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Abstract 

In this paper, an automatic coronary tree labeling 

algorithm is developed for labeling the extracted 

branches with their anatomical names for CCTA datasets. 

A two-step matching algorithm is implemented by means 

of a statistical coronary tree model. The main branches 

are first identified in a registration step. Then all the 

segments including proximal, middle and distal parts of 

the main branches and all side-branches in the coronary 

tree are labeled. Additional clinical criteria are used to 

generate the final result. Fifty-eight CCTA datasets with 

right-dominant coronary trees were used for the 

evaluation. Compared with manually corrected results by 

an expert, 37 labels (4.76%) in the automatic results were 

needed to be changed or removed. For the remaining 741 

labels obtained by the automatic method, the average 

overlap measurement between the expert reference and 

automatic results was 91.41%. 

 

1. Introduction 

Coronary computed tomographic angiography (CCTA) 

as a non-invasive imaging modality is widely adopted for 

the diagnosis of coronary artery disease [1]. According to 

the CCTA image guidelines for interpretation and 

reporting [2], radiologists and cardiologists usually report 

pathological findings, such as calcifications, stenoses and 

occlusions, per artery or per segment. Thus, an automatic 

coronary artery extraction and labeling algorithm is 

demanded which can extract coronary arteries and assign 

the anatomical labels to the extracted arteries. It facilitates 

the workflow for the radiologists and cardiologists. A 

number of methods have shown that the centerlines of 

coronary arteries in CCTA images can be extracted 

automatically [3]. Recently, we developed an automatic 

coronary tree centerline extraction algorithm to improve 

the centerline extraction ability and accuracy [4]. 

Several approaches [5, 6] focused on the coronary tree 

labeling in 2D X-ray angiography. But assigning the 

anatomical labels to coronary arteries in 3D CCTA 

images has different challenges. For instance, in CCTA 

images coronary arteries especially some tiny side-

branches cannot be fully extracted because of the lower 

spatial resolution of CCTA images, motion artifacts and 

presence of calcification and stenoses. Therefore, 

coronary artery tree labeling in CCTA images should be 

studied. To the best of our knowledge, the literature on 

automatic coronary tree labeling in CCTA images is very 

limited. Recently, Akinyemi [7] presented an automatic 

labeling method which used geometric features of 

coronary arteries to train a multivariate Gaussian 

classifier. In this method, the large anatomical variation 

of the training datasets such as the size of the heart might 

decrease the accuracy the labeling results. Furthermore, 

vessel diameters were used as local features for training 

the classifier, which were difficult to be estimated 

accurately without any user-interactions because of the 

presence of the calcifications, stenoses etc. 

In this paper, we focus on an automatic coronary artery 

tree labeling algorithm in CCTA images. This algorithm 

is mainly based on a 3D coronary tree model [8]. The 

main branches in the extracted coronary artery tree are 

firstly identified and then all the segments, i.e. the 

proximal, middle and distal parts of main branches and 

side branches, are labeled. Additional clinical criteria 

widely used by cardiologists are adopted to generate the 

final labeling results. In this preliminary study, fifty-eight 

clinical datasets with a right-dominant coronary artery 

tree were used to evaluate the algorithm. 

 

2. Methodology 

Fig. 1 displays the pipeline of our automatic coronary 

artery tree labeling algorithm which can be divided into 

two main steps. First, four main arteries, i.e., right 

coronary artery (RCA), left main (LM) artery, left 

anterior descending (LAD) artery and left circumflex 

(LCx) artery, will be identified by aligning them with the 

coronary tree model. Second, all the labels in the 

coronary tree model including the proximal, middle and 

distal parts of the main branches as well as the side-
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branches are matched with their candidates in the 

extracted coronary artery tree to find the initial labeling 

result. After adjusting the initial labeling result according 

to clinical criteria, the final labeling result will be 

generated. These steps will be described in the following 

sections. 

 

Fig. 1 Pipeline of coronary artery tree labeling. 

 

2.1. Coronary artery tree model 

In our preliminary study, a 3D 

coronary artery tree model of right-

dominant type is used to provide a 

priori knowledge which is based 

on the statistical results presented 

by Dodge et al. [8]. Fig. 2 

demonstrates the centerlines of this 

3D coronary artery tree model. 

This model is composed by a LM 

branch and three sub-trees which 

are defined in Table 1. This model 

is based on the 17-segments model 

defined by the American Heart 

Association (AHA) [9] which is widely adopted in the 

clinical practice. In this model, the actual marginal 

branches derived from RCA are not included. In addition, 

the side-branches belonging to the left- or co-dominant 

types such as L-PDA are not included.  

 

Table 1. Labels used in the coronary artery tree model 

(p = proximal, m = mid, d = distal) 

Sub-tree Main branch Side-branches 

RCA 
pRCA, mRCA, 

dRCA 

right posterior descending (R-

PDA) artery, right posterior 

lateral (R-PLB) artery 

LAD 
pLAD, mLAD, 

dLAD 

three septal (S1~S3) arteries, 

three diagonal arteries (D1~D3)

LCx pLCx, LCx 
two obtuse marginal (OM1, 

OM2) arteries  

 

2.2. Main branch identification 

Because the extracted coronary artery tree may have a 

different position, orientation and size as compared to the 

model, the local features such as vessel length, branch 

direction, etc. cannot be used to derive robust rules to 

detect the main branches. Thus, a centerline registration 

step is performed to align the patient coronary artery tree 

with the 3D model. In a few cases, the side-branches 

cannot be extracted because of the motion artifacts or the 

partial volume effect. All of the side-branches except 

RPLB are removed from 3D model and registered with 

the extracted centerlines of coronary arteries using a 

point-set registration method [10]. The centerlines of both 

the extracted coronary artery tree and the model are 

normalized and re-sampled before the alignment. The 

maximum vessel lengths of left and right coronary artery 

trees in the extracted dataset, LL and LR, are calculated 

respectively. Then the distal parts of main branches in the 

model are cut to the same length as the LL or LR in order 

to avoid matching the long centerline in the model with a 

short one in the extracted tree when the main branches in 

the tree are not fully extracted. 

The rigid transformation between the extracted tree 

and model centerlines is estimated. Because extracted 

centerlines normally include main branches and some 

side-branches, we ensure that the main branches in the 

model are attracted by the main branches in the extracted 

data. Therefore, the points along the centerlines in the 

extracted data are assigned to different weighting factors 

in the registration which are equal to the number of child 

end points. Since side-branches are derived from main 

branches, the points along the main branches have higher 

weighting factors as displayed in Fig 3(a). After 

registration, the distances between each pathline (from the 

ostium point to an end point) in the extracted tree and 

aligned main branches in the model are computed. The 

pathline with the minimal distance to the main branch in 

the model is assigned to the corresponding label. As 

shown in Fig. 3(b), three green pathlines are identified as 

RCA, LAD and LCx because they have minimal 

distances to the corresponding aligned main branches 

(blue centerlines). The distal part of identified main 

branch could be a side-branch of the real main branch. 

Thus, in the next section, an iterative algorithm is 

presented to find the optimal correspondence with the 

model. 
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  (a)                                        (b) 

Fig. 3 (a) Illustration of weighting factors assigned for 

each point along the extracted left coronary tree. Black 

points are the end points of arteries. Red lines are main 

branches. (b) An example of centerline registration. Red: 

initial centerlines of model, yellow: extracted coronary 

artery tree, blue: aligned model, green: identified main 

branches. 

Fig. 2 3D model of 

coronary artery tree.
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2.3. All segments labeling 

Once the main branches have been identified, the 

overlapping part of the detected LAD and LCx is labeled 

as LM and the side-branches derived from LAD-LCx 

bifurcation are labeled as ramus intermedius (RI) arteries. 

As shown in Fig. 4(a), the remaining parts of the coronary 

artery tree can be separated into three sub-trees, each of 

them is composed by the identified main branch and 

several side-branches. The short side-branches (less than 

1cm) and the side-branches that have a sharp angle at the 

bifurcations are removed before the labeling. 

Subsequently, the three extracted sub-trees are matched 

with the corresponding sub-trees in the model, as shown 

in Fig. 4(b). 

An iterative algorithm is performed to find the best 

labeling result from all of the possible labeling results, by 

minimizing a cost function. The rigid transformation 

obtained in the previous step is used to deform the model 

with its side-branches. Both 3D model and extracted tree 

are re-sampled with the same re-sampling interval. After 

that, the following steps are performed: 

(1) Choose one pathline from the sub-tree in the model 

and assume it corresponds to the identified main branch. 

According to the labels along the pathline from the model, 

the identified main branch is separated into several parts 

whose lengths are the same as the corresponding segment 

in the model. Considering the extracted centerline could 

be tortuous, the length is defined by the line between start 

and end points of each part. The cost for this match is 

computed simultaneously. 

(2) Given the labeling result of main branch in (1), 

calculate the cost to match it with all the possible labeling 

results of side-branches. 

(3) Go back to step (1) until all the pathlines in the sub-

tree of model have been selected. 

(4) Find the global optimal labeling result with the 

minimal matching cost from all of the labeling results 

obtained in the step (2). 

In the step (2), the side-branch labeling should satisfy 

two criteria: A the hierarchical relationship defined in 

Table 1. For example, any side-branch does not allow 

having another side-branch. And B a priori knowledge 

provided by the model. For instance, a branch which runs 

in the area usually supplied by diagonal branches cannot 

be labeled as a septal branch. If the segment cannot have 

a valid label, it will be marked with �NoLabel�. Let

1 1 2 2
{( , ), ( , ), ..., ( , )}

Z Z
L P Q P Q P Q  denote one labeling 

result which is composed by a correspondence list 

between segments P in the extracted data and Q in the 

model. Any segment marked with �NoLabel� will not be 

included in L. Given 
0 1{ , ,..., }NP  p p p and 

0 1{ , ,..., }MQ  q q q denote the centerline points in the 

segments (N and M are the numbers of points), their 

matching cost is defined as follows, 
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in which Sum_Nmin is the minimal summation of 

number of points who have been labeled in the extracted 

data for all the L�s. Since the improper assumption to 

label the identified main branches in the step (1) may lead 

to some side-branches marked with �NoLabel�, an 

exponential function is introduced into matching cost CL 

to penalize the labeling results with a lot of �NoLabel� 

side-branches and it is controlled by parameter g (0 < g < 

1). In this paper, we used g=0.4. 

 
(a)                                 (b) 

Fig. 4 (a) Coronary artery tree is divided into three sub-

trees, i.e. RCA (purple), LAD (red) and LCx (green) sub-

trees. LM and RI branches are in yellow and cyan 

respectively. (b) The extracted LAD sub-tree is matched 

to the LAD sub-tree in the 3D model. 

 

2.4. Clinical criteria 

In the clinical practice, the proximal, middle and distal 

parts of RCA, LAD and LCx are separated at the 

bifurcations of the specific side-branches. Therefore, we 

defined some additional criteria to adjust the initial 

labeling obtained from the statistical model. The criteria 

are defined as follows, 

(1) Use D1 and D2 to separate pLAD and mLAD. The 

mLAD should be longer than 1cm. If the D1 is present 

but the D2 is not or the segment between their openings is 

shorter than 1cm, the length of the mLAD is fixed at 3cm. 

(2) Use the OM1 bifurcation to separate the pCx and the 

LCx. 

(3) Define the p-, m-, and dRCA using 1/3 of the length 

of the RCA (from right ostium to the RPDA-RPLB 

bifurcation). 

If these side-branches mentioned in the above criteria 

are not present in the labeling results, the initial labeling 

result will not be changed. 
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Fig. 5 Overlap measures between automatic and expert 

labeling results. The numbers in the brackets are the 

number of datasets. 

 
Fig. 6 Coronary artery tree labeling result. 

 

3. Evaluation results and discussion 

Fifty-eight CCTA datasets acquired by a 320-slice CT 

scanner (Toshiba Aquilion One) and a 64-slice CT 

scanner (Toshiba Aquilion 64) were used to evaluate our 

algorithm. The datasets in which the coronary arteries 

could not be extracted because of severe lesions at the 

proximal parts of the main branches, were not included in 

these datasets. The centerlines of the coronary artery trees 

in these datasets were extracted automatically using the 

method presented by Yang et al. [4]. After extraction, the 

centerlines were used directly as the inputs for this 

labeling pipeline. The identification of the main branch 

succeeded in all of the 58 CCTA datasets. The labeling 

results were checked by an expert in cardiac CT and 

corrected manually if necessary. S1, S2, S3 and D3 were 

not included in the manual correction since they have no 

clinical relevance. A total number of 778 segments were 

checked. The expert changed or removed the label of 37 

(4.76%) segments. For the other 741 segments, we 

calculated the overlap between the automatic and expert 

results. The average overlap of the 17 labels and the 

number of the datasets that contain a label are displayed 

in Fig. 5. The overall overlap of all of 741 segments is 

91.41%. Fig. 6 shows an automatic labeling result in one 

dataset. All segments including proximal, middle and 

distal parts as well as side-branches were labeled 

correctly. Labeling is used to denote the location of the 

lesion. This is an important aspect for defining the clinical 

relevance of the lesion [11]. 

 

4. Conclusion 

In conclusion, we developed an automatic labeling 

algorithm for coronary arteries in CCTA images. It is 

based on a two-step method to find the optimal labeling 

result of a coronary artery tree. A preliminary evaluation 

showed a high accuracy of the computed labeling results 

as compared to the clinical expert labels. 
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