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Abstract

We propose a Bayesian tracking and segmentation method of coronary arteries on coro-

nary computed tomographic angiography (CCTA). The geometry of coronary arteries

including lumen boundary is estimated in Maximum A Posteriori (MAP) framework. Three

consecutive sphere based filtering is combined with a stochastic process that is based on

the similarity of the consecutive local neighborhood voxels and the geometric constraint of a

vessel. It is also founded on the prior knowledge that an artery can be seen locally discon-

nected and consist of branches which may be seemingly disconnected due to plaque build

up. For such problem, an active search method is proposed to find branches and seemingly

disconnected but actually connected vessel segments. Several new measures have been

developed for branch detection, disconnection check and planar vesselness measure.

Using public domain Rotterdam CT dataset, the accuracy of extracted centerline is demon-

strated and automatic reconstruction of coronary artery mesh is shown.

Introduction

Three-dimensional (3-D) reconstruction of the coronary arteries from coronary computed

tomographic angiography (CCTA) would lead to higher accuracy and reproducibility in the

diagnosis and to better precision in the quantification of severity of the coronary arteries dis-

eases. It is also essential for the 3-D reconstruction and post-processing tools such as curved

multi-planar reformatted (MPR) images through the lumen of each coronary artery. Further-

more, it is also one of the prerequisite steps in subsequent analysis, such as detection of lesions

[1] and image fusion [2, 3]. Also, full reconstruction of coronary artery tree with lumen bound-

ary is important.

Since advances in computational fluid dynamics and image-based modeling now permit

determination of rest and hyperemic coronary flow and pressure from CCTA, these techniques

have been used to non-invasively compute fractional flow reserve (FFR), which is the ratio of
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maximal coronary blood flow through a stenotic artery to the blood flow in the hypothetical

case that the artery was normal, using CTA images [4]. It is pre-assumption that the entire

artery tree structure with accurate lumen boundary has to be obtained for the use of such

technology.

A significant amount of research has been done on the segmentation of vascular structures

and of the coronary arteries in particular [5, 6]. However, many of these vessel segmentation

methods require user interaction: manual definition of the start and end points and vessel

directions [7], or manual insertion of the intermediate points to bridge gaps [8–10]. Under

these interactive segmentation methods, the accuracy of segmentation result is strongly depen-

dent on the interaction from individual users implying a low reproducibility in segmentation

results. A trade-off between robustness and automation has to be carried out whenever the seg-

mentation algorithm is to be embedded in a commercial package for clinical applications.

Moreover, a certain amount of interaction usually leads to the increment of the processing

time.

Several approaches were proposed for automatically tracking the coronary arteries. They

appear in various forms. Tek et al. [11] detected ostium locations on the surface of aorta and

then started the multi-scale medialness-based vessel tracking from the ostium locations. Med-

ialness filter is their base of vessel finding. Kitslaar et al. [12] uses connected component and

morphological filter to detected vessel regions and refines centerlines. Bauer et al. [13] pre-

sented an automatic approach that consists of generic methods for detection of tubular objects,

extraction of their centerlines, and grouping of these centerlines into tree structures. Zambal

et al. [14] calculated candidates for coronary artery seeds and tracks the vessel segments based

on vessel surface gradients by approximating the position of the heart and then cylindrical

sampling patterns were fitted. Kitamura et al. [15] proposed a method to train a classifier of a

tubular 3-D object with a dimension reduction approach using Hessian analysis. Zhou et al.

[16] segmented the vascular structures within the heart region using a multi-scale coronary

response and then tracked the coronary arteries by a 3-D dynamic balloon tracking algorithm.

The purpose of this work is to extract the whole coronary artery tree segmentation system

by actively searching for branches and disconnected vessels. It utilizes the statistical branch

occurrence model and checking disconnection model by image appearance. While tracking

vessels with the stochastic model for curvature penalized vessel geometry, it finds the branches,

a stenosis lesion and seemingly disconnected vessels by atherosclerotic plaque. The whole tree

structure is robustly constructed with a probabilistic branch detection method.

Methods

Bayesian Formulation of Vessel Tracking Problem

Fig 1 shows the workflow of the proposed method. A three dimensional stochastic process

model is built based on vessel shape observation. Autoregressive processes are designed to

model vessel geometry.

Vessel Tracking as MAP Estimation Problem. Our general framework for vessel tracking

and segmentation is to estimate the geometry of the vessel by formulating the problem as MAP

(maximum a posteriori) estimation. We look for that vessel for which

Pðhypothesized vessel model j image dataÞ is a maximum. Since this posteriori likelihood

of a hypothesized vessel model given the image data can be written as

Pðhypothesized vessel model j image dataÞ

¼
Pðhypothesized vessel model; image dataÞ

Pðimage dataÞ

ð1Þ
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Fig 1. Systemworkflow.

doi:10.1371/journal.pone.0156837.g001
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and the denominator is not a function of the hypothesized vessel model, the vessel model esti-

mate can be found as that which maximizes the numerator, i.e., the joint likelihood of a

hypothesized vessel model and the image data. And the joint probability can be written as

Pðhypothesized vessel model; image dataÞ

/ Pðimage dataj hypothesized vessel modelÞ

�Pðhypothesized vessel modelÞ

ð2Þ

The vessel geometry at i is denoted Xi, Xi ¼ ð~xi ;~riÞ
0
. ~xi and~ri represent the coordinate of the

center point in 3-D and radius at i’th position respectively. Denote by X the vector having all

the xi, ri in a vessel as its components and by Y the vector having as its components the CT

intensities yl,m,n at all the voxels (l, m, n) in the vessel region. Then the proposed system seeks

the vessel geometry maximizing the following equation:

max
X

PðY jXÞPðXÞ ð3Þ

where PðY jXÞ is the likelihood and PðXÞ is the prior distribution.

Geometric Vessel Model. The vessel model is generated based on the following assump-

tions and statistically trained. The cross-section of a vessel is closed curve with an arbitrary

form satisfying the flowing shape restrictions:

1. The vessel radius variation is small and the vessel radius change is likely to be slow.

2. The vessel direction changes are likely to be slow.

3. The local average of gray level in a vessel is likely to vary slowly.

4. The gray level variation between a vessel and background is likely to be large.

Meir [17] uses stochastic model for winding road from satellite image. Their stochastic

model reflects faithfully the behavior of long and snaky shape object which narrows and widens

along its centerline with the geometric constraint. This model can be easily extended to three

dimensional problems. Vessels in human body have similar characteristics as the roads in satel-

lite images. They both change the propagating directions and widths slowly along its centerline

with occasional branches. For our problem, a three dimensional stochastic process model is

built exhibiting the preceding vessel geometry.

Specifically, autoregressive processes are designed to model vessel center line, vessel width,

gray level within the vessel, edge strength at the vessel boundary, and gray levels outside the

vessel and adjacent to the boundaries. These regions are referred as background. Note that the

vessel geometry processes are hidden, i.e., they are not observed directly in the data. The sto-

chastic processes are functions of a discrete parameter i which can be thought of as time or dis-

tance, in voxels, along three dimensional axis. Vessel center-curve at i is ~xi , which takes values

in 3-D. This variable is not quantized, it takes arbitrary real values. The f~xig process is given by

Eq (4), where εxi, is a zero mean, white, Gaussian driving noise. This process will generate a

straight line if εxi is zero.

~xi ¼ 2 ~xi�1 � ~xi�2 þ εxi ð4Þ

~ri ¼ ~ri�1 þ εri ð5Þ

In Eq (5), vessel radius is modeled such that~ri is perpendicular circle to center curve f~xig.

The stochastic processes εxi and εri are independent Gaussian white noise sequences with zero
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means and variances σdi, and σri
, respectively. The vessel obtained by the un-forced solution(εxi

= 0, εri = 0) will be straight cylinder with radius ri as shown in Fig 2. Vessel boundary location

is uniquely determined by the ~xi and~ri .

A second order Markov Process is employed to model the mean intensity of the CT image

in sequential spherical data of the vessel to be consistent with our vessel model. For foreground

and background model,

~fi ¼
1

2
~fi�1 þ

1

2
~fi�2 þ εfi

ð6Þ

~bi ¼
1

2
~bi�1 þ

1

2
~bi�2 þ εbi

ð7Þ

~fi and
~bi are the mean intensities inside and outside of sphere i, and εfi, εbi are their Gaussian

white noise sequences with zero mean and variance σfi and σbi
, respectively.

Here is the list of state variables and equations used in vessel propagation model. General

state equation of markov random process can be written for foreground and background as

Fig 2. Left: Sphere model for vessel. The foreground is computed inside of sphere s and the background is computed using the data in ΔI and outside of
tube. Right: vessel in a 3-D voxel window without enforced noise.

doi:10.1371/journal.pone.0156837.g002
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follows.

Xkþ1 ¼
Fkþ1

Bkþ1

" #

¼ Xk þ ~N k ¼
Fk

Bk

" #

þ ~N k ð8Þ

Vi ¼

~x i

fi

bi

ri

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

¼ Vi�1 þ ~N i ¼

2~x i�1 �~x i�2

fi�1 þ fi�2

2

bi�1 þ bi�2

2

ri�1

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

þ

sxi

sfi

sbi

sr

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ð9Þ

In Eq (9), the first row gives geometric constraint which comes from Eq (4), and the second

and third rows of the equation come from Eqs (6) and (7). They all together sum up to the fol-

lowing equation where maximum-likelihood estimate is found. Furthermore, MAP estimate

x̂ i;r can be also obtained if proper prior is found for vessel geometry.

x̂ i;r ¼ arg i;r min
X

N

j¼1

jjxi � 2xi�1 þ xi�2jj
2
=sxi

þjjfi � ðfi�1 þ fi�2Þ=2jj
2
=sfi

þ jjbi � ðbi�1 þ bi�2Þ=2jj
2
=sbi

ð10Þ

Curvature and Torsion. In differential geometry, the fundamental theorem of curves

states that any regular curve in three dimensions with non-zero curvature has its shape

completely determined by its curvature and torsion. Curvature measures how much a curve

bends on a plane and torsion measures how much a curve deviates from its osculating plane.

The shape of a vessel does not change abruptly. Therefore, for curve reconstruction problems,

it makes sense to regularize the solution with curvature and torsion prior [18]. If the recon-

structed curve should follow closely the shape of an underlying surface which is locally planar.

In such situations, it may be advantageous to penalize torsion. As shown in Eq (10), the vessel

trajectory is estimated using the paths with two previous points fi−1 and fi−2. In each step of

tracking procedure, three points are used for computing likelihood. In other words, the curva-

ture of vessel trajectory is obtained with three points and the curvature constraint is used in

our geometric model depending on εxi in Eq (4). If εxi is small, it will prefer smoother trajectory

and if big, it will allow more complex trajectory. Curvature and torsion regularization method

for curves is extensively performed in [19, 20]. However, torsion is not currently used in our

vessel tracking process. The vessel trajectory model may be improved by employing torsion

constraint.

Usage of Region Growing in our Method. Region growing is an approach to image seg-

mentation in which neighboring pixels are examined and added to a region class. It is one of

the practicable ways to achieve image segmentation and many conventional algorithms in

medical image analysis employ region growing method. Region-growing algorithms turn out

to be very practicable way to achieve a time-saving vessel segmentation even with the disadvan-

tages due to their inherent sequential nature. However, in vessel segmentation problem, by just

region growing implementation, highly accurate vessel segmentation cannot be achieved since

many other regions next to vessel have similar HU level, e.g., left ventricle or other vascular

organs. It has to be incorporated with other processes to obtain successful vessel segmentation.

Automatic Coronary Artery Segmentation Using Active Search from Coronary CT Angiography
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To overcome such disadvantages, we merely use region growing as a rough guide to reduce the

number of computation. Later our geometric vessel model will separate vessels from back-

ground correctly.

Adaptive Region growing first selects the candidate region where vessel may lie in. This

practical procedure defines the region where the probability of vessel is almost zero and

reduces the amount of computation. Fig 3 shows the region growing and vessel geometrical

model together. The region growing selects the candidate area (in red) in advance.

Branch Detection

For the reconstruction of complete coronary artery tree, the tracking or segmentation system

requires to find the branches of vessels and track the sub-branch vessels. When a new branch is

encountered while tracking a vessel, the tracker must initiate a new vessel seed for tracking and

branch detection mechanism is required. However, patients with stenosis occasionally show

disconnected vessels in CT due to narrowing or blockage of the coronary arteries. It often

occurs near branch points [21]. Hence we devise a method named “active search” which can

search and find such disconnected arteries and branches.

For vessel branch detection, conventional methods can be grouped into two categories;

region growing based methods and statistical analysis based methods of the vessel propagation

distribution. And there are also variants of two categories. For region growing methods, Tek et.

al. [11] proposed a method that after extracting centerlines of the three major coronary arteries,

the algorithm starts to trace side branches. First, the bifurcation of a side branch is detected on

a major centerline using region growing based lumen segmentation. Starting from a centerline

point, bright voxels connected to the current point are added iteratively. The growing front is

traced. If a side branch presents, the region growing procedure goes into this side branch. A

side branch is detected when it finds a front with a distance to the existing major centerline

larger than a threshold. At each detected bifurcation point, a data-driven centerline tracing

process is initialized. Jiang [22] adopts a sphere propagation method to determine the coronary

artery branches. By using different size of sphere and uniform ray casting they find the branch

points. They produce incremental size spheres R+1, R+2 and R+3 and propagate uniformly

distributed rays. If rays reach outermost shell satisfying pre -specified condition and concen-

trate at separate two clusters, they can find side branches. The progressive region growing

method has been developed and skeletonization method is used for tree structure finding [23].

Such analysis methods are supported by extracting the skeletons or medial axes of the seg-

mented voxel sets.

For statistical method for branch detection, Dip test has been used [24, 25]. A Dip statistic

test is to test the multi-modality of the re-sampled particles against the null hypothesis of a

unimodal distribution. The Dip test, a measure of departure from uni-modality in 1D, mea-

sures the maximum distance between the empirical distribution and the best fitting unimodal

distribution. Then, if a junction is detected by using dip test, k-means clustering (k = 2) is per-

formed to find the direction of the daughter branches.

Our Branch Detection Procedure. We devise a robust branch detection system incorpo-

rating conventional statistical method and newly developed active search method. As shown in

Fig 1, while tracking artery, the system continuously detects bifurcation or multifurcation by

checking if there exists separate clusters for high probability candidate points. If a cluster or

multiple clusters are found, those points are denoted as branch points. For active search

scheme, the branches are actively searched in three categories. They are discussed in next

subsection.

Automatic Coronary Artery Segmentation Using Active Search from Coronary CT Angiography
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Fig 3. A vessel in a 3-D voxel windowwith directional constraint.

doi:10.1371/journal.pone.0156837.g003
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Active Vessel (Branch) Search

In CCTA images, vessel sometimes can be seen to be disconnected due to plaque build-up or

noise and sequential tracking methods will stop since there is a gap between vessel segments.

In such cases, the active search method will overcome the gap.

The active search are used: to check if a vessel is locally disconnected (type 1), to find dis-

connected branch (type 2) and according to branch occurrence model (type 3). Their usage is

shown in the workflow chart in Fig 1. When a vessel is abruptly disconnected or there is proba-

ble branch area, active search is employed. Conventional methods for branch detection

described in the above sub-section utilize the fact that sub-branch pipelines are locally detect-

able and well separated. They test if there is a separation of highly contrasted regions using

either region growing or statistical test for probability distributions of tracking mode. However,

when local discontinuity exists such methods will fail. This active search method is also applied

for branch detection. The examples of both cases follow. In Fig 4 which is one of Rotterdam

test data (testdata 26), a vessel is disappearing and re-appearing along several axial slices of

images. In the figure, RCA is clearly shown in (a-b) then in (c-e) it is lost and re-appeared

again in (f-h). In this case, coronary artery tracking method will stop due to low intensity of

invisible vessel. Hence an active search will start when abrupt termination is detected. In other

hands, Fig 5 shows a discontinuity at LAD branch point. Near a bifurcation or branching

point, discontinuity occasionally occurs due to complex fluid turbulence. However, the active

search is an exhaustive method and brute force search will require of a large number of compu-

tation. To reduce the number of computation, the branch occurrence model has been devised.

The active search comes from three different manners as described above. The following is the

Fig 4. Noisy imagemakes a vessel appears to be disconnected.

doi:10.1371/journal.pone.0156837.g004
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description for the local image intensity based active search (type 2). The model is shown in

Fig 6 and the real result of the active search (type 2) is shown in Fig 7.

1. Eq (10) gives the likelihood of each direction (point~xi). Many points will have high proba-

bilities and cluster into vessel propagation directions. From the cluster of such points, the

branch can be detected. If there exists two significant clustering, bifurcation is found. (So

far, this is closely related to conventional branch detection DIP test method).

2. If no branch point is found, active search is employed at highly probable region. (i:e:; if the

neighboring volume S has higher intensity above some threshold.)

3. Active search will investigate equally spaced points~s in the neighboring volume S (~s 2 S),

where dist(~s, ~xi)�Tth and dotð~s �~xi;~xi �~xi�1Þ � Ty where dist is distance measure of two

points and dot is dot product of two vectors.

4. If new points are found, they will be queued as new seed points.

Branch Occurrence Model using Possion Distribution. This type of active search (type

3) is used for ensuring that left main (LM) artery’s first bifurcation is not missing. For the

branch occurrence model, the first branch location of left main (LM) artery is measured from

the aorta. LM coronary artery usually bifurcates into left anterior descendent artery (LAD) and

left circumflex artery (LCX) branches. The distances of this first branch of left main coronary

arteries from ostium are shown in Table 1. The training set of Rotterdam data is used for the

distance measure.

Fig 5. Discontinuity in LAD (left anterior descending) artery shown. (e) is a magnified version of (d).

doi:10.1371/journal.pone.0156837.g005
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Fig 6. Active search for vessel candidate. Type 1 and 2 active search methods are illustrated. Type 1 is used for disconnected vessel and type
2 is used for disconnected branches.

doi:10.1371/journal.pone.0156837.g006
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Fig 7. Example of tracked centerlines and actively searched region. Actively searched regions are marked in blue circles. Note there are
many false positive seed points (white and yellow spheres). They are automatically deleted later.

doi:10.1371/journal.pone.0156837.g007
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The occurrence based process can be modeled using Poisson process. Poisson is a discrete

probability distribution that expresses the probability of a given number of events occurring in

a fixed interval of time and/or space if these events occur with a known average rate and inde-

pendently of the time since the last event. Poisson distribution is written as

PðxÞ ¼
e�l

l
x

x!
: ð11Þ

In Eq (11), x is the distance from the ostium and the λ is the expected distance value. Using

medical expert annotated distances of first branch from ostium in Rotterdam training data [26,

27], the Poisson distribution model has been trained as shown in Table 1. which shows the dis-

tance of first branch from the ostium. l̂ is the estimate of Poisson parameter and 17.3325. In

the experiments, all of the first branch (LM toward LCX and LAD) were correctly found in 32

dataset by utilizing the active search method together with the Poisson branch occurrence

model.

As described before, highly stenotic coronary arteries appear sometimes as disconnected as

shown in Figs 4 and 5 even though they are connected. In such cases, we use active search

scheme which can detect disconnected vessel and connect them. While MAP estimate is found

via maximizing using Eqs (2) and (10), active searching scheme runs at the same time as

shown in Fig 1. With two previous center point xi−2, xi−1 and vessel geometry constraint, the

prior probability distribution of vessel geometry is assigned. Search candidates points xi’s are

uniformly generated on the hemisphere with radius S (step size), and each point xi is assigned

with the prior probability depending on geometric constraint. Also the likelihood from fore-

ground and background model and others is computed. The posterior probability is computed

from the prior and the likelihood. For branch detection, the candidate points with relatively

high posterior probability on the hemisphere is now clustered into small group and the dis-

tance of clusters are measured. If the distance is over some threshold the branch is detected. At

the same time, active search with Poisson process for the branch occurrence model and active

search for high probable region from the HU level is also investigated.

Planar Vesselness Measure

It is necessary to analyze the shape of coronary artery for determining if detected or segmented

object is coronary arteries and not others. While the tracking system tracks down the coronary

arteries and their branches, the tracker may stray into wrong region like left ventricle. Tracker

needs to check if the tracked object is a vessel. Hence, detection and calculation of topological

features for such 3-D tube-like objects are required via description of shapes and other charac-

teristics of complexity. This should allow to represent interior structure of 3-D objects.

The following planar vesselness measure is used in our system. We use a fast and efficient

planar version of vesselness measure. It can tell when a vessel tracker must stop or if searched

point is a vessel-like point in the active search process.

Analysis of Cross Sectional Shape. To speed up the tracking process, simple planar Hes-

sian based measure is employed in our system. To detect foreground objects solely, Frangi

Table 1. Dataset used for Poisson parameter estimation. Poisson pdf (l̂ ¼ 17:3) trained on LM (left main) artery length.

dataset nr. 0 1 2 3 4 5 6 7

first branch location (mm) 21.00 21.96 17.94 17.64 10.86 22.38 15.69 11.19

doi:10.1371/journal.pone.0156837.t001
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proposed a method that can find elongated, i.e., tube-like objects [28] and the method shows

successful results. However it requires an extensive 3-D computation along the scale space in

conventional Frangi’s vesselness measure. A simple planar version is devised here.

If the planar measure scores low in consecutive cross sections. One can tell it is not a vessel.

The underlying assumption is that the cross section of coronary artery or its area is elliptic and

has higher HU value compared to myocardium or surrounding materials. Let the linear scale-

space representation of the cross sectional image I0(x, y) at scale σ given by:

Iðx; y; sÞ ¼ I0ðx; yÞ � Gðx; y; sÞ ð12Þ

where G(x, y; σ) is the Gaussian kernel with scale factor σ. It starts with iso-intensity surface

definition which is

Iðx þ Dx; y þ DyÞ ¼ Iðx; yÞ ð13Þ

where σ is omitted for simplicity. Let δ = (Δx, Δy) and using Taylor’s expansion in vector nota-

tion, it can be simplified as:

1

2
dHðx; yÞdT þ ðIx; IyÞd

T ¼ 0 ð14Þ

where

Hðx; y; zÞ ¼
Ixx Ixy

Iyx Iyy

0

@

1

A ð15Þ

is the Hessian matrix. This quadratic equation represents a general quadric surface including

ellipsoids. Eq (14) can be divided into two parts:

1

2
dHðx; yÞdT þ ðIx; IyÞd

T > 0 or < 0 ð16Þ

IfH is positive or negative definite, it represents convex or concave region, respectively (i.e.,

dark area or bright area). Since we are looking for coronary arteries in CCTA, negative definite

will be a good indicator.

Therefore, in 2-D cross sectional views of coronary arteries, the Hessian will be

H ¼
Ixx Ixy

Iyx Iyy

 !

and the bright elliptic feature like cross section of a vessel is equvallently

represented as the set of

fðx; yÞjHðx; yÞ < 0g ¼ fðx; yÞjIxx þ Iyy < 0 \ IxxIyy > I2xyg ð17Þ

Hence the planar vesselness measure v is computed from Eq (16). It can be written as the func-

tion of Ixx+Iyy and IxxIyy � I2xy. For detail, please refer to [29]. The performance of our planar

vesselness measure is compared to conventional 3-D vesselness filter in Fig 8. Both measure

have significantly high value along the tracked vessel (especially proximal and mid part of a

vessel) and seems to be correlated in the figure. When there is no vessel, both value will be

almost zero. The following subsection summarizes the overall branch detection procedure.

Initiation of Seed Point for Tracking. In the experiment, the start points (seed points)

are fixed and given in rotterdam coronary artery algorithm evaluation framework. The initial

direction is found via ML estimators like the cylinder in Fig 9. At a given seed point SP and

searching direction in 3-D, the cylindrical mask is generated using Gaussian shaped kernel

Automatic Coronary Artery Segmentation Using Active Search from Coronary CT Angiography
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Fig 8. Planar vesselness (red) vs. conventional 3-D Frangi’s Vesselness (blue) along the vessel centerline. Both have high values along the tracked
vessel. And they are much correlated at proximal and mid-part of coronary artery. When there is no vessel, both values are near zero.

doi:10.1371/journal.pone.0156837.g008
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along the long axis. The most probable direction is found. When active search are used, the ini-

tial direction of the vessel is found the same way.

Experiment

The accuracy of the centerline extracted from the suggested method is tested on 32 CCTA pub-

lic Rotterdam challenge dataset [26, 27]. These datasets were provided by the organizers of the

“Coronary Artery Tracking Challenge”. On the evaluation framework, it measures the accuracy

of the centerlines of four significant vessels for each dataset and in total the number of tracked

vessel is 128. While the evaluation method only assesses the estimated centerlines, our system

finds the centerlines and automatically reconstructs the vessel lumen boundary mesh at the

same time. Our centerline extraction experiment using Rotterdam dataset will be categorized

as method #2 following the Rotterdam coronary artery algorithm evaluation framework rules.

One single point S (starting point at ostium) is pre-defined at the challenge site [26, 27] for

each left main artery (LM) and right coronary artery (RCA). The detailed experiment

Fig 9. Exhaustive search for initial direction of vessel using cylinder model.

doi:10.1371/journal.pone.0156837.g009
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procedure can be found at [26]. The result is shown in Tables 2–5. It shows a successful result

in overlap measure (OV), overlap until first error (OF) and overlap with clinically relevant ves-

sel (OT) (OV 81.4%, OF 77.3%, OT 87.8%) for 8 training dataset (Table 2) and OV 84.3%, OF

61.2%, OT 88.3% for 24 test dataset (Tables 3–6). Finally, all together with 32 dataset, the result

is OV 83.6%, OF 65.3%, OT 88.2%.

The running time is from 4 to 6 minute depending on complexity of each dataset. The pro-

posed method finds the entire tree structure including small vessel branches as shown in Figs

10 and 11. In the first figure, the colored spheres represent reference points for the identifica-

tion of selected vessels for the Rotterdam challenge. Fig 11 shows the reconstructed lumen

boundary mesh which is to be used for CFFR (computed fractional flow reserve). For the gen-

eration of meshes, the lumen boundary surface is automatically optimized via surface con-

straint and image gradient as a post process.

In Tables 2–6, the scores and ranks for individual dataset are shown in detail. The rank is

given from the score which is computed from non-linear increasing function of overlap ratio

[26]. In Table 3, our Test dataset result is shown. In Table 4, it shows that the mean percentage

values of OV and OT are significantly different (p< 0.0001).

For the comparison of challenge participating methods, the overlap scores of all the chal-

lenge participants (OV, OF, OT and average of them) are shown in Table 7. For the average

overlap score, the median is 53.7 and ours is 51.8. The first and third quartiles are 47.1 and

63.2, respectively. Hence, interquartile range is 16.1. These statistics are obtained from the

Table 2. Test result using 8 Rotterdam Training dataset. It shows detailed values for each vessel. (sc: score.).

Dataset nr. Vessel 0 Vessel 1 Vessel 2 Vessel 3

0 OV 0.88 sc 44.45 OV 0.97 sc 48.56 OV 1.00 sc 100.00 OV 0.88 sc 44.50

OF 0.14 sc 7.34 OF 1.00 sc 100.0 OF 1.00 sc 100.00 OF 0.79 sc 40.21

OT 0.88 sc 44.18 OT 1.00 sc 100.0 OT 1.00 sc 100.00 OT 0.88 sc 44.32

1 OV 0.89 sc 45.01 OV 1.00 sc 62.42 OV 0.86 sc 43.21 OV 0.97 sc 49.02

OF 0.89 sc 45.04 OF 1.00 sc 100.00 OF 1.00 sc 100.00 OF 1.00 sc 100.00

OT 0.89 sc 44.74 OT 1.00 sc 100.00 OT 1.00 sc 100.00 OT 1.00 sc 100.00

2 OV 0.90 sc 45.15 OV 0.95 sc 48.02 OV 0.89 sc 44.92 OV 0.21 sc 10.37

OF 0.89 sc 44.94 OF 0.91 sc 46.22 OF 0.84 sc 42.71 OF 0.00 sc 0.00

OT 0.90 sc 44.87 OT 0.95 sc 47.73 OT 0.98 sc 48.91 OT 0.40 sc 20.01

3 OV 0.70 sc 35.29 OV 0.58 sc 28.99 OV 0.46 sc 22.98 OV 0.79 sc 39.96

OF 0.70 sc 35.31 OF 0.41 sc 20.61 OF 0.30 sc 15.12 OF 1.00 sc 100.00

OT 0.75 sc 37.25 OT 0.59 sc 29.36 OT 0.46 sc 22.84 OT 1.00 sc 100.00

4 OV 0.84 sc 42.02 OV 0.94 sc 47.17 OV 0.78 sc 39.04 OV 0.85 sc 42.71

OF 0.92 sc 46.49 OF 0.89 sc 45.29 OF 0.65 sc 32.76 OF 1.00 sc 100.00

OT 0.85 sc 42.74 OT 0.94 sc 47.09 OT 0.79 sc 39.46 OT 1.00 sc 100.00

5 OV 0.69 sc 34.94 OV 0.96 sc 48.21 OV 0.81 sc 40.94 OV 0.90 sc 45.10

OF 0.76 sc 38.57 OF 1.00 sc 100.00 OF 0.74 sc 37.51 OF 1.00 sc 100.00

OT 0.69 sc 34.73 OT 1.00 sc 100.00 OT 0.81 sc 40.69 OT 1.00 sc 100.00

6 OV 0.49 sc 24.42 OV 0.97 sc 48.72 OV 0.73 sc 36.65 OV 0.91 sc 45.53

OF 0.56 sc 28.21 OF 0.94 sc 47.52 OF 0.59 sc 29.75 OF 1.00 sc 100.00

OT 0.68 sc 33.90 OT 0.97 sc 48.43 OT 0.99 sc 49.51 OT 1.00 sc 100.00

7 OV 0.95 sc 47.55 OV 0.94 sc 47.24 OV 0.54 sc 27.13 OV 0.82 sc 41.29

OF 0.20 sc 10.12 OF 0.88 sc 44.78 OF 0.75 sc 37.92 OF 1.00 sc 100.00

OT 0.99 sc 49.72 OT 0.94 sc 46.95 OT 0.75 sc 37.64 OT 1.00 sc 100.00

doi:10.1371/journal.pone.0156837.t002
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entire 24 challenge participants (methods) including us. However, three different competitions

are mixed here: full automatic, given seed points and user-interactive. For fair comparison, we

chose relevant 11 methods including us which are based on relatively similar condition (full

automatic and one seed point at ostium and they are marked with a circle o at the last column

of the table). Then the statistics becomes median 52.2 and the first and third quartiles are 43.7

and 55.8.

Table 3. Average overlap per Test dataset.

Dataset nr. OV OF OT Avg. rank

% score rank % score rank % score rank

8 82.4 47.4 10.50 33.3 25.1 13.75 84.5 48.3 11.50 11.93

9 88.1 45.5 16.25 45.2 30.4 19.75 89.7 58.4 14.75 16.90

10 86.3 44.3 18.00 30.4 15.4 21.25 89.7 57.9 12.25 17.18

11 83.1 42.5 17.50 44.8 36.1 9.00 83.1 42.5 17.75 14.75

12 76.1 39.3 21.25 21.8 12.2 21.00 84.9 43.0 19.00 20.40

13 88.3 44.7 17.00 95.3 73.6 6.50 98.2 74.3 7.50 10.35

14 85.8 43.4 14.25 83.2 82.0 6.25 88.3 81.7 6.75 9.10

15 92.9 47.4 16.00 83.2 79.6 5.50 98.7 87.3 5.25 8.93

16 76.4 39.4 18.25 59.0 31.1 13.25 84.1 55.4 15.50 15.65

17 72.7 37.5 18.25 20.5 11.0 18.00 73.9 37.7 18.75 18.32

18 90.3 45.9 15.00 78.2 63.4 9.25 91.9 58.9 10.75 11.65

19 90.3 46.8 18.00 88.0 72.8 8.25 96.1 74.0 9.00 11.75

20 82.6 50.0 17.00 59.7 42.5 12.75 86.1 55.6 15.25 14.97

21 89.9 70.5 12.25 93.1 85.0 6.00 97.4 86.2 6.50 8.25

22 96.2 48.5 15.25 99.8 87.4 2.50 100.0 100.0 1.00 6.25

23 91.7 46.3 17.25 65.6 45.7 14.75 95.1 60.3 13.75 15.25

24 89.7 47.6 12.50 68.2 56.9 7.75 93.3 67.5 8.75 9.68

25 80.4 41.8 17.00 50.1 38.5 13.50 83.9 54.5 11.50 14.00

26 66.6 34.3 13.00 20.4 14.0 5.75 69.5 35.8 10.75 9.82

27 65.9 34.8 19.75 46.0 28.8 11.75 69.8 35.8 19.00 16.82

28 86.1 44.9 14.75 88.5 72.7 4.50 93.1 72.8 7.50 8.93

29 94.2 47.4 13.50 76.3 51.3 8.00 96.5 85.8 4.50 8.65

30 88.3 46.1 14.50 54.2 27.8 17.50 91.8 60.5 11.50 14.48

31 79.7 52.0 16.75 64.7 57.5 11.25 80.9 65.5 12.00 13.35

Avg. 84.3 45.4 15.99 61.2 47.5 11.16 88.3 62.5 11.28 12.81

Std Dev 8.12 6.99 24.88 25.02 8.67 17.63

doi:10.1371/journal.pone.0156837.t003

Table 4. Standard deviation and p-values for all parameters OV, OF, OT (Table 3).

OV OF OT

average std Dev p_value average std Dev p_value average std Dev p_value

% 84.3333 8.1217 <.0001 61.2292 24.8783 0.0976 88.3542 8.6727 <.0001

score 45.3458 6.988 0.8106 47.5333 25.0234 0.6246 62.4875 17.6322 <.0001

doi:10.1371/journal.pone.0156837.t004

Automatic Coronary Artery Segmentation Using Active Search from Coronary CT Angiography

PLOS ONE | DOI:10.1371/journal.pone.0156837 August 18, 2016 18 / 24



Discussion

A new vessel tracking method based on stochastic geometric processes with active branch

search is developed for 3-D coronary artery segmentation. The suggested method reconstructs

the whole coronary artery tree structures with the estimation of the vessel lumen boundary

which can immediately generate mesh of the coronary structure (Fig 11). The result of devel-

oped method is compared with the results of other methods as the centerline accuracy problem

using Rotterdam coronary artery algorithm evaluation framework [26]. It shows high

Table 5. Average accuracy per Test dataset.

Dataset nr. AI Avg. rank

mm score rank

8 0.50 32.7 20.00 20.00

9 0.47 25.6 19.00 19.00

10 0.49 22.4 19.50 19.50

11 0.57 26.0 20.50 20.50

12 0.41 26.7 16.25 16.25

13 0.40 28.3 18.25 18.25

14 0.40 34.9 15.50 15.50

15 0.58 20.3 22.00 22.00

16 0.46 25.8 17.00 17.00

17 0.69 27.0 19.50 19.50

18 0.43 26.6 18.25 18.25

19 0.55 27.7 20.50 20.50

20 0.43 32.7 15.00 15.00

21 0.37 24.2 16.00 16.00

22 0.63 22.9 17.50 17.50

23 0.45 25.4 19.50 19.50

24 0.36 24.7 17.50 17.50

25 0.52 22.7 18.75 18.75

26 0.48 42.2 12.25 12.25

27 0.49 30.4 17.00 17.00

28 0.43 21.4 19.25 19.25

29 0.29 31.9 13.00 13.00

30 0.43 23.0 18.50 18.50

31 0.34 25.6 13.75 13.75

Avg. 0.47 27.1 17.68 17.68

doi:10.1371/journal.pone.0156837.t005

Table 6. Summary for Test dataset.

Measure % / mm score rank

min. max. avg. min. max. avg. min. max. avg.

OV 16.0% 100.0% 84.3% 8.7 100.0 45.4 1 24 15.99

OF 4.1% 100.0% 61.2% 2.1 100.0 47.5 1 24 11.16

OT 16.7% 100.0% 88.3% 9.1 100.0 62.5 1 24 11.28

AI 0.22 mm 0.98 mm 0.47 mm 13.5 55.8 27.1 5 24 17.68

Total 1 24 15.24

doi:10.1371/journal.pone.0156837.t006
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Fig 10. Examples of coronary artery structure found by the proposedmethod.

doi:10.1371/journal.pone.0156837.g010

Fig 11. Example of centerline extracted (left) and coronary artery tree mesh reconstruction (right) found by the proposedmethod.

doi:10.1371/journal.pone.0156837.g011
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performance of OV 83.6%, OF 65.3% and OT 88.2% among sequential tracking methods

which is not using other knowledge of vascular segmentation information. Our experiment

result is comparable to most reported results in Rotterdam coronary artery algorithm evalua-

tion framework [26]. In this Rotterdam coronary artery algorithm evaluation framework

experiment results, a few show high percentages over 90% in OVmeasuring (also high scores).

Such methods employ complicated hybrid methods using prior information like the left ventri-

cle segmentation [30] (ModelDrivenCenterline in Table 7) or requires multiple processes [31]

(GFVCoronaryExtractor). However, since our system is based on pure MAP (maximum a pos-

teriori) estimation via vessel geometry model, we believe it is easy to adopting other techniques

and can be combined for improvement. With regards to the accuracy distance measure number

in Tables 5 and 7, our method shows rather large distances compared to other methods. We

believe the reason is that our system concentrates on the reconstruction of the lumen wall

instead of finding accurate centerlines and it does not optimize or adjust the centerlines after

the first detection.

For the summary of newly developed active search scheme, it comes in three ways. The first

one is for disconnected vessel (type 1) and the second is for disconnected branches (type 2).

Table 7. Overlap Measure Scores for all the methods using Test dataset. Also accuracy distance measure is shown inmm. Last column is marked with a
circle for the similar experiment to us.

participant ID OV OF OT aver. perc. AI accu. sel.

% score % score % score % mm

MHT 98.5 84 83.1 72.8 98.7 84.5 93.4 0.23

ShapeRegression 96.9 79.2 72.5 66.3 97.1 79.2 88.8 0.23

ModelDrivenCenterline 93.5 53.4 76.5 54.9 95.6 70 88.5 0.2 o

VirtualContrast2b 96.7 73 74.5 63.3 96.9 74.7 89.4 0.27

Tracer 95.1 71 63.5 52 95.5 70.2 84.7 0.26

BayesianMaxPaths 97.5 81.6 78.8 70.8 97.7 81.5 91.3 0.29

SupervisedExtraction 90.6 53.8 70.9 49 92.5 61.2 84.7 0.25 o

GFVCoronaryExtractor 93.7 55.9 74.2 52.9 95.9 68.5 87.9 0.3 o

DepthFirstModelFit 84.7 48.6 65.3 49.2 87 60.1 79.0 0.28 o

COR Analyzer 87.7 50.3 71.7 47.8 89.8 59.5 83.1 0.25 o

VesselTractography 96.4 64.3 69.9 51.6 97 70.3 87.8 0.36

KnowledgeBasedMinPath 88.0 67.4 74.2 61.1 88.5 70 83.6 0.39

GVFTube’n’Linkage 92.7 52.3 71.9 51.4 95.3 67 86.6 0.37 o

AutoCoronaryTree 84.7 46.5 59.5 36.1 86.2 50.3 76.8 0.34 o

CocomoBeach 78.8 42.5 64.4 40 81.2 46.9 74.8 0.29 o

TwoPointMinCost 91.9 64.5 56.4 45.6 92.5 64.5 80.3 0.46

StatisticalTracking 81.5 45.5 59.1 46.7 84.6 59.5 75.1 0.51 o

VirtualContrast 75.6 39.2 56.1 34.5 78.7 45.6 70.1 0.39 o

AxialSymmetry 90.8 56.8 48.9 35.6 91.7 55.9 77.1 0.46

TubSurfGradFlow 91.1 53.3 65.3 41.9 92.2 53.9 82.9 0.47

ElasticModel 77 40.5 52.1 31.5 79 45.3 69.4 0.4

3DInteractiveTrack 89.6 51.1 49.9 30.5 90.6 52.4 76.7 0.51

CoronaryTreeMorphoRec 67.0 34.5 36.3 20.5 69.1 36.7 57.5 0.59 o

Ours 84.3 45.4 61.2 47.5 88.3 62.5 77.9 0.47 o

Med. (all) 90.7 53.4 65.4 48.4 92.0 61.9 83.0 0.35

Med. (sel.) 89.6 47.6 65.3 47.7 90.6 59.8 79.0 0.32

doi:10.1371/journal.pone.0156837.t007
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The third one is using branch occurrence model (type 3). For the disconnected vessel the

search is straightforward and just tries to find the vessel segment over the gap. Then it connects

them. And for the missing branches, both high probabilistic region investigation (type 2) and

the branch occurrence model (Poisson) are employed (type 3).

Such active search method plays an important role as follows. Especially when there is a

local discontinuity in vessel image, newly suggested active search method overcomes difficul-

ties due to the nature of sequential vessel tracking techniques. In CCTA images, vessel some-

times can be seen to be disconnected due to plaque or noise in the image. In such cases, the

active search method will overcome the seemingly disconnected gap. In addition, such discon-

tinuity frequently occurs near branch points. When there are bifurcations, there can be blood

turbulence at the bifurcation area and plaque can be easily built-up [21]. Such plaque can

makes vessel branch seem to be disconnected. This is why the type 2 active search is employed.

This is an improvement to conventional branch detection and vessel finding algorithm since it

provides an efficient local search scheme. Benefiting from the new active search scheme, the

proposed method has high capability of finding seemingly disconnected vessel and branches.

For the termination of vessel tracking, a newly devised practical planar vesselness measure

is used. It is computationally efficient and comparable to popular vesselness measure [28] as

shown in Fig 8. More recently, a new deep neural network learning based vessel classifier is

devised and tested. It is based on a convolutional neural network (CNN) and a preliminary test

shows a high classification rate in distinguishing vessels from non-vessel substances [32].

As for statistical branch occurrence location model, it is used only for the first branch of the

left main artery for now but the complete statistical branch location model for the entire coro-

nary artery system is under study. More analysis for the active search is required. After the

entire tree structure is found, the lumen mesh is optimized via surface constraint and gradient

information and this mesh is to be used for other tasks (see Fig 11). Also, automatic aorta and

ostium segmentation is under development now and the system will be full automatic without

requiring starting points.
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