
AUTOMATIC CROWD ANALYSIS FROM VERY HIGH RESOLUTION SATELLITE
IMAGES

Beril Sirmacek, Peter Reinartz

German Aerospace Center (DLR), Remote Sensing Technology Institute

PO Box 1116, 82230, Wessling, Germany

(Beril.Sirmacek, Peter.Reinartz)@dlr.de

Commission VII

KEY WORDS: Very high resolution satellite images, Crowd detection, DEM, Local features, Probability theory, Shadow extraction,

Road extraction

ABSTRACT:

Recently automatic detection of people crowds from images became a very important research field, since it can provide crucial

information especially for police departments and crisis management teams. Due to the importance of the topic, many researchers tried

to solve this problem using street cameras. However, these cameras cannot be used to monitor very large outdoor public events. In order

to bring a solution to the problem, herein we propose a novel approach to detect crowds automatically from remotely sensed images,

and especially from very high resolution satellite images. To do so, we use a local feature based probabilistic framework. We extract

local features from color components of the input image. In order to eliminate redundant local features coming from other objects in

given scene, we apply a feature selection method. For feature selection purposes, we benefit from three different type of information;

digital elevation model (DEM) of the region which is automatically generated using stereo satellite images, possible street segment

which is obtained by segmentation, and shadow information. After eliminating redundant local features, remaining features are used

to detect individual persons. Those local feature coordinates are also assumed as observations of the probability density function (pdf)

of the crowds to be estimated. Using an adaptive kernel density estimation method, we estimate the corresponding pdf which gives us

information about dense crowd and people locations. We test our algorithm using Worldview-2 satellite images over Cairo and Munich

cities. Besides, we also provide test results on airborne images for comparison of the detection accuracy. Our experimental results

indicate the possible usage of the proposed approach in real-life mass events.

1 INTRODUCTION

Recently automatic detection of people and crowds from images

gained high importance, since it can provide very crucial infor-

mation to police departments and crisis management teams. Es-

pecially, detection of very dense crowds might help to prevent

possible accidents or unpleasant conditions to appear. Due to

their limited coverage of area, street or indoor cameras are not

sufficient for monitoring big events. In addition to that, it is not

always possible to find close-range cameras in every place where

the event occurs.

Due to the importance of the topic, many researchers tried to

monitor behaviors of people using street, or indoor cameras which

are also known as close-range cameras. However, most of the

previous studies aimed to detect boundaries of large groups, and

to extract information about them. The early studies in this field

were developed from closed-circuit television images (Davies et

al., 1995), (Regazzoni and Tesei, 1994), (Regazzoni and Tesei,

1996). Unfortunately, these cameras can only monitor a few

square meters in indoor regions, and it is not possible to adapt

those algorithms to street or airborne cameras since the human

face and body contours will not appear as clearly as in close-

range indoor camera images due to the resolution and scale dif-

ferences. In order to be able to monitor bigger events researchers

tried to develop algorithms which can work on outdoor cam-

era images or video streams. Arandjelovic (Arandjelovic, Sep.

2008) developed a local interest point extraction based crowd de-

tection method to classify single terrestrial images as crowd and

non-crowd regions. They observed that dense crowds produce a

high number of interest points. Therefore, they used density of

SIFT features for classification. After generating crowd and non-

crowd training sets, they used SVM based classification to detect

crowds. They obtained scale invariant and good results in ter-

restrial images. Unfortunately, these images do not enable mon-

itoring large events, and different crowd samples should be de-

tected before hand to train the classifier. Ge and Collins (Ge and

Collins, 2009) proposed a Bayesian marked point process to de-

tect and count people in single images. They used football match

images, and also street camera images for testing their algorithm.

It requires clear detection of body boundaries, which is not possi-

ble in airborne images. In another study, Ge and Collins (Ge and

Collins, 2010) used multiple close-range images which are taken

at the same time from different viewing angles. They used three-

dimensional heights of the objects to detect people on streets. Un-

fortunately, it is not always possible to obtain these multi-view

close-range images for the street where an event occurs. Chao et

al. (Lin et al., Nov. 2001) wanted to obtain quantitative measures

about crowds using single images. They used Haar wavelet trans-

form to detect head-like contours, then using SVM they classified

detected contours as head or non-head regions. They provided

quantitative measures about number of people in crowd and sizes

of crowd. Although results are promising, this method requires

clear detection of human head contours and a training of the clas-

sifier. Unfortunately, street cameras also have a limited coverage

area to monitor large outdoor events. In addition to that, in most

of the cases, it is not possible to obtain close-range street images

or video streams in the place where an event occurs. Therefore,

in order to behaviors of large groups of people in very big out-

door events, the best way is to use airborne images which began

to give more information to researchers with the development of

sensor technology. Since most of the previous approaches in this

field needed clear detection of face or body features, curves, or

boundaries to detect people and crowd boundaries which is not

possible in airborne images, new approaches are needed to ex-
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tract information from these images. Hinz et al. (Hinz, 2009)

registered airborne image sequences to estimate density and mo-

tion of people in crowded regions. For this purpose, first a train-

ing background segment is selected manually to classify image as

foreground and background pixels. They used the ratio of back-

ground pixels and foreground pixels in a neighborhood to plot

density map. By observing change of the density map in the se-

quence, they estimated motion of people. Unfortunately, their

approach did not provide quantitative measures about crowds. In

a following study (Burkert et al., Sep. 2010), they used previ-

ous approach to detect individuals. Positions of detected people

are linked with graphs. They used these graphs for understanding

behaviors of people.

In order to bring a fully automatic solution to the problem, we

propose a novel framework to detect people from remotely sensed

images. One of the best solutions to monitor large mass events is

to use airborne sensors which can provide images with approxi-

mately 0.3 m. spatial resolution. In previous studies (Sirmacek

and Reinartz, 2011a) and (Sirmacek and Reinartz, 2011b), we

used airborne images to monitor mass events. In the first study

(Sirmacek and Reinartz, 2011a), we proposed a novel method to

detect very dense crowd regions based on local feature extraction.

Besides, detecting dense crowds, we have also estimated number

of people and people densities in crowd regions. In following

study (Sirmacek and Reinartz, 2011a), by applying a background

control, individual persons are also detected in airborne images.

Moreover, in a given airborne image sequence, detected people

are tracked using Kalman filtering approach. Although airborne

images are useful to monitor large events, unfortunately some-

times flying over mass event might not be allowed, or it might

be an expensive solution. Therefore, detecting and monitoring

crowds from satellite images can provide crucial information to

control large mass events. As the sensor technology is being de-

veloped, new satellites can provide images with higher spatial

resolutions. With those new satellite sensors, it became possible

to notice human crowds, and even individual persons in satellite

images. Therefore, herein we propose a novel approach to detect

crowds automatically from very high resolution satellite images.

Although resolutions of satellite images are still not enough to

see each person with sharp contours, we can still notice a slight

change of intensity and color components at the place where a

person exists. Therefore, the proposed algorithm is based on lo-

cal features which are extracted from intensity and color bands

of the satellite image. In order to eliminate redundant local fea-

tures which are generated by the other objects or texture on build-

ing rooftops, we apply a feature selection method which consists

of three steps as; street classification approach, eliminating high

objects on streets using shadow information, and using digital

elevation model (DEM) of the region which is automatically gen-

erated using stereo satellite images to eliminate buildings. After

applying feature selection, using selected local features as obser-

vations, we generate a probability density function (pdf). Ob-

tained pdf helps us to detect crowded regions, and also some of

the individual people automatically. We test our algorithm using

Worldview-2 satellite images which are taken over Cairo and Mu-

nich cities. Our experimental results indicate the possible usage

of the proposed approach in real-life mass events and to provide a

rough estimation of the location and size of crowds from satellite

data. Next, we introduce steps of the approach in detail.

2 LOCAL FEATURE EXTRACTION

In order to illustrate the algorithm steps, we pick Munich1 im-

age from our dataset. In Fig. 1.(a), we represent original Munich1

panchromatic WorldView-2 satellite test image, and in Fig. 1.(b),

we represent a subpart of this image in order to give informa-

tion about real resolution. As can be seen here, satellite image

resolutions do not enable to see each single person with sharp

details. On the contrary, each person is represented with two

or three mixed pixels, and sometimes additionally two or three

mixed shadow pixels. All those pixels coming from a human

appearance make a change of intensity components at the place

where the person exists which can be detected with a suitable

feature extraction method. Therefore, our crowd and people de-

tection method depends on local features extracted from input

image.

(a)

(b)

Figure 1: (a) Munich1 test image from our Worldview-2 satellite

image dataset, (b) Real resolution of a small region in Munich1

test image.

For local feature extraction, we use features from accelerated seg-

ment test (FAST). FAST feature extraction method is especially

developed for corner detection purposes by Rosten et al. (Ros-

ten et al., Nov. 2010), however it also gives high responses on

small regions which are significantly different than surrounding

pixels. The method depends on wedge-model-style corner detec-

tion and machine learning techniques. For each feature candidate

pixel, its 16 neighbors are checked. If there exist nine contigu-

ous pixels passing a set of pixels, the candidate pixel is labeled

as a feature location. In FAST method, these tests are done using

machine learning techniques to speed up the operation. For de-

tailed explanation of FAST feature extraction method please see

(Rosten et al., Nov. 2010).

We assume (xi, yi) i ∈ [1, 2, ...,Ki] as FAST local features

which are extracted from input image. Here, Ki indicates the

maximum number of features extracted from panchromatic band

of the input image. We represent locations of detected local fea-

tures for Munich1 test image in Fig. 2.(b). As can be seen in

this image, we have extracted local features on street at places

where each individual person exits. Unfortunately, many redun-

dant features are also detected generally on building rooftops, and

corners. For detection of people and crowds, first of all local fea-

tures coming from other objects should be eliminated. For this

purpose, we apply a feature selection method that we represent in
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Figure 2: (a) Original Munich1 test image, (b) FAST feature

locations which are extracted from Munich1 test image.

the next section in detail.

3 FEATURE SELECTION

For eliminating redundant features coming from building rooftop

textures or corners of other objects in the scene, we use three

masks as follows. The first mask (B1(x, y)) is obtained by street

segmentation using a training street patch which is selected by

user. The second mask (B2(x, y)), is generated using the shadow

information, in order to remove high objects which appear on

the detected street network. Finally, the third mask (B3(x, y)) is

obtained using height information obtained from DEM.

For street segmentation, we first choose a 20×20 pixel size train-

ing patch (t(x, y)) from input image. We benefit from normalized

cross correlation to extract possible road segment. Normalized

cross correlation between the training patch and the input image

is computed using following equation.

γ(u, v) =

∑
x,y

[g(x, y)− gu,v][t(x− u, y − v)− t]

{
∑

x,y
[g(x, y)− gu,v]

2
∑

x,y
[t(x− u, y − v)− t]2}0.5

(1)

Here t represents the mean of intensity values in the template

patch, and gu,v represents the mean of the input image intensity

values which are under the template image in correlation opera-

tion. At the normalized cross correlation result γ(u, v), we obtain

the road segment pixels as highlighted due to the high similarity

to the training patch. By applying Otsu’s automatic thresholding

algorithm (Otsu, 2009) to the normalized cross correlation result,

we obtain the road-like segments as in Fig. 3.(a). This binary

image is assumed as the first mask (B1(x, y)) which is going to

be used for feature selection.

Although estimated street segment helps us for feature selection,

still we cannot eliminate features coming from high objects on

Figure 3: (a) Road-like pixels which are segmented from

Munich1 test image, (b) Automatically extracted shadow pix-

els from Munich1 test image.

street such as street lamps, statues, small kiosks, etc. Unfortu-

nately, those small objects also do not appear in DEM of the

region, and they cannot be eliminated using height information

coming from DEM. In order to eliminate features coming from

these objects, in this step we try to detect them using shadow

information. For shadow extraction, we use local image his-

tograms. For each 100× 100 pixel size window of the input im-

age, the first local minimum in grayscale histogram is assumed as

a threshold value to apply local thresholding to the image. After

applying our automatic local thresholding method, we obtain a

binary shadow map. In Fig. 3.(b), we represent detected shadow

pixels on original image.

After detecting shadow pixels, we use the sun illumination angle

to generate our high object mask. For labeling high objects, each

shadow pixel should be shifted into opposite side of illumination

direction. Assuming that (xs, ys) is an array of shadow pixel co-

ordinates which are represented in Fig. 3.(b). New positions of

shadow pixels ((x̂s, ŷs)) are computed as xs = xs + l sin(−θ),
and ys = ys + l cos(−θ). Here θ is the opposite direction of the

illumination angle which is given by user, and l is the amount of

shift in θ direction as pixel value. For better accuracy l should

be chosen as the width of the shadow in illumination direction.

However, in order to decrease computation time and complexity,

we assume l equal to the length of the minor axis of an ellipse

which fits shadow shape. After shifting shadow pixels, we gener-

ate our second mask B2(x, y) binary mask where B2(x, y) = 1
for ((x̂s, ŷs)). In Fig. 4, we illustrate shadow pixel shifting oper-

ation.

In order to obtain the last mask B3(x, y), we use DEM of the cor-

responding region which is generated from stereo Ikonos images

using the DEM generation method of dAngelo et al. (dAngelo et

al., 2009). We obtained B3(x, y) binary mask by applying local

thresholding to DEM. We provide original DEM corresponding

to Munich1 image, and obtained binary mask in Fig. 5.(a), and

(b) respectively. As can be seen, building rooftop regions are

eliminated, however other low regions like park areas, parking
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Figure 4: Illustration of shadow pixel shifting operation.

Figure 5: (a) Digital elevation model corresponding to Munich1

test image which is generated using stereo WorldView-2 satellite

images. (b) Low regions in Munich1 image obtained by apply-

ing local thresholding to DEM.

lots with cars (or sea surface for some other test areas) cannot be

eliminated with this mask. Therefore, we use information coming

from three masks we generated. We assume our interest area as

S(x, y) = B1(x, y)∧B2(x, y)
′∧B3(x, y), where ’∧’ represents

logical and operation for binary images.

We use detected S(x, y) interest area for removing FAST features

which are extracted from other objects. We eliminate a FAST fea-

ture which is at (xi, yi) coordinates, if S(xi, yi) = 0. Remaining

FAST features behave as observations of the probability density

function (pdf) of the people to be estimated. In the next step, we

introduce an adaptive kernel density estimation method, to esti-

mate corresponding pdf which will help us to detect dense people

groups and also other people in sparse groups.

4 DETECTING INDIVIDUALS AND DENSE CROWDS

Since we have no pre-information about possible crowd locations

in the image, we formulate the crowd detection method using a

probabilistic framework. Assume that (xi, yi) is the ith FAST

feature where i ∈ [1, 2, ...,Ki]. Each FAST feature indicates a

local color change which might be a human to be detected. There-

fore, we assume each FAST feature as an observation of a crowd

pdf. For crowded regions, we assume that more local features

should come together. Therefore knowing the pdf will lead to de-

tection of crowds. For pdf estimation, we benefit from a kernel

based density estimation method as Sirmacek and Unsalan rep-

resented for local feature based building detection (Sirmacek and

Unsalan, 2010).

Silverman (Silverman, 1986) defined the kernel density estimator

for a discrete and bivariate pdf as follows. The bivariate kernel

function [N(x, y)] should satisfy the conditions given below;

∑

x

∑

y

N(x, y) = 1 (2)

N(x, y) ≥ 0, ∀(x, y) (3)

The pdf estimator with kernel N(x, y) is defined by,

p(x, y) =
1

nh

n∑

i=1

N(
x− xi

h
,
y − yi

h
) (4)

where h is the width of window which is also called smoothing

parameter. In this equation, (xi, yi) for i = 1, 2, ..., n are obser-

vations from pdf that we want to estimate. We take N(x, y) as

a Gaussian symmetric pdf, which is used in most density estima-

tion applications. Then, the estimated pdf is formed as below;

p(x, y) =
1

R

Ki∑

i=1

1√
2πσ

exp(− (x− xi)
2 + (y − yi)

2

2σ
) (5)

where σ is the bandwidth of Gaussian kernel (also called smooth-

ing parameter), and R is the normalizing constant to normalize

pn(x, y) values between [0, 1].

In kernel based density estimation the main problem is how to

choose the bandwidth of Gaussian kernel for a given test image,

since the estimated pdf directly depends on this value. For dif-

ferent resolution images, the pixel distance between two persons

will change. That means, Gaussian kernels with different band-

widths will make these two persons connected to detect them as a

group. Otherwise, there will be many separate peaks on pdf, how-

ever we will not be able to find large hills which indicate crowds.

As a result, using a Gaussian kernel with fixed bandwidth will

lead to poor estimates. Therefore, bandwidth of Gaussian kernel

should be adapted for any given input image.

In probability theory, there are several methods to estimate the

bandwidth of kernel functions for given observations. One well-

known approach is using statistical classification. This method is

based on computing the pdf using different bandwidth parame-

ters and then comparing them. Unfortunately, in our field such

a framework can be very time consuming for large input im-

ages. The other well-known approach is called balloon estima-

tors. This method checks k-nearest neighborhoods of each obser-

vation point to understand the density in that area. If the density

is high, bandwidth is reduced proportional to the detected den-

sity measure. This method is generally used for variable kernel

density estimation, where a different kernel bandwidth is used for

each observation point. However, in our study we need to com-

pute one fixed kernel bandwidth to use at all observation points.

To this end, we follow an approach which is slightly different

from balloon estimators. First, we pick Ki/2 number of random

observations (FAST feature locations) to reduce the computation

time. For each observation location, we compute the distance to

the nearest neighbor observation point. Then, the mean of all dis-

tances give us a number l. We assume that variance of Gaussian

kernel (σ2) should be equal or greater than l. In order to guar-

antee to intersect kernels of two close observations, we assume

variance of Gaussian kernel as 5l in our study. Consequently,

bandwidth of Gaussian kernel is estimated as σ =
√
5l. For a

given sequence, that value is computed only one time over one
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image. Then, the same σ value is used for all observations which

are extracted from images of the same sequence. The introduced

automatic kernel bandwidth estimation method, makes the algo-

rithm robust to scale and resolution changes.

We use Otsu’s automatic thresholding method on obtained pdf to

detect regions having high probability values (Otsu, 2009). After

thresholding our pdf function, in obtained binary image we elim-

inate regions with an area smaller than 1000 pixels since they

cannot indicate large human crowds. The resulting binary image

Bc(x, y) holds dense crowd regions. Since our Munich1 test

image does not include very dense crowds, in Fig. 7 we illustrate

an example dense crowd detection result on another Worldview-2

satellite test image which is taken over Cairo city when an out-

door event occurs.

After detecting dense crowds automatically, we focus on detect-

ing individuals in sparse areas. Since they indicate local changes,

we assume that detected local features can give information about

individuals.

In most cases, shadows of people or small gaps between people

also generate a feature. In order to decrease counting errors com-

ing double counted people because of their shadows, we follow

a different strategy to detect individuals. We use a binary mask

Bf (x, y) where (xi, yi) feature locations have value 1. Then,

we dilate Bf (x, y) using a disk shape structuring element with a

radius of 2 to connect close feature locations. Finally, we apply

connected component analysis to mask, and we assume mass cen-

ter of each connected component as a detected person position. In

this process, slight change of radius of structuring element does

not make a significant change in true detected people number.

However, an appreciable increase in radius can connect features

coming from different persons which leads to underestimates.

5 EXPERIMENTS

To test the proposed algorithm, we use a Worldview-2 satellite

image dataset which consists of four multitemporal panchromatic

images taken over Munich city (Munich1−4 images), and one

panchromatic image taken over Cairo city (Cairo1). Those panchro-

matic Worldview-2 satellite images have approximately half me-

ter spatial resolution. We also test proposed algorithm on an air-

borne image (with 30 cm. spatial resolution) taken from the same

region in over Munich city, in order to show robustness of the

algorithm to resolution and sensor differences

In Fig. 6, we represent people detection results for Munich1−4

images. For these four multitemporal images, true individual per-

son detection performances are counted as 92, 02%, 70, 73%,

88, 57%, and 89, 19% respectively. Besides, false alarm ratios

are obtained as 14, 49%, 40, 34%, 24, 29%, and 27, 03% respec-

tively. In Fig. 7.(a), we present dense crowd detection and people

detection results in Worldview-2 satellite image taken over Cairo

city. Robust detection of dense crowd boundaries indicate use-

fulness of the proposed algorithm to monitor large mass events.

Finally, in Fig. 7.(b), we represent people detection results on an

airborne image which is taken in the same test area over Munich

city. Obtained result proves robustness of the algorithm to scale

and sensor differences of the input images.

6 CONCLUSION

In order to solve crowd detection and people detection, herein we

introduced a novel approach to detect crowded areas automati-

cally from very high resolution satellite images. Although reso-

lutions of those images are not enough to see each person with

Figure 6: People detection results on Munich1−4 Worldview-2

satellite images.

sharp details, we can still notice a change of color components in

the place where a person exists. Therefore, we developed an algo-

rithm which is based on local feature extraction from input image.

After eliminating local features coming from different objects or

rooftop textures by applying a feature selection step, we gener-

ated a probability density function using Gaussian kernel func-

tions with constant bandwidths. For deciding bandwidth of Gaus-

sian kernel to be used, we used our adaptive bandwidth selection

method. In this way, we obtained a robust algorithm which can

cope with input images having different resolutions. By auto-

matically thresholding obtained pdf function, dense crowds are

robustly detected. After that, local features in sparse regions are

analyzed to find other individuals. We have tested our algorithm

on panchromatic Worldview-2 satellite image dataset, and also

compared with an algorithm result obtained from an airborne im-

age of the same test area. Our experimental results indicate possi-

ble usage of the algorithm in real-life events. We believe that, the

proposed fully automatic algorithm will gain more importance in

the near future with the increasing spatial resolutions of satellite

sensors.
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