly

polyhedral in [GKR, p. 867], but it is easily seen to be equivalent.

PROPOSITION 3.   The following are equivalent:

(i) A is conical at each of its points.

(ii) A is locally polyhedral.

(iii) A is semilocally polyhedral.

(iv) All 0 G SCNC(A) are continuous.

REMARKS, (a) The implication (ii) => (i) has a local version: if A is polyhedral

at xo, then X is conical at xo; the implication (i) => (ii) has no such local version.

(b) The implication (i) => (ii) can be deduced from [K] (see especially Theorems

4.1 and 4.7), but we give a short proof.

(c) The equivalence (iii) o (iv) amounts more or less to the equivalence (BP) o

S of Theorem 2 of [GKR].

PROOF. The implication (iii) => (ii) is trivial. The implication (ii) => (i) is

routine; we omit its proof. The equivalence (i) ■«• (iv) follows from Proposition 2.

The implication (ii) =>■ (iii) is Proposition 2.17 of [K].

We prove (i) => (ii) by induction on dim A = dim V. If dim V = 2, it is immedi-

ate since closed convex cones in 2-space are polyhedral. It follows directly from the

definitions that if A is conical at every point, and A Ç V is an affine subspace, then

A n A is conical at every point. Hence, if dim .4 < dim V we may assume A n A

is locally polyhedral. If the neighborhood U in the proof of Proposition (2b) (see

inclusion (8)) is chosen so that its closure U is polyhedral, then (using (ii) => (iii))

we see that the intersection of A with each codimension one face of xo + SU will

be polyhedral. Hence the set B is polyhedral (in the sense that it is a finite union

of convex polyhedra; it may not be convex), and in particular has a finite number

of extreme points. By (8) (which, we recall, is an equality, not just an inclusion)

we see that A fl (xo + SU) is the convex hull of (the extreme points of) B and of

Xq, and so is polyhedral.
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