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Automatic Crack Detection on Two-Dimensional
Pavement Images: An Algorithm Based

on Minimal Path Selection
Rabih Amhaz, Sylvie Chambon, Jérôme Idier, Member, IEEE, and Vincent Baltazart

Abstract—This paper proposes a new algorithm for automatic
crack detection from 2D pavement images. It strongly relies on
the localization of minimal paths within each image, a path being
a series of neighboring pixels and its score being the sum of
their intensities. The originality of the approach stems from the
proposed way to select a set of minimal paths and the two post-
processing steps introduced to improve the quality of the detection.
Such an approach is a natural way to take account of both the
photometric and geometric characteristics of pavement images.
An intensive validation is performed on both synthetic and real
images (from five different acquisition systems), with comparisons
to five existing methods. The proposed algorithm provides very
robust and precise results in a wide range of situations, in a fully
unsupervised manner, which is beyond the current state of the art.

Index Terms—Crack detection, minimal path, Dijkstra algo-
rithm, non destructive control, road surface condition.

I. INTRODUCTION

SURVEYS of pavement condition is an important task to
insure road safety. In many countries, pavement distress

detection is considered as an essential step for road surface
inspection. The objective is to detect surface distresses, like rav-
eling and cracking, in order to plan effective road maintenance
and to afford a better sustainability of the pavement structure.
The most common type of surface distress is cracking. Human
visual inspection has been gradually replaced by automatic data
collection at traffic speed using both area and line scan cameras
[1]. Off-line processing techniques have been then developed
for surface condition monitoring as a support of human visual
control. Readers can find a brief history of the imaging devices
in [2]. CCD, Charge-Coupled Device, acquisition techniques
provide information on the presence of cracks through the pixel
intensities (pixels corresponding to cracks being generally of
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dark intensity). 3D imaging technology has emerged in the past
years and gives the imaging system to detect distresses thanks
to the elevation data. In the paper, we concentrate on crack
detection by processing 2D pavement images with the prospect
to generalize the proposed method to the latest 3D imaging
technologies.

Full automation of crack monitoring is a challenging image
processing problem, because in most cases the cracks appear as
thin, irregular lines, buried into a strong, textured noise. Indeed,
only few of the existing methods are fully unsupervised [3].

Photometry-Based Approaches: Quite different principles
have been adopted to tackle the problem. The most basic
methods are based on the sole photometric information, i.e.,
they decide whether each pixel belongs to a crack according
to a simple thresholding operation. Some methods determine
the threshold value in a global way [4], and other at a local
scale, e.g., in small patches, with adaptive thresholding [5]
or by hysteresis [6]. To determine the threshold, many opti-
mization approaches can be involved from the simplest one
based on Otsu algorithm [7] to more sophisticated ones, like
fuzzy logic based techniques [8] and genetic algorithms [9].
All these approaches are of limited efficiency, since the pixels
corresponding to cracks cannot be well separated from the other
pixels by a simple thresholding operation [10]. Photometry-
based methods can also involve a supervised learning step.
For instance, the training of a neural network [11], a Bayesian
classifier [12], an AdaBoost classifier [13], or the estimation of
the parameters of Gaussian mixture [14] are often considered to
solve this classification problem. However, such photometry-
based methods suffer from one important drawback in our
context: the need of a supervised training stage.

Introduction of Geometric Constraints: More efficient meth-
ods incorporate spatial processing steps involving groups of
pixels at a local scale. For instance, mathematical morphology
based methods consider dilation and erosion operators to reduce
the discontinuities within the crack pattern and to remove false
detections [5], [15]. However, the automatic implementation of
the latter methods remains difficult because of the large amount
of parameters to tune. Based on the fact that cracks can have
different width and size, multi-scale analysis with watersheds
[16], wavelet decomposition [17] have been intensively used
but the main difficulty is to select the right scale for identifying
cracks or how to combine the detections at multi-scale to
compute the final decision.

Photometry and Geometry-Based Approaches: Advanced
methods introduce higher-level geometrical information on the



topology of cracks combined with the photometric information.
Cracks are then considered as sets of contiguous pixels of low
intensities. For instance, the Markov based method proposed in
[10] and [18] favors the continuity between neighboring crack
pixels using a statistical approach. However, it is a computa-
tionally intensive method, and it relies on statistical parameter
values that must be tuned in a supervised manner. Let us remark
that the crack detection problem from pavement images shares
some common points with other tracking problems, such as
fiber tracking from diffusion MRI images, or object contour
tracking for image segmentation. Some authors have exploited
these similarities to propose crack detection methods using
a tensor voting strategy [19], on active or geodesic contour
approach [5], [20], for instance. In the latter case, a crucial step
of the methods relies on a minimal path principle (also referred
to as shortest path principle) that is also shared by other recent
contributions [21], [22].

Minimal Path Based Methods: Generally speaking, the min-
imal path problem consists in finding best paths between pairs
of nodes in a graph, with respect to a criterion defined as
a cumulated cost along the paths. In the context of image
processing, the cost usually combines two terms. The first one
accounts for the pixel intensities along the path, and the second
one locally evaluates the regularity of the path [23], [24]. The
two latter terms are often called an external and an internal
energy, respectively, and also as a fidelity-to-data term and a
regularizing term.

Efficient applications of the minimal path principle to several
image processing problems are made possible because fast
algorithms exist to compute the solutions, such as Dijkstra’s
algorithm [25] and the fast marching algorithm [26], the latter
being specifically suited to minimize costs involving an internal
energy based on the length of the path. Thanks to such algo-
rithms, it is possible to take relatively high-level geometrical in-
formation into account, while maintaining moderate computing
time and memory requirement. However, the direct application
of the minimal path principle requires that some information be
known in advance, such as the two endpoints of each path to
be detected. Unfortunately, such a prior knowledge is not avail-
able in a fully unsupervised context. Worse than that, cracks
are not simple lines. They may appear as complex networks
of unknown geometry. To overcome both difficulties, several
recent methods share a common overall structure [19]–[23]:

• In a first step, some of the darkest pixels are selected as
the best candidates to belong to the crack structure.

• In a second step, pairs of preselected pixels are considered
as endpoints and minimal paths joining them are built
with a view to track the whole structure of the cracks.

At the first step, some contributions proceed according to a
manual procedure [23]. Others rely in a more automatic way
[20], [22]. Finally, [21] considers that every pixel is a potential
endpoint. At the second step, [19], [20] use a regularization
term to favor the smoothness of the trajectory, while [21], [22]
only consider the cumulated pixel intensities along the paths,
without any internal energy term. In this paper, we adopt the
latter approach, because we consider that the shape of pavement
cracks is too irregular to be well described by any internal
energy term favoring smooth curves.

Contributions: Indeed, it is a distinctive contribution of the
present paper (shared by our early version [22]) to develop a
crack detection method that is only based on the photometry
and on a minimal assumption that pixels belonging to the
cracks form continuous paths of arbitrary shape. In particular,
a difference between [21] and ours is that the former assumes
that each crack is organized along a preferred direction, so
that it can be tracked using a faster algorithm than Dijkstra’s
algorithm for all possible pairs of endpoints. In contrast, we
do not make any restriction on the shape of the cracks, while
being more selective at the initial stage of electing potential
pairs of endpoints. Additionally, our method incorporates two
post-processing steps, where the currently detected paths are
merged, and some pixels are added to the crack or removed, de-
pending on their position and on their photometry. In particular,
the resulting detected cracks gain a certain thickness, whereas
the minimal path stage only provides one pixel thick paths.

Another distinctive feature of the proposed method is its
fully unsupervised character at all stages, including the initial
stage of endpoint selection. We emphasize here that all the tests
presented in the paper to illustrate the efficiency of the method
have been performed with fixed values for all the parameters.

Organization of the Paper: The next section introduces fur-
ther details on the minimal path principle and on its existing ap-
plications to road crack detection. Section III contains our own
contribution, under the form of the three-stage method sketched
above, where the minimal path principle is the central part of
the processing chain and two post-processing steps to refine the
detection and to estimate the width of the cracks. Section V
proposes a performance study, along a protocol introduced in
Section IV. It includes a comparisonwith five existing methods,
and both synthetic and real images are considered. Section VI
contains the main perspectives of the present contribution.

II. EXISTING MINIMAL PATH APPROACHES

A. Minimal Paths in Graph Theory

In graph theory, finding shortest paths consists in estimating
a path between two vertices such that it minimizes a cost that is
usually the sum of the weights of each edge included in the path.
In this paper we have chosen the term minimal path instead of
shortest path because it better corresponds to what is done, i.e.,
the paths have to minimize a cost that does not take into account
a geometric distance. In the rest of the paper, we always use the
term minimal path.

Algorithms for finding minimal paths have been efficiently
used for transportation networks, high performance communi-
cation, fault tolerant routing [27]. By considering images as
connected graph of pixels, minimal path extraction has been
used for a number of applications in image processing such as
segmentation or medical images [28], road extraction in satellite
images [29] or object boundary extraction [30].

For using minimal path estimation algorithms, these two
important elements have to be chosen:

1) The used cost function depends on the weight of each
edge. It should be designed so that good solutions have
a low cost while poor solutions have high cost. In image



processing, most of the cost functions are based on grey
levels or colors. Moreover, many techniques include a
regularization term in order to minimize the distance, the
regularity of the path, the length of the path [23], [24].
These terms are really appropriate in applications such
as detecting blood vessel in medical imagery because the
object to detect have a regular shape and a constraint
length. In the case of crack detection, these constraints
are not really appropriate because the shape of the cracks
is more chaotic.

2) The optimization approach to find the path that minimi-
zes this cost. The most famous methods are the Dijkstra
algorithm [25] and the fast marching approach [26].

The way to design the cost influences the optimization approach
that is chosen and vice versa. The rest of the paper focuses
on using these costs and optimization approaches for crack
detection.

B. Cost and Optimization for Road Crack Detection

Pavement images are highly textured images and cracks are
long dark filaments that can be assimilated to perceptually sa-
lient curves. It naturally leads to search for a path composed of
dark pixels [27]. In the context of active contours, the goal is to
find a curve that fits an object or a region by iteratively minimiz-
ing a cost or energy function,E, of the curve C, defined by [31]:

E(C) =

L
∫

0

(

w1 ‖C
′(v)‖

2
+ w2 ‖C

′′(v)‖
2
+ P (C(v))

)

dv (1)

where c(v) represents a curve drawn on a 2D image, [0, L] its
domain of definition, and L the length of the curve. The two
first terms represent the internal forces (regularity of the curve)
based on first and second derivatives with w1, w2 the weights
of each of these two parts. The third term is the external force.
Here, we consider an external force based on grey levels. More-
over, the first two terms favor smooth curves, whereas the shape
of the cracks are not smooth in general. Therefore, we propose
a simple cost function c that only incorporates an external force

c(pij) =

j
∑

m=i

I(m) (2)

where xi is the source point, xj the destination point, and m

is a pixel of the path. In [20], an additional regularization term
was considered. Here, we advocate that using the cost (2) is
more natural to recover crack patterns as series of connected
pixels with arbitrary shapes and lengths.

The minimization of a separable cost such as (2) is a so
called minimal path finding problem between two points. The
reference algorithm to solve such a problem is the Dijkstra
algorithm which has a linear overall complexity as a function of
the problem size [32]. Owing to the simplicity of its structure,
we have retained this algorithm to minimize (2).

In the particular context of road crack detection, a difficulty
is that we do not know in advance the endpoints of the minimal
paths to detect. Potentially, a minimal path could be estimated
between each pair of pixels of the image, in order to select only

the best ones at a subsequent step. However, the computational
time to solve so many minimal paths problems using a Dijkstra
type algorithm is clearly out of reach. As a consequence, a
strategy must be adopted to reduce the computational time. Two
types of solutions have been proposed in the recent literature.
Both of them introduce some constraints on the estimation of
the paths, as explained below.

C. Computation Strategies for Minimal Paths

1) Introduction of constraints on the optimization

process: Most of the proposed constraints affect the
geometry of the paths: disjointness, ordering, spacing,
length, smoothness [27]. With the advantage of being less
selective for the endpoints, [21], [33] propose to compute
the minimal path from each pixel of the image with a
directional constraint (only four orientations are consid-
ered) and a fixed distance (typically chosen between 4 and
32 pixels). The main feature of the approach in [21] and
[33] is to consider that if one orientation gives different
grey level distribution than the other orientations, the
pixel is probably inside a crack. Consequently, individual
pixels are selected rather than paths, with the drawback
that the continuity along the cracks is not necessarily
preserved. Moreover, such an approach is not able to
detect cracks with fast variations of orientation.

2) Selection of a subset of sources and destinations based
on manual selection [23] or automatic selection of points
of interest [20]. In the concerned application, a fully
automatic process is by far preferable than a manual
selection version. Moreover, the latter approach may be
too selective, since the detected points of interest do not
necessarily cover all the crack, leading to an incomplete
segmentation. In [22], the possible endpoints are chosen
among the pixels that correspond to local maxima of
intensity. Then, minimal paths are computed at the local
level without direction or length constraints.

In the following section, a refined version of the strategy
proposed in [22] is presented.

III. MINIMAL PATH SELECTION FOR

AUTOMATIC CRACK DETECTION

A. General Algorithm

The proposed method is called Minimal Path Selection
(MPS) algorithm. It is mainly based on the principle that mini-
mal path within a crack reaches a lower cost function than any
other minimal path within the image background. The image
is analyzed from a local to a global point of view: at a local
level, significant pixels are selected as endpoints and minimal
paths between endpoint pairs are computed without neither
direction nor length constraints. Then, at a global level, a subset
of minimal paths of lowest costs is selected. We suppose that
images have no lighting defaults, i.e., halos or a non-uniform
lighting are removed by a pre-processing step, if needed. Two
post-processing steps are also performed. The first one allows
to remove some residual artifacts. Finally, the width of the crack
is locally estimated.



Fig. 1. Illustration of the five steps of the MPS method.

Fig. 1 provides an illustration of the successive operations.
Let us stress that the three core elements and the two post-
processing steps of the method are all based on pixel intensities,
which makes MPS a coherent, fully data driven method.

B. Core Steps of MPS

The three core steps of the proposed MPS algorithm are
summed up in Fig. 2 and are detailed below.

C1) Endpoint Selection E: Our goal is to select a significant
proportion of the endpoints ei inside the cracks. A first simple
step is to partition the image into small square sub-images
and to retain the one darkest pixel mi in each of them. Some
of the candidates are then removed if their intensity is above
a threshold of the form Te = µ− keσ, where µ and σ are
the mean and the standard deviation of the whole image. See
Section V-A for more details about the choice of the sub-image
dimension P and of the coefficient ke.

C2) Minimal Path Estimation pij: Dijkstra algorithm [25]
is used to compute the minimal paths pij between each pair
(ei, ej) of endpoints using (2) for the minimization. Following
the first step of the algorithm, the endpoint ei is surrounded by
eight endpoints ej at most. An important aspect is that by using
this algorithm and the cost defined in (2), there is no constraint
on the shape and the length of the paths.

C3) Minimal Paths Selection: Among the many paths se-
lected at the previous step, only a small proportion of them are

Fig. 2. Pseudocode of the three core steps of the proposed MPS algorithm.

within (or partially within) a crack. Such paths are expected to
be made of pixels of darker intensities than the others, so we use
again a threshold on the cost path to select the best candidate
paths. Since the goal of this proposed step is to select paths with
the lowest mean intensities and not the shortest ones, it is impor-
tant to threshold the following normalized version of cost (2):

c(pij) =
1

card(pij)

j
∑

m=i

I(m) (3)

where card(pij) is the length of the path (in pixels). We have
chosen Tc = µc − kcσc, where µc is the mean and σc is
the standard deviation of the costs (see Section V-A for the
choice for kc). As shown in Fig. 1(C3), this step makes the
result converges towards the skeleton of the crack, i.e., a one
pixel-wide estimation of the crack with some artifacts.

C. Post-Processing Steps

Two kinds of improvements can still be performed, see
Fig. 3. On the one hand, some paths or some parts of the paths
correspond to false detections. On the other hand, the width of
the crack has to be evaluated.

P1) Elimination of Artifacts: Some small isolated paths may
be present in the estimated crack, due to the texture of the road.
A simple operation is to introduce a new threshold Ts on the
minimal size of a path. The value of Ts can be empirically
tuned, as shown in Section V-A.

Moreover, for some of the paths that constitute the crack
skeleton, a frequent situation is that only one endpoint actually
belongs to the crack. The resulting path is then partly inside
the crack, and partly outside. The outside part forms a spurious
“spike.” When several spikes share a common endpoint outside
the crack, they form a “loop.” Both spikes and loops correspond



Fig. 3. Pseudocode of the two postprocessing steps.

to false positive pixels and must be eliminated. To do so, we
first divide the skeleton into linear segments, such that both
extremities of each segment are either a junction point, or an
extremity of the crack itself. For example, a crack having the
shape of letters A, H and P would be cut into four, five and
three segments, respectively. The interest of such a partitioning
step is to isolate the spikes and the spurious parts of loops into
segments of higher average intensity than that of the “good”
segments. A new thresholding operation is then performed on
each segment, using the same threshold Tc as in Step C3.

P2) Width Detection: The proposed width detection proce-
dure consists in absorbing dark pixels neighboring the currently
detected crack, according to a threshold test. The adopted
threshold parameter is Tw = µw + kwσw , where µw and σw are
the mean and the standard deviation of the grey levels within the
currently detected crack, see Section V-A for the choice for kw.
The aggregation process is performed iteratively, so that several
“layers” of dark pixels may be incorporated.

IV. ASSESSMENT PROTOCOL

In Section V, the proposedMPS algorithmwill be tested both
on a synthetic image, and on five real image databases. The
test images are presented in Section IV-A. The performance of
five existing methods will be also presented for comparison pur-
poses. In real data cases, the definition of objective evaluation
criteria is not an easy task. In Section IV-B, we propose a semi-
automatic way of generating reference segmentation results,
i.e., a pseudo ground truth. Finally, Section IV-C introduces
performance indices to evaluate the mismatch between the
reference result and the output of any segmentation method.

Fig. 4. Acquisition system used for the acquisition of the 38 images of data
set 1: It is based on three sensors, and the processing is done 1 m × 1 m with
no overlap.

A. Tested Dataset

The dataset is composed of one simulated image and 269 real
images. The synthetic image allows to test the behavior of the
MPS algorithm in a fully controlled framework, while real ones
allow to evaluate the algorithm in a realistic context.

The simulated image of size 256× 256 pixels contains some
artificial crack patterns that have been superimposed to a real
image of pavement texture. The simulated cracks have chaotic
angular variations, with some ramifications and two thickness
values (one and two pixels), as shown on the upper part in
Fig. 11. Moreover, the grey level distribution of the pixels
within the cracks has been chosen in conformity with the one
empirically identified on a real image. In particular, the grey
level distributions of the two pixel categories, namely the crack
and the background pixels, significantly overlap.

The chosen 269 real images are expected to form a repre-
sentative set of samples in terms of pavement texture and of
crack patterns, with ramifications at some places and varying
thickness along the crack. They can be decomposed in two cat-
egories: 68 images with reference segmentations (details about
these reference segmentations are given in the next section)
and 201 images without reference segmentation. Initially, we
collected 62 images from one sensor, the Aigle-RN system pre-
sented in Fig. 4, and we computed a reference segmentation for
38 images from this database. Thanks to the Framework Pro-
gram for European Research and Technological Development,
called TRIMM for Tomorrows Road Infrastructure Monitoring
and Management [34], we obtained 207 additional images
acquired with four other sensors. It is obviously difficult and
expensive to obtain a reference segmentation for quantitative
evaluation on such a large dataset. In practice, we generated a
reference segmentation for only 30 representative images from
these 4 additional databases.

For all the systems tested, the acquisition are made per-
pendicular to the road, which means that the optical axis of
the sensor is perpendicular to the road. One of these systems,
named ESAR, corresponds to a static acquisition (not on a
vehicle) with no controlled lighting and the four others are
dynamic ones (on a vehicle) with controlled lighting. While the
system Aigle-RN uses stroboscopic lights, laser is used by the



TABLE I
PRESENTATION OF THE 269 IMAGES TESTED FOR EACH SENSOR. THE

NUMBER OF IMAGES WITH PGT IS INDICATED BETWEEN BRACKETS

three remaining ones, namely Tempest 2,1 LCMS,2 and LRIS.3

More details about the sensors and the tested images are given
in Table I.

For the sake of clarity, let us divide the 269 images in three
sets:

• Dataset 1 contains the 38 images with reference segmen-
tations acquired by Aigle-RN system. These images have
been collected at traffic speed for periodically monitoring
the French pavement surface condition. They have been
pre-processed to mitigate the influence of non-uniform
lighting conditions.

• Dataset 2 contains 30 images acquired by the other four
systems, with reference segmentations.

• Dataset 3 corresponds to the remaining 201 images with-
out reference segmentations. This last dataset allows only
visual evaluations and comparisons.

B. Pixel-Based Ground Truth

In the synthetic data case, the ground truth can be defined
in an unambiguous manner at the pixel level. The situation
is more complex in real data cases. First of all, it is almost
impossible to guarantee any ground truth in a realistic context.
The best that we can obtain is a reference as reliable as possible.
Even a complete manual segmentation is not as reliable as
expected [10]. In the latter reference, a pseudo ground truth
(PGT) is defined as the fusion of the manual segmentations
obtained by four different experts. Here, we rather introduce
a semi-automatic segmentation that involves only one human
operator whose main role is to select pairs of pixels considered
as endpoints of a crack segment. We suppose that manual
selection of endpoints is enough reliable. Then, we know that
Dijkstra algorithm guarantees the estimation of the minimal
path between two points. It can be erroneous only if we have
a false minimal path (due to texture) that intersects with the
crack, in such a case the wrongly estimated part can be removed
manually. According to our own experience, such a semi-
automatic procedure is quite fast and reliable. Furthermore, the

1http://yotta.co.uk
2http://www.pavemetrics.com/en/lcms.html
3http://www.pavemetrics.com/en/lris.html

post-processing step P2 is applied to estimate the thickness of
the crack and to provide the whole crack pattern.

C. Evaluation Criteria

When comparing segmentation results and the ground truth
or the PGT, the following four pixel categories are considered:

• true positives (TP) correspond to correct detection of
pixels belonging to the crack structure;

• false positives (FP) are wrongly detected crack pixels (i.e.,
false alarms);

• false negatives (FN) are crack pixels that have been
missed by the detection process;

• true negatives (TN) are background pixels that are cor-
rectly labeled by the detection process.

The number of pixels falling in each category is commonly
used to quantify the agreement between detection and ground
truth. Several indices can be deduced from the four basic
figures, among which the following ones are widely used [35]:

• The Precision index highlights the proportion of false
alarms

P =
TP

TP+ FP
.

• The Sensitivity index highlights the proportion of non-
detected pixels

S =
TP

TP+ FN
.

• The DICE Similarity Coefficient (DSC) is the harmonic
mean of precision and sensitivity

DSC =
2TP

2TP+ FP+ FN
. (4)

The DICE coefficient (4) combines the results of the first two
criteria and it is commonly used as a global quality measure. It
puts emphasize on good detections TP as a function of wrong
decisions. Besides, it is especially suited when pixels to be
detected are weakly represented, which is the case here. In the
case of a perfect detection, we have DSC = 1, while DSC = 0
corresponds to a totally erroneous decision. In practice, it has
been argued that a DSC value beyond 0.7 indicates an excellent
agreement [36].

Finally, considering that the generation of a faithful PGT
remains a difficult task for many real images, we propose to tol-
erate a small distance between the detection and the reference
segmentation for the calculation of the TP rate. Then, it means
that TP pixels are included within a 2 pixel vicinity of the PGT.

D. Comparison of Methods

Very few comparative study between automatic pavement
crack detection methods can be found in the literature. One
difficulty is that several reference methods are protected com-
mercial products, and their description is not publicly available.



Here, we propose a partial comparison involving five existing
segmentation methods, that can be grouped into two families.

• Modeling based methods are composed of a photomet-
ric criterion (cracks pixels are darker than other pixels)
and a local geometric criterion (locally, a crack can be
considered as a small segment).

— M1 [37] consists in enhancing the contrast with adap-
tive 2D filtering in a multi-scale manner and in four
different directions. Then, segmentation is done with
a Markovian modeling where manipulated elements
(sites) correspond to 3 × 3 blocks. Four possible con-
figurations are distinguished (four segments in four
directions). The segmentation results at all levels are
then merged to compute the final result.

— M2 [10] is an improved variant of [37] where more
configurations are proposed (sixteen) in order to better
cover all the real local configurations of sites in the
neighborhood.

• Minimal path methods are closer to the one introduced
in this paper. Such methods are based on finding minimal
paths between endpoints.

— GC is a Geodesic Contour method [20] with automatic
selection of points of interest based on auto-correlation.

— FFA, Free Form Anisotropy, method [21], [33] is based
on the estimation of minimal paths of a given length, d,
at each pixel in four directions. Each current pixel is
considered to belong to a crack when the path cost
strongly varies with the direction.

— MPS0 [22] is a previous version of the Minimal Path
Selection (MPS) method.

For FFA approach, an important parameter corresponds to the
maximal length of the minimal paths, d. [33] indicates that
“The distance must be higher than granulate size to obtain an
efficient filtering. If distance d is high enough, there is no noise
detection.” Here, the chosen value d = 30 fulfills this criterion
on dataset 1, in the sense that significantly lower values of d
introduce wrong detections due to the pavement texture. For the
four methods M1, M2, GC, and MPS0 previously introduced,
all the parameters used are fixed as recommended in each
associated publication.

V. PERFORMANCE STUDY

A. Parameter Setting

In practice, the proposed MPS algorithm requires the tuning
of five parameters: the size of the image subsets P for local
image analysis (Step C1), and the thresholds Te (Step C1),
Tc (Step C2), Ts (Step P1) and Tw (Step P2).

The value of P must not be too large to limit the computation
time of the Dijkstra algorithm (since the latter is quickly
growing with the distance between endpoints). Fig. 5 shows an
example. However, a small value of P can have an influence on
the detection performance, as illustrated in Fig. 6. In fact, the
choice has an impact essentially on the computing time while
the quantitative results remain essentially similar for all the P

values. Let us remark that such a choice is not very different to

Fig. 5. Computation time as a function of the value of the window size P , for
data set 1.

Fig. 6. Influence of parameter P on the detected paths. For small values of P ,
such as P = 3, some parts of the cracks become disconnected.

Fig. 7. Percentage of TP among the endpoints as a function of parameter ke
for data sets 1 and 2. For the chosen value of ke = 1, 6% of the endpoints are
removed.

the block size value adopted for other block-based approaches,
i.e., between 7 and 9 in [38] and [39].

The choice of ke determines the threshold value Te = µ−
keσ that allows to retain only the darkest endpoints. Smaller
values of ke lead to discard only few endpoints, so the following
steps become more computationally demanding. Larger ones
eliminate more pixels, with the risk to remove crack pixels (see
Fig. 7 for an illustration). In practice, we have found that ke = 1
corresponds to a suited value. However, when this parameter
value varies between 0 and 2, the percentage of TP varies only
between 3.8 and 4.2. Again, this choice has mostly an impact
on the computing time.



Fig. 8. Precision, sensitivity, and DSC value variations with respect to
parameter kc for data sets 1 and 2.

Fig. 9. Precision, sensitivity, and DSC value variations with respect to
parameter Ts for data sets 1 and 2.

The choice of kc determines the threshold value Tc = µc −
kcσc that allows to retain only the paths of lowest costs among
the ones found at Step C2. This parameter is a crucial one but
its value is quite easy to choose. In fact, the results presented in
Fig. 8 highlight that the value of kc corresponds to a trade-off
between precision and sensitivity. Beyond kc = 2, the sensitiv-
ity becomes too low. We have chosen to retain the intermediate
value kc = 1, so that both thresholds Te and Tc correspond to a
unit standard deviation from the corresponding means.

As concerns the threshold Ts, Fig. 9 indicates that the value
Ts = 60 empirically corresponds to a good trade-off to improve
the precision without loosing much sensitivity. This parameter
is also crucial. We have chosen its value given that road
cracks that are lower than 10 cm are usually not considered as
significant. Such a choice is coherent for an image resolution of
1 mm per pixel and should be adapted to a different resolution
(or to a different goal in term of size of detected cracks).

Finally, the choice of kw determines the threshold value
Tw = µw + kwσw to merge some dark pixels neighboring the
currently detected crack structure. An appropriate value for
kw should increase the sensitivity with a low impact on the
precision. According to Fig. 10, there is no doubt that kw = 0.6
is the best choice, since it corresponds to the maximal value of
DSC. We can also notice that for kw > 0.6, the DSC value is
quite stable.

B. Evaluations and Comparisons on Simulated Data

According to Figs. 11 and 12, the results obtained by the
two Markov-based methods M1 and M2 are very sensitive to
the image texture. The performance of GC strongly depends
on the automatic determination of the points of interest. In

Fig. 10. Precision, sensitivity, and DSC value variations with respect to
parameter kw for data sets 1 and 2.

Fig. 11. Segmentation results on a synthetic image for the six methods com-
pared to the ground truth.

Fig. 12. Precision, sensitivity, and DSC values for the six different methods
applied to the synthetic image in Fig. 11.

this synthetic image, since many points of interest have been
detected only on a small part of the cracks, the method produces
a high rate of FN. On the contrary, the FFA method detects
a continuous crack path. However, the directional and length



Fig. 13. Example of outcome from the six different methods compared to the PGT.

constraints clearly prevent the method from detecting the
chaotic crack pattern and the fine structure of the crack. For
instance, the direction change is missed at the right hand
extremity of the thicker crack. The MPS0 method shows better
performance compared to the first three methods. Nonetheless,
some loop artifacts limit its performance to 0.75 in terms of
DSC value. MPS broadly outperforms the other tested methods,
with a DSC value of 0.83. A closer look at the result displayed
at Fig. 11 confirms that MPS accurately detects cracks of any
form and thickness.

To sum up, GC shows the lowest performance on the tested
synthetic image. FFA,M1, andM2 provide intermediate results,
and the two MPS methods yield the best overall performance,
the new version being superior to the previous one.

C. Performance Comparison on Images From the

Real Datasets

Here, the performance of the six methods are evaluated
on the images of the real datasets 1 and 2 introduced in
Section IV-A. First, an image sample from dataset 1 is used
to illustrate some qualitative aspects of the comparison but the
results on all the datasets are resumed in Fig. 14.

According to Fig. 13, the Markov-based methods provide
discontinuous crack segmentation, owing to the sensitivity to
the image texture. M2 also detects a lot of small FP within the
image background, including the two dark small patches at the
bottom. GC gives the worst performance, because only a small
part of the crack has been detected. The FFA method detects a
more continuous crack path than M2 and HA. The segmented
result appears as a thick line, implying a lot of FP within the
vicinity of the crack pattern. At some places, the crack pattern

Fig. 14. Averaged values of precision, sensitivity, and DSC for the 38 real
images of data set 1.

Fig. 15. Averaged values of precision, sensitivity, and DSC for the 30 real
images of data set 2. This data set is more difficult than the French one because
it contains images from different sensors with high variability in the lighting
and different problems in the images, such as textures or other defaults that are
comparable to cracks and low contrast. The methods M1, M2, and GC are not
able to detect the cracks, and their performances are under the performances of
HA. Again, the proposed approach obtained the best results for each criterion.

is scattered in small pieces and FN pixels appear. As opposed to
the latter, MPS accurately reveals the thin and chaotic structure
of the whole crack pattern with reduced artifacts. The overall
performance of the six methods on datasets 1 and 2 are shown
in Figs. 14 and 15, respectively.



Fig. 16. MPS results on three real images of varying textures. The second and third lines respectively show the PGT and the results obtained by MPS.

For dataset 1, the two Markov-based methods depict sensi-
tivity, precision and DSC criteria below 0.5 because of high FP
and FN rates. The GC method presents a high precision level,
owing to a small amount of FP pixels, but as a counterpart, its
sensitivity and DSC values are very low due to the large number
of FN. As opposed to the latter, FFA method provides a smaller
amount of FN pixels and a larger number of FP pixels in the
vicinity of the cracks, which results in a small precision level,
a rather high sensitivity, and only a moderate DSC value. The
two MPS methods yield by far the best average performance
in terms of sensitivity, precision and DSC. Once again, MPS
provides a significant improvement over MPS0, meaning that
the estimation of thickness has significantly improved the seg-
mentation result.

The overall performance on dataset 2 are under the overall
performance of the first dataset. However, the same remarks can
be done and the MPS approach still gives the best results.

As a conclusion, the average results obtained on the real
image datasets confirm the conclusion drawn on the simulated
case: MPS is the most accurate method, followed by MPS0,
FFA, M1, M2, and GC in descending order of performance.

Another test consists in evaluating the sensitivity of the MPS
method to the image texture. The latter may depend on the
pavement materials owing to either the size or the color of ag-
gregates, on the light scattering over the pavement roughness, or
on the wearing of the road surface which modifies the material
granularity at some places of the pavement. Here, three different
images have been selected within the real datasets, of growing
difficulty from Image A to Image C, the latter being the most
textured (see Fig. 16). MPS performs well on Images A and B,
which is confirmed by a high DSC value (see Fig. 16). In the
case of Image C, MPS produces a coherent result, but it corre-
sponds to a more continuous crack than the one produced by the
expert in the PGT image. This explains why the obtained DSC
value is low.

TABLE II
DSC VALUES FOR THE SIX DIFFERENT METHODS

APPLIED TO THE THREE IMAGES IN FIG. 16

Table II also gathers the performance of the other five meth-
ods on the same three images. For all methods, the smallest
DSC value is reached for the most textured image, namely
Image C, while MPS produces the highest DSC value for the
three images.

Finally, the images without a PGT (i.e., dataset 3) have been
processed. The results visually confirm that MPS provides far
more precise detections than the other methods. The whole set
of results are available from the following web page: http://
www.irit.fr/~Sylvie.Chambon/Crack_Detection_Database.
html. Some of these results can also be found in [40].

VI. CONCLUSION AND PERSPECTIVES

Our main contribution is an improvedminimal path selection
method based on the appropriate selection of minimal paths
between endpoints. Compared to our initial version of [22],
it incorporates a refined artifact filtering step and enables the
estimation of the thickness of the crack pattern. A complete
evaluation protocol has been introduced on both synthetic and
real images (from five different sensors). The comparison with
five existing methods has shown that the proposed method
affords the best DSC rate. To our best knowledge, such a kind of
precise and complete evaluation is quite new in this context. In
the future, it could provide a basis for additional comparisons
involving new methods. It can be argued that the assessment
protocol provides a bias in favor of the MPS method because



the same algorithm, namely Dijkstra, is used to process the
image and to provide the PGT. Indeed, the best performance
achieved by MPS on simulated data and the coherency between
theMPS results on simulated and real data sets have contributed
to remove the latter ambiguity. In conclusion, the proposed
method provides very robust and precise results in a wide range
of situations, in a fully unsupervised manner, which is beyond
the current state-of-the-artifact.

One of our main perspectives will be to reduce the com-
putation time of the method by GPU, Graphics Processing
Unit, programming, especially at step III-B of the algorithm in
Fig. 2. We could also obtain a faster version by replacing
the exact Dijkstra algorithm by a suboptimal version in the
A∗ family [41]. Finally, 3D imaging systems are of growing
use and give the potential to improve crack detection [2].
It is believed that the MPS relies on a versatile principle and
thus may cope with the elevation data which is available from
these latest imaging technologies.
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