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Abstract—Detailed road maps are an important building block
for autonomous driving. They accelerate creating a semantic
environment model within the vehicle and serve as a backup
solution when sensors are occluded or otherwise impaired. Due to
the required detail of maps for autonomous driving and virtual
test drives, creating such maps is quite labor-intensive. While
some detailed maps for fairly large regions already exist, they
are often in different formats and thus cannot be exchanged
between companies and research institutions. To address this
problem, we present the first publicly available converter from
the OpenDRIVE format to lanelets—both representations are
among the most popular map formats. We demonstrate the
capabilities of the converter by using publicly available maps.

I. INTRODUCTION

While it is the dream of many developers of autonomous

systems that a vehicle fully understands its environment from

on-board sensors only, it is obvious that maps drastically

improve and accelerate building a semantic map of the en-

vironment during the operation of the vehicle [1], [2]. Ad-

ditionally, maps serve as a backup solution if sensors fail

and if parts of the road are occluded. For this reason, many

larger companies and startups are investing in creating detailed

maps for autonomous driving. Besides using maps on-board,

maps are also critical for virtual test drives to reduce the cost

of testing autonomous vehicles or advanced driver assistance

systems; see e.g., [3]–[5].

Maps for navigation already exist and are open-source in

some cases, such as OpenStreetMap [6], but creating detailed

maps for autonomous driving is costly and reducing the costs

of map creation is an ongoing research problem. Although one

can automatically create maps using simultaneous localization

and mapping (SLAM), those maps are not yet as detailed as

the manually created ones [7]. A further way to reduce costs

is to convert existing maps into the required format. In this

work we present the first openly accessible converter from

OpenDRIVE to lanelets. Both representations are among the

most popular map formats, where OpenDRIVE [8] is more

used in industry and lanelets [9] are currently more used in

academia.

We first describe the main advantages of OpenDRIVE

followed by addressing the benefits of using lanelets. Several
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tools support OpenDRIVE, and there are several tools that

support creating maps in an OpenDRIVE format, such as the

Trian3D Builder1. One of the main benefits of OpenDRIVE

is the assurance of seamless exchange of models between

different simulators. Other works, such as [10], have extended

the OpenDRIVE format with further semantic information and

partially automate the creation of meaningful maps.

Lanelets are becoming increasingly popular since their defi-

nition is more lightweight compared to e.g., OpenDRIVE, yet

powerful enough to fulfill all major needs in driving simulators

and automated driving. For instance, the autonomous drive

along the Bertha Benz memorial route has been conducted

using lanelets [11]. Lanelets are used for many aspects of driv-

ing simulators and automated driving, such as the composable

benchmarks for motion planning on roads (CommonRoad)

[12], lane-level map-matching [13], deep learning [14], for-

malization of traffic rules [15], set-based prediction of traffic

participants [16], classification of driver intentions [17], and

determination of location compliance [18], among others.

Besides lanelets and OpenDRIVE, other road description

formats have been developed. RoadXML [19] is conceptually

close to OpenDRIVE and consists of topological, logical,

physical, and visual layers. There exist further open road

network formats like LandXML [20] and OpenStreetMap [6],

but they are designed primarily for geographical purposes and

not for driving simulators or automated driving.

To the best of our knowledge, we present the first

openly accessible converter of maps suitable for autonomous

driving. Our converter is available for download from

commonroad.in.tum.de. We believe that our converter

is useful for many academic groups and people in industry,

since maps often only exist in one format.

The paper is organized as follows: In Sec. II we present

the principle for converting a road network described by

OpenDRIVE to one described by lanelets. The concrete im-

plementation is presented in Sec. III. Numerical examples

demonstrating the quality of the conversion are shown in

Sec. IV. The paper closes with final conclusions in Sec. V.

1www.triangraphics.de
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II. CONVERTING FROM OPENDRIVE TO LANELETS

This section concisely presents the conversion of maps from

OpenDRIVE to lanelets. To this end, we briefly introduce both

formats and outline the relevant differences between them,

followed by a detailed description of the conversion principle.

A. OpenDRIVE Format

In OpenDRIVE, roads are specified based on a reference

path. Individual lanes are created by specifying a lateral dis-

tance from a reference path as visualized in Fig. 2. Reference

paths are constructed by concatenating clothoids (aka Euler

spirals) or polynomials. Please note that arc segments and

straight lines are special cases of clothoids. The advantage

of using clothoids is that the curvature along a reference path

changes linearly with the path length, which is why most roads

are constructed by clothoids [21]. Fig. 1 shows an example of

a reference path, which represents a transition from a straight

road into a bend. We call the to-be-concatenated elements

partial reference paths.
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Fig. 1. Example of a reference path describing the transition from a straight
road into a bend.

Please note that only the starting point p0 is absolutely

positioned on the map as shown in Fig. 1. Each segment of

the reference path has a local coordinate system with axes t

and ds as shown in Fig. 1.

The reference path is divided into multiple sections, which

are chosen independently of the beginning and end of partial

reference paths, i.e., the fully composed reference path is

divided anew. Each section has a constant number of lanes,

but properties such as the width can change within a section

(see Fig. 2). Lanes are mainly specified by their type and

width. The type clearly distinguishes between lanes on which

a car can or may drive and other areas like sidewalks or

parking spaces. The precise definition of the width of lanes

with respect to the reference path is rather complex and can

be found in the OpenDRIVE format specification2. Lanes in

2http://www.opendrive.org/docs/OpenDRIVEFormatSpecRev1.4H.pdf

OpenDRIVE have no empty space between them; to introduce

gaps, one has to create an additional lane of a special non-road

type. Lanes with a negative lane number (ID) have the same

direction as the reference path and positive IDs indicate that

the direction is opposite as shown in Fig. 2.
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Fig. 2. Example of lane description along a reference path (red) in Open-
DRIVE. The example contains three sections, each having a different number
of lanes. One can see that the outer driving lane (left -2) merges into
neighboring lane (-1). In the last section the merged lane completely vanishes
and the IDs are re-adjusted.

Partial reference paths can have none, one, or multiple

successors, where the latter is used to model junctions. At

junctions with a high density of linked roads, a separate format

is available. Multiple junctions can be grouped into a junction

group. Connections to lanes within a road section are referred

to as neighbors and determine to which lanes one can change.

It should be noted that the variety of possibilities to describe

a real-world road with OpenDRIVE can be challenging, e.g.,

when lanes merge into other lanes as addressed in Sec. II-D.

Next, we introduce lanelets, which do not use any reference

paths and have a more lightweight representation.

B. Lanelet Format

Lanelets are atomic, interconnected, and drivable road seg-

ments [9]. A lanelet is defined by its left and right bound,

where each bound is represented by an array of points (a

polyline), as shown in Fig. 3. We define start points and

end points of a lanelet as the first and the final points of the

left and right border in driving direction, as shown in Fig. 3.

The connection of lanelets to form a road network is defined

implicitly: Two lanelets are called longitudinally adjacent, if

the left and right start points of one lanelet are identical with

the corresponding final points of the next lanelet in driving

direction. We say that lanelet2 is left-adjacent to lanelet1 if

the points of the left border of lanelet1 are identical to the ones

of the right border of lanelet2. This is analogously defined for

right-adjacent lanes. For implementation reasons, one might

accept small deviations of connection points of lanelets rather

than demanding that the values are identical.

The longitudinal, left, right, and empty adjacencies form

a road network that can be modeled as a directed graph. It

is a good practice to choose laterally adjacent lanelets such

http://www.opendrive.org/docs/OpenDRIVEFormatSpecRev1.4H.pdf
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Fig. 3. Lanelets.

that their common bound has equal length, which can be done

without loss of generality. This practice reduces the number

of lateral adjacencies for multi-lane roads. Similarly, for road

forks, it is a good practice to construct them as shown in

Fig. 3 to ensure that adjacencies hold for the entire lanelet.

This is realized by considering possible lane changes as long

as there exists an intersection of lanes as shown in Fig. 4(a).

Therefore, we introduce the point q as the intersection of

the corresponding lane bounds of the bifurcating lanes, see

Fig. 4(a). If the final points of the outer bounds of lanelet11
and lanelet21 correspond with the point q, and lanelet21
and lanelet22 continue the corresponding lanes as shown in

Fig. 4(a), all lanelets are either adjacent along their full length

or not at all. The resulting directed graph is presented in

Fig. 4(b).
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Fig. 4. Road fork modeled by lanelets.

C. Lane Bounds of OpenDRIVE Roads

Since lanelets are simply defined by their left and right

bound, a major task for the conversion is to compute polylines

of lane bounds of OpenDRIVE roads as illustrated in Fig. 5.

The bounds are computed for each section (using its local

coordinate system) so that the length of the sections and the

lanelets are identical. First, we compute points si along the

reference path (gray circles in Fig. 5) whose partial paths

consist of lines, arcs, clothoids, and polynomials. We use [22]

and [23, Eq. (3)] to obtain the x-and y- coordinates along the

various partial path types. For each point si a corresponding

inner point I
(j)
i of the jth lane and a corresponding outer point

O
(j)
i are computed. Those points are obtained by laterally

shifting the points si by the lane widths w
(j)
i , where i refers

to the ith point si and j to the jth lane. The outer points for

one lane are identical to the inner point of the next lane.
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Fig. 5. Computation of lane border points I
(j)
i

and O
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i

.

Obviously, the obtained polylines are an approximation

of the OpenDRIVE lane borders, but clothoids as used in

OpenDRIVE do not have an analytical solution so that any

driving simulator or any autonomous vehicle has to approxi-

mate clothoids by polylines or similar representations suitable

for efficient computation. Also, the approximation error can be

made arbitrarily small using small distances between the points

si. For straight lines, however, the conversion is exact and

only requires the start and end points. For arcs with curvature

c we use the formula in (1) to determine the step size dsmax

when the approximation error should be less than emax, which

follows from fundamental geometry of arc segments.

dsmax (c, emax) =
2

c
arccos (1− c emax) . (1)

Please note that we use the curvature c of the innermost

lane bound with the highest curvature and not the one of the

reference path. For clothoids we use the largest curvature at

the beginning or end since their curvature changes linearly so

that the maximum value is to be found at the beginning or

end.

D. Lane Merges and Splits

A major difference in the road network description that

remains to be addressed is the merging and splitting of lanes.

In OpenDRIVE, lanes are merged by gradually reducing their

width to zero or split by gradually increasing the width

from zero. Even if the width is zero and the lane practically

disappeared, the same lane identifier is reused in another

section, as one can see in Fig. 2 at the end of lane -2 in

section 2.

In a lanelet network, the end points have to coincide with

starting points of another lanelet so that splitting and merging

is realized as presented in Fig. 6(b). As a consequence, a

lanelet realizing the merging or splitting of a lane overlaps

with the lanelets of the neighboring lane.
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Fig. 6. Schematic representation of a merging lane using OpenDRIVE and
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Fig. 7. Parametric lanes are specified with respect to the reference path so
that the dependencies between lanes are removed.

To conveniently perform the conversion of merging and

splitting, we have developed the concept of parametric lanes.

These eliminate the dependency of each lane on its inner

neighbor as indicated in Fig. 7(a) by specifying the borders

with respect to the reference path. The following parameters

visualized in Fig. 7(b) are required for parametric lanes:

• offset soffset: Distance from the beginning of the reference

path of the considered section.

• length l: Path length of the parametric lane.

• borders: Inner and outer borders specified as distances to

the reference path varying along the reference path.

Thus, parametric lanes can model a lane as depicted in

Fig. 6(b). Afterwards, the conversion of a parametric lane to

a lanelet is done analogously to regular lanes.

III. IMPLEMENTATION

The overall implementation of our OpenDRIVE to lanelet

converter is presented in Alg. 1. First, in line 1 we go through

all roads modeled and obtain the reference path in line 2 based

on the OpenDRIVE plan view and an additional lane offset.

For each section of the road we generate lanelets in line 4

by calling Alg. 2, which is explained later. After creating all

lanelets, we create a directed graph to represent the relation-

ship between them. This step is not required since the road

network of lanelets is defined implicitly, but it is convenient for

other algorithms to already have the directed graph available.

The connections are established for predecessors, successors,

left neighbors, and right neighbors, in lines 6-9.

The creation of lanelets within one road section is shown in

Alg. 2. We first convert all lanes into parametric lanes, which

are converted in a second step into lanelets. Although this is

only required for merging and splitting, using a unique pipeline

simplifies our code and makes subsequent code updates easier

since parametric lanes have no dependencies with other lanes.

In line 1 the points of the reference path are assigned to the

most inner border, where the step size is chosen according

to (1). The points of the next borders are obtained from the

points of the previous one by shifting them by the lane width

as done in line 3 according to Sec. II-C. Since the next lane

shares a border with the inner one, the next inner border equals

the current outer border (see line 5). Finally, in lines 7-12 the

parametric lanes are converted into lanelets.

IV. NUMERICAL EXPERIMENTS

To demonstrate the performance of our converter,

we are converting openly accessible examples from

www.opendrive.org/download so that the results

can be independently checked. All conversions have been

performed on a Dual Core Intel 2.60 GHz processor with 12

GB memory. All computation times are presented in Tab. I.

TABLE I
COMPUTATIONAL TIME OF MAPS DOWNLOADABLE OR LINKED FROM

WWW.OPENDRIVE.ORG/DOWNLOAD .

length of computation

name lanelets [m] time [s]

CrossingComplex8Course 17620.56 1.87

Crossing8Course 9264.06 1.04

KA-Suedtangente-Vires 37425.85 21.00

Roundabout8Course 9571.42 0.88

CulDeSac 318.75 0.07

sample1.1 23491.14 5.61

First, in Fig. 8 we present an original OpenDRIVE scenario

and the result of the conversion. One can clearly see the

lanelets created, which explicitly show the splitting of a

lane before the roundabout. It can also be seen that the

roundabout has two lanes, between which one can perform

lane changes. Arrows indicate the driving direction of each

lane. Further results of conversions are presented in Fig. 9.

In order to recognize the details of the converted maps, we

only present small sections of the converted roads; however,

the computation times in Tab. I are measured for the complete

map.

V. CONCLUSIONS

We have presented the first openly accessible converter

from OpenDRIVE to lanelets. While OpenDRIVE is popular

among manufacturers and suppliers, lanelets are increasingly

popular in academia since their format is more lightweight.

The main difference between OpenDRIVE and lanelets is

that OpenDRIVE requires a reference path and defines lanes

laterally to it. Some aspects, like pedestrian islands, can be

a little tedious to model in OpenDRIVE. Lanelets, on the

other hand, are simply defined by a left and right polyline.

To obtain the polylines, we sample clothoid curves such that

a maximum error is not exceeded. It should be noted that

clothoids cannot be used for direct computations since they

have no analytical solution and would have to be converted

to polylines or a similar formalism in any case. Our converter

http://www.opendrive.org/download.html
http://www.opendrive.org/download.html


Algorithm 1 convert opendrive to lanelets(opendrive)

1: for road in opendrive do ⊲ Convert each section of each road into lanelets

2: referencePath ← road.planView + road.laneOffset ⊲ planView contains the reference path without offset

3: for section in road do

4: lanelets.add(convert to lanelets(section, referencePath))

5: for lanelet in lanelets do ⊲ Create connectivity graph

6: lanelet.predecessor ← find predecessor for lane(lanelet.lane, opendrive)

7: lanelet.successor ← find successor for lane(lanelet.lane, opendrive)

8: lanelet.left neighbor ← find left neighbor for lane(lanelet.lane)

9: lanelet.right neighbor ← find right neighbor for lane(lanelet.lane)

10: return lanelets

Algorithm 2 convert to lanelets(section, referencePath)

1: inner border ← reference path

2: for lane in section do ⊲ Iterate from inner to outer lanes

3: outer border ← inner border.add distance(lane.width)

4: parametric lanes.add(new ParametricLane(inner border, outer border, lane))

5: inner border ← outer border ⊲ Outer border will be inner border of next lane

6: transform lane merges(parametric lanes) ⊲ Convert parametric lanes to lanelets as in Fig. 6

7: for all parametric lanes do

8: for s = 0, dsmax, 2 dsmax, . . . , length do ⊲ dsmax is obtained according to (1)

9: left vertices(s) ← parametric lanes.left border(s)

10: right vertices(s) ← parametric lanes.right border(s)

11: lanelets.add(new Lanelet(left vertices, right vertices))

12: return lanelets

works flawlessly on all tested scenarios and can be downloaded

from commonroad.in.tum.de. Even for larger maps, the

computation times are within a few seconds.
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Fig. 9. Examples of converted OpenDRIVE maps.


