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Abstract Dantzig-Wolfe decomposition (or reformulation) is well-known to pro-
vide strong dual bounds for specially structured mixed integer programs (MIPs).
However, the method is not implemented in any state-of-the-art MIP solver as it
is considered to require structural problem knowledge and tailoring to this struc-
ture. We provide a computational proof-of-concept that the reformulation can be
automated. That is, we perform a rigorous experimental study, which results in
identifying a score to estimate the quality of a decomposition: after building a set
of potentially good candidates, we exploit such a score to detect which decompo-
sition might be useful for Dantzig-Wolfe reformulation of a MIP. We experiment
with general instances from MIPLIB2003 and MIPLIB2010 for which a decom-
position method would not be the first choice, and demonstrate that strong dual
bounds can be obtained from the automatically reformulated model using column
generation. Our findings support the idea that Dantzig-Wolfe reformulation may
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DEI, Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy, E-mail: en-
rico.malaguti@unibo.it

Emiliano Traversi
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hold more promise as a general-purpose tool than previously acknowledged by the
research community.
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Mathematics Subject Classification (2000) 90C11 · 49M27 · 65K05

1 Introduction

Dantzig-Wolfe reformulation (DWR) of mixed integer programs (MIPs) is a com-
putationally very successful approach to produce high-quality solutions for well-
structured discrete optimization problems like vehicle routing, crew scheduling,
cutting stock, p-median, generalized assignment, and many others [28]. The com-
mon structure of these problems is the bordered block-diagonal form of the con-
straint matrix of the MIP formulation, which reflects that otherwise independent
subproblems are coupled only by some linking constraints. This structure usually
gives rise to a column generation based solution approach.

It is generally agreed that DWR needs tailoring to the application at hand and
is quite far from being a general-purpose tool: It is the user who does not only
know that there is an exploitable structure present but also what it looks like, and
how to exploit it algorithmically. In particular, in view of the automatic use of
general-purpose cutting planes in all modern MIP solvers, this is unsatisfactory.

1.1 Our Contribution

In this paper we give a computational proof-of-concept that the DWR process can
be automated and applied to a general MIP even when the latter seemingly does
not expose the matrix structure for which DWR is classically applied. We per-
form a suite of experiments, the results of which can be taken as advice on what
empirically constitutes a good (or bad) DWR. Remarkably, a key ingredient—
re-arranging a matrix into bordered block-angular form—has been available for a
long time. Also automatically applying DWR to a given structure is a concept that
is implemented in several frameworks. However, these two components have not
been combined in a MIP context before. In this paper, we provide the missing link
by proposing how to re-arrange a matrix into a structure that is experimentally
well-suited for DWR, in the sense that a subsequent column generation approach
consistently closes a significant portion of the integrality gap. Our main contribu-
tions are summarized as follows:

– We reveal that the constraint matrix of a general MIP can be re-arranged
for DWR in many different ways, necessitating a way to a priori evaluate the
quality of a re-arrangement;

– we perform a rigorous experimental study which results in a proxy measure for
this quality, which we call the relative border area;

– besides the classical bordered block-diagonal matrix structure, also a double-
bordered block-diagonal (also called arrowhead) matrix is amenable to DWR
when applying a variant of Lagrangian decomposition. The re-arrangement of
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matrices into both forms having a good border area can be accomplished via a
hypergraph partitioning algorithm;

– for a set of medium sized instances from MIPLIB2003 and MIPLIB2010 our re-
formulations on average lead to comparable or stronger root node dual bounds
w.r.t. a state-of-the-art MIP solver with default parameter settings (i.e., cut-
ting planes, preprocessing, etc. enabled);

– on a non-negligible fraction of these instances, we could automatically identify
reformulations yielding computational performances that are globally better
than those of state-of-the-art MIP solvers;

– our computational success is based on the observation that the constraint ma-
trix of a MIP may not originally contain a Dantzig-Wolfe decomposable form,
but can be “forced” into such a form in almost all cases;

– performance variability has raised great attention in the computational MIP
literature lately; we show experimentally that this phenomenon is very pro-
nounced in the context of DWR.

As we re-arrange matrices with the goal of applying a DWR, we will use the
notions of re-arrangement of a matrix and (Dantzig-Wolfe) decomposition inter-
changeably, as the former immediately leads to the latter in our context.

1.2 Related Literature

For a general background on DWR of MIPs, column generation, and branch-and-
price we refer to the recent survey [28] and the primer [9] in the book [8] that also
devotes several chapters to the most important applications.

There are several frameworks which perform DWR of a general MIP, and
handle the resulting column generation subproblems in a generic way such as
BaPCod [27], DIP [23], G12 [22], and GCG [16]. In all cases, the bordered block-
diagonal matrix structure needs to be known and given to the algorithm by the
user. In [16] it is shown that such a generic reformulation algorithm performs well
on bin packing, graph coloring, and p-median problems. Tebboth, in his thesis [26],
derives some decomposable matrix structures of a linear program (LP) when it is
formulated in a specific modeling language. A similar approach of indicating the
matrix structure via key words in the modeling language is taken in [7,13,22,25]
among others. All proposals have in common that the user, in one way or another,
needs to make available her knowledge about the decomposition to be applied.

Specially structured matrices, like bordered block-diagonal forms, play an im-
portant role in several fields, e.g., in numerical linear algebra. Therefore, several
proposals exist to re-arrange the rows and columns of a matrix in order to reveal
such forms. A typical motivation is to prepare a matrix for parallel computation,
like for solving linear equation systems, see, for instance, [2] and the many ref-
erences therein. The goal usually is to identify a given number of independent
blocks (of almost equal size) with as few constraints in the border as possible (see
below for more formal statements). Some works like [30] mention the possible use
of such re-arrangements in DWR of LPs, but we know of no actual experiment
with MIPs. The method in [12], for speeding up interior point methods, is based
on graph partitioning as is ours. An exact branch-and-cut algorithm for detecting
a bordered block-angular structure was proposed in [4].
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Attempts to evaluate the re-arranged matrices in terms of suitability for DWR
were done rudimentarily in the LP case only [26]. We are not aware of any attempts
to evaluate the quality of a decomposition in terms of suitability of DWR for the
MIP case (which has an undoubtedly larger potential). In fact, it is not even known
what characterizes a “good” decomposition in this context, and our paper gives
computationally supported guidance in this respect.

2 Partial Convexification and Dantzig-Wolfe Reformulations

A sketch of DWR applied to a MIP is as follows (see e.g., [9] for details). Consider
a general MIP

max{ctx : Ax ≤ b, Dx ≤ e, x ∈ Zn−r ×Qr} . (1)

Let P := {x ∈ Qn : Dx ≤ e}. The polyhedron PIP := conv{P ∩ Zn−r × Qr} is
called the integer hull w.r.t. constraints Dx ≤ e. In a DWR based on a single block
of constraints Dx ≤ e we express x ∈ PIP as a convex combination of the (finitely
many) extreme points Q and (finitely many) extreme rays R of PIP ; this leads to

max ctx (2)

s.t. Ax ≤ b

x =
∑

q∈Q

λqq +
∑

r∈R

µrr

∑

q∈Q

λq = 1

λ ∈ Q
|Q|
+ , µ ∈ Q

|R|
+

x ∈ Zn−r ×Qr (3)

where each q ∈ Q and r ∈ R represent vectors encoding extreme points and rays,
respectively, and variables λ and µ correspond to weights in their combination.

It is well-known that the resulting LP relaxation is potentially stronger than
that of (1) when PIP ( P [17], in which case the dual bound one obtains from (2)–
(3) is stronger than the one from (1). This is a main motivation for performing the
reformulation in the first place. This partial convexification w.r.t. the constraints
Dx ≤ e corresponds to implicitly replacing P with PIP in (1). This can be done,
in principle, by explicitly adding all valid inequalities for PIP to (1). When this is
impracticable, the implicit description is in a sense the best one can hope for.

The reformulated MIP (2)–(3) contains the master constraints Ax ≤ b, the
convexity constraint, and the constraints linking the original x variables to the
extended λ and µ variables. In general, MIP (2)–(3) has an exponential number of
λ and µ variables, so its LP relaxation needs to be solved by column generation.
The pricing subproblem to check whether there are variables with positive reduced
cost to be added to the current master LP calls for optimizing a linear objective
function over PIP , so it is again a MIP. The effectiveness of the overall approach
hinges crucially on our ability to solve this subproblem, either by a general-purpose
solver or by a tailored algorithm to exploit its specific structure, if known.
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Fig. 1 Matrix forms

DWR is usually applied when matrix D has a block-diagonal form as depicted
in Fig. 1(a) where Di ∈ Qmi×ni for i = 1, . . . , k (and D is 0 elsewhere). In this
case, k disjoint sets of constraints are identified: Dx ≤ e partitions into Dixi ≤ ei,
i = 1, . . . , k, where x = (x1, x2, . . . , xk), with xi being an ni-vector for i = 1, . . . , k.
Every Dixi ≤ ei individually is then convexified in the above spirit. We denote by
k the number of blocks of the reformulation. A matrix of the form as in Fig. 1(b)
with Ai ∈ Qmℓ×ni , i = 1, . . . , k is called (single-)bordered block-diagonal. For general
MIPs, often enough, constraints are not separable by variable sets as above, and
a double-bordered block-diagonal (or arrowhead) form is the most specific structure
we can hope for, i.e., the constraint matrix of (1) looks like Fig. 1(c) with F i ∈

Qmi×nℓ , i = 1, . . . , k, and G ∈ Qmℓ×nℓ . The mℓ constraints associated with the
rows of Ai are called the coupling (or linking) constraints and the nℓ variables
associated with the columns of F i are called the linking variables, denoted by xℓ.
We intuitively speak of the k blocks Di, i = 1, . . . , k, and the remaining border.
Each of the k groups of constraints Dixi + F ixℓ ≤ ei can be convexified. Let
P i := {x ∈ Qni+nℓ : Dixi + F ixℓ ≤ ei}. Denote by P i

IP the associated integer hull
and, respectively, by Qi and Ri the set of extreme points and rays of P i

IP . Then,
the resulting DWR reads

max ctx (4)

s.t.
k
∑

i=1

Aixi +Gxℓ ≤ b

(xi, xℓ) =
∑

q∈Qi

λiqq +
∑

r∈Ri

µi
rr (∀i) (5)

∑

q∈Qi

λiq = 1 (∀i)

λi ∈ Q
|Qi|
+ , µi ∈ Q

|Ri|
+ (∀i)

x ∈ Zn−r ×Qr (6)

where each q ∈ Q and r ∈ R is augmented with xℓ components. This formulation
generalizes the explicit master format [21] handling both, the presence of linking
variables and a generic number of blocks. It is a variant of Lagrangian decompo-
sition, similarly used in [12,26]. Instead of replacing each linking variable with a
copy for each block it appears in, and adding constraints that ensure consistency of
these copies, this coordination is taken care of by the original x variables. Further-
more, by keeping all xi variables in the master, one can enable several features of
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general purpose MIP solvers, like the separation of generic cuts, advanced branch-
ing techniques, preprocessing, etc., without any additional implementation issues.
We use the above formulation in our experiments. We can further obtain a master
problem formulation by projecting out the original variables, and introducing for
each linking variable a set of constraints which ensures consistency in different
blocks. However, we remark that the techniques and findings described in the rest
of the paper are not strictly dependent on the particular master problem format.

3 Automatic Detection of an Arrowhead Form

Potentially, every MIP model is amenable to DWR, even if its structure is not
known in advance (from the modeler or from other sources). In the latter case,
we need to detect a structure algorithmically. We need hence to decide: i) which
constraints of the MIP (if any) to keep in the master problem; ii) the number of
blocks k and iii) how to assign the remaining constraints to the different blocks.
In other words, we need to partition the set of the original constraints into one
subset representing the master and several subsets representing the blocks.

To this end, we follow the ideas proposed in [2] and [12] which build on well-
known connections between matrices and hypergraphs. Precisely, once the number
k of blocks is fixed, we propose a procedure for obtaining a decomposition consist-
ing of two main ingredients: i) a systematic way to produce a hypergraph starting
from the constraint matrix, and ii) an algorithm that partitions its vertex set
into k subsets (blocks). The partition obtained corresponds to a re-arrangement
of the constraint matrix of the original problem in such a way that it presents an
arrowhead form ready to be used as input for the model (4)-(6).

3.1 Hypergraphs for Structure Detection

We use two different kinds of hypergraphs defined in the following which are the
input of the partitioning algorithm.
Row-Net Hypergraph. Given the matrix A, we construct a hypergraph H = (V,R)
as follows. Each column j of matrix A defines a vertex vj ∈ V , and each row
i of matrix A defines a hyperedge ri ∈ R linking those vertices vj ∈ V whose
corresponding variable j has non-zero entry aij 6= 0 in the row i.
Row-Column-Net Hypergraph. Given the matrix A, we construct a hypergraph
H = (V,R∪C) as follows. Each entry aij 6= 0 of matrix A defines a vertex vij ∈ V .
For every row i of A, we introduce a hyperedge ri ∈ R which spans all vertices
vij ∈ V with aij 6= 0; analogously we introduce a hyperedge cj ∈ C for every
column j spanning all vertices for which aij 6= 0.

3.2 Hypergraph Partitioning

In order to obtain a decomposition we heuristically solve a minimum weight bal-
anced k-partition problem on one of the two hypergraphs. This problem is to
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partition the vertices of a hypergraph V into k components Vi (i = 1, . . . , k) such
that the sum of weights on hyperedges containing vertices in more than one Vi is
minimized. The partition is said to be balanced if |Vi| ≈ n/k.

For a given k-partition of a hypergraph, the blocks are obtained by grouping
together constraints corresponding to hyperedges ri ∈ R consisting of vertices v be-
longing to the same component; in the case of the row-net hypergraph, hyperedges
r spanning different components correspond to linking constraints and are hence
kept explicitly in the master problem. Similar, for a row-column-net hypergraph,
the hyperedges c spanning different components correspond to linking variables.
We recall that by construction, a partition on a row-net hypergraph does not allow
partitions with linking variables.

The idea behind both constructions is to obtain “homogeneous” blocks, i.e.,
blocks consisting of constraints on similar sets of variables and limiting at the
same time the number of linking constraints (in both cases) and linking variables
(when a row-column-net hypergraph is used). To take into account slightly un-
balanced partitions, dummy nodes that are not incident to any hyperedge are
included in each graph. The possibility of assigning weights to hyperedges enables
us to penalize different components of the border differently; for example linking
variables may be less desirable when they are discrete, or linking variables may be
more or less difficult to handle in the subsequent column generation process than
linking constraints, etc.

3.3 A Very Special Case: The Temporal Knapsack Problem

The arrowhead structure of a matrix is so general that it cannot happen that there
is no such structure to detect. Therefore, “detection” can also be understood as
“forcing” a matrix into a particular structure. We illustrate this on the temporal

knapsack problem [5], also known as unsplittable flow on a line or resource allocation.
The problem is defined as follows. There are n items, the i-th of which has

size wi, a profit pi, and is active only during a time interval [si, ti). A subset of
items has to be packed into a knapsack of capacity C such that the total profit
is maximized and the knapsack capacity is not exceeded at any point in time. It
suffices to impose that the capacity constraint is satisfied at the discrete points
in time si, i = 1, . . . , n. Let Sj := {i : si ≤ j and j < ti} denote the set of active
tasks at time j, and xi a binary variable equal to 1 if task i is selected, a binary
program for the problem reads:

max
{

n
∑

i=1

pixi :
∑

i∈Sj

wixi ≤ C, ∀j ∈ {s1, . . . , sn}, xi ∈ {0, 1}, ∀i ∈ {1, . . . , n}
}

. (7)

Fig. 2(a) shows that the coefficient matrix of this formulation does not contain
any non-trivial blocks (i.e., the entire matrix is one block), although all non-zero
entries in a column are associated with consecutive rows.

Applying the procedure explained in the previous subsection based on a row-
column-net hypergraph produces a decomposition with only a few linking vari-
ables, see Fig. 2(b), and “reveals” a Dantzig-Wolfe decomposable form. This form
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(a) original matrix (b) “detected” arrowhead form

Fig. 2 constraint matrix of an instance of the temporal knapsack problem, (a) original and
(b) “forced” into arrowhead form with k = 10 blocks.

immediately suggests how to convexify groups of constraints in the spirit of (2)–(3)
to (much) better describe the integer hull implicitly. A DWR of the second matrix
does not only produce a strong relaxation but also allows to quickly solve instances
to optimality by branch-and-price, significantly outperforming a state-of-the-art
MIP solver on the standard formulation (7) [5].

4 Experimenting with a Generic Decomposition Framework

An important lesson we learned from preliminary experiments [3] is that we are
not looking for “the” decomposition of a matrix. There is a much larger degree of
freedom than originally expected: an arrowhead form is not unique; changing the
input parameters of our re-arrangement algorithm can very much vary the results,
and most importantly, seemingly small changes in the resulting decomposition
may lead to very different behavior in the subsequent column generation process
(both, in terms of dual bound quality and running time). Such sensitivity is a
well-documented phenomenon in MIP solving in general [20]. Figs. 3 and 4 show
for instance the influence of the number k of blocks and the choice of the weights
on hyperedges, respectively, on the visual shape of the resulting arrowhead form.
Not least, this non-uniqueness of decompositions immediately calls for a priori

evaluation criteria for a given decomposition w.r.t. its usefulness for DWR. In this
study, we concentrate on approaching this question experimentally.

In the following we describe the benchmark instances used in our computational
experiments, the specific setting used in our experimental framework (i.e., model
(4)–(6) of Sect. 2) and the sets of decompositions achieved using the procedure
described in Sect. 3 using three different settings.

4.1 Benchmark Instances

We did not experiment on instances with known structure: in these cases the
effectiveness of DWR has already been proven, and indeed, the purpose of our
study is to prove that DWR can work for general MIPs. Instead, in order to confirm
the generality of the proposed method we tested our algorithm on MIPLIB2003 [1]
and MIPLIB2010 [20] instances. We selected a subset of instances, for which (a)
the density is between 0.05% and 5%, (b) the number of non-zeros is not larger
than 20,000, and (c) the fraction of discrete variables is at least 20%. The rationale
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(a) k = 2 blocks (b) k = 3 blocks

(c) k = 4 blocks (d) k = 5 blocks

Fig. 3 Influence of the number k of blocks on the shape of the arrowhead form (fiber); a
smaller k tends to give a smaller border.

(a) 10teams, visually appealing (b) 10teams, visually poor

(c) rout , visually appealing (d) rout , visually poor

Fig. 4 Visual differences for different decompositions (resulting from different settings in the
partitioning procedure). Top row (a,b) shows instance 10teams with k = 3 blocks; bottom row
(c,d) shows instance rout with k = 4 blocks.

behind this choice is the following: (a) if the instance is not sparse enough, no useful
arrowhead form can be detected, and therefore it is easy to tell a priori that DWR
is not a promising option; (b) for large instances the partitioning heuristics may
fail in finding good partitions, and therefore the potential of our approach cannot
be estimated; and (c) without a sufficient degree of integrality no gains in the dual
bound are possible from a decomposition.
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4.2 Experimental Framework

All experiments to assess the performances of model (4)-(6) are carried out on
an Intel CoreTM i7-870 PC (2.93 GHz, 8MB cache, 8GB memory) running Linux
2.6.34 (single thread). In all our experiments the CPU time limit is set to 1 hour.

For solving the column generation MIP subproblems we use the branch-and-cut
algorithm implemented in CPLEX 12.2, with single thread and default parameter
settings. In order to obtain a generic multiple pricing strategy, each time a new
incumbent solution having negative reduced cost is found during the optimiza-
tion of a MIP subproblem, the corresponding column is inserted into the master.
Whenever a MIP subproblem is found to be unbounded, its integrality conditions
are relaxed, and an extreme ray is generated and added to the master by solving
the resulting LP problem to optimality.

For solving the master problem LPs we use the simplex algorithm of CPLEX

12.2, with default parameter settings, again single thread. We implemented the
dual variable stabilization method described in [11]. We keep as a stability cen-
ter the dual solution giving the best Lagrangian bound so far, and we enforce a
penalty factor ǫ whenever each dual variable takes values outside an interval of
width δ around the stability center. At each column generation iteration we change
ǫ, independently for each dual variable, to a value randomly chosen between 0 and
10−4. Whenever the stability center changes we set δ := 0.00005 · |z−v|, uniformly
for all dual variables, where z is the current master problem LP value, and v is
the best Lagrangian bound found so far. An upper bound of 50.0 is imposed on δ

in any case. The stabilization is activated on problems with more than 400 con-
straints when, during the column generation process, the gap |z − v| is between
1% and 80% of the current |z| value. We experimented with different parame-
ter settings, but these values gave best performance; we experimentally observed
that, on our datasets, this stabilization mechanism is enough to overcome poten-
tial convergence problems. As we did not go for efficiency, no further performance
improvement method was implemented.

4.3 Sets of Decompositions

Different decompositions can be obtained using the hypergraphs described in
Sect. 3.1 with different sets of input parameters. For instance, completely different
decompositions can be derived by changing the number k of blocks, the number
of dummy vertices, and the weights of the hyperedges given as input parameters
to the partitioning algorithm.

We do not optimally solve the NP-hard minimum weight balanced k-partition
problem. Instead, we use the heuristic multilevel hypergraph partitioning algo-
rithm in [18], of which the package hMETIS [19] is an implementation. In particular,
the hMETIS heuristics follow a multilevel recursive bisection paradigm, working in
three phases: coarsening, partitioning, and uncoarsening. Coarsening aims at con-
structing a sequence of successively smaller hypergraphs by contracting hyperedges
with a so-called “FirstChoice” scheme; then, balanced partitioning is performed
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on the contracted hypergraph by bisection; finally, during uncoarsening, the con-
tracted hypergraph is expanded by successive projections, following backward the
coarsening steps, and running after each projection a local refinement procedure
(FM), that is based on tabu search. See [18] for details. hMETIS can solve the parti-
tioning problem needed in our procedure in a few seconds. All hMETIS parameters
were kept at their default values, except the random seed that was set to 1.

Decompositions without Linking Variables. As first set, we generate decompositions
leading to the standard single bordered structure with no linking variables. This
shape is important because the majority of formulations used in practice for DWR
present this shape. We create a row-net hypergraph imposing a weight of 1 on
hyperedges corresponding to constraints. We add a number of dummy vertices
equal to 20% of the number of non-zero entries in the constraint matrix. We
set k = 2, . . . , 20 for the number of blocks, obtaining 19 decompositions for each
instance. An example of a matrix in a MIP model, and the corresponding detected
structure are reported in Figs. 5(a) and 5(d), respectively.

Balanced Decompositions. In the most general setting we search for decompositions
in which both constraints and variables can be part of the border. We create
a row-column-net hypergraph with a weight of 1 on hyperedges corresponding
to continuous variables, a weight of 2 on hyperedges corresponding to integer
variables, and a weight of 5 on hyperedges corresponding to constraints. We add
a number of dummy vertices equal to 20% of the number of non-zero entries in
the constraint matrix. We set k = 2, . . . , 10 for the number of blocks, obtaining 9
decompositions for each instance. Figs. 5(b) and 5(e) show an example matrix as
given in a MIP model, and the structure detected using this approach, respectively.

(a) original 10teams (b) original fiber (c) original timtab1

(d) 10teams, detected struct. (e) fiber, detected structure (f) timtab1, detected struct.

Fig. 5 Patterns of non-zero entries (black dots) in the coefficient matrix of a MIPs from the
MIPLIB2003 [1]; the areas with grey background in (d)–(f) emphasize the embedded structure;
(a)–(c) show that matrix structure directly from the MPS file, with a re-ordering of rows and
columns according to a decomposition found with (d) no linking variables, (e) balanced settings,
(f) no linking constraints.
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Decompositions with few Linking Constraints. We created a row-column-net hyper-
graph imposing a weight of 1 on hyperedges corresponding to continuous variables,
a weight of 2 on hyperedges corresponding to integer variables and a weight of 105

on hyperedges corresponding to constraints. We added a number of dummy ver-
tices equal to 20% of the number of non-zero entries in the constraint matrix. We
set k = 2, . . . , 10 for the number of blocks, obtaining 9 decompositions for each
instance. See Figs. 5(c) and 5(f) for an example of a MIP model matrix and the
structure detected in this way, respectively.

Altogether, we obtain a benchmark sample of around 1500 decompositions of
39 instances, which cover a wide range of different possible shapes. These decom-
position are used for testing our computational framework in the following section.

5 Linking Input and Output Measures

In the previous sections, we explained how the set of decompositions has been
created and solved via DWR. We now offer a complete analysis of the results
obtained by considering the link between the following output and input measures:

Output Measures. The definition of “usefulness” of a given decomposition is al-
ready an open issue. To obtain as much methodological insight as possible, we
primarily measure such a usefulness in terms of the root node dual bound of the
obtained master relaxation, being a reliable indicator on the effectiveness of the
corresponding convexification process.

Efficiency is not the primary aim of our investigation. Yet, in order to evaluate
a decomposition’s computational potential, we consider as a second usefulness
measure the computing time needed to complete the column generation process
at the root node (including the time needed to obtain the decomposition, which
is negligible). We intuitively call this the computation time of a decomposition.

Input Measures. In an effort to understand which parameters affect most the out-
put measures, we take into account the following four direct indicators: number
of blocks, percentage of linking variables, percentage of linking constraints, and
the percentage of border area. The procedure explained in Sect. 3 can produce
decompositions with different values of the direct indicators, this can be done by
explicitly fixing the number of blocks a priori or by properly changing the objec-
tive function of the graph partitioning problem. As second set of indicators we
consider the average density of the blocks and the average integrality gap of the
subproblems. These are called indirect indicators because it is not possible with
our procedure to obtain decompositions minimizing or maximizing them.

Methodology of the Analysis. In each of the following subsections we consider each of
these input measures independently, we indicate the expected behavior from theory
and we present our experimental results, highlighting an eventual correlation to
output measures.
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In particular, each subsection synthesizes the results of our experiments in two
figures, having the following structure. Each dot corresponds to one of the decom-
positions generated by the partitioning algorithm. The values on the horizontal
(vertical) axis correspond to a particular input (output) measure.

The integrality gap closed by a decomposition is computed by 1 − |OPT −

DWR|/|OPT − LP |, where OPT is the value of a best integer solution found by
CPLEX in one hour of computing time, DWR is the dual bound found by column
generation using a particular decomposition, and LP is the LP relaxation value of
the corresponding instance. On a few decompositions column generation could not
be completed within the given time limit; in these cases DWR was set to the best
Langrangian relaxation value found during column generation. We normalized the
computing time t of every decomposition of each instance h as (t − µh)/σh with
µh being the mean running time and σh being the standard deviation of running
time of all decompositions created for that specific instance. For each correlated
input-output pair, we fit a LOESS curve [6] with a span size of s = 0.75.

We further plot the different types of decompositions with different colors,
where the decompositions with no linking variables are plotted with a black dot
(•), balanced decompositions with a dark grey dot (•) and decompositions with
few linking constraints with a light grey dot (•). For every figure in the sequel, we
provide a figure disaggregated by instance in the appendix.

In the end of the analysis we propose a proxy measure, suitable for guiding
an a priori choice among several potential decompositions. This proxy measure
is used in Sect. 6, where more computationally related benchmarks are discussed
and where we compare the performances of our decompositions with CPLEX.

5.1 Direct Indicators

As sketched above, direct indicators are those that can be either chosen as input
parameters or optimized in the hypergraph partitioning algorithm.

5.1.1 Number of Blocks

We first observe the influence of the number k of blocks, that is chosen as a
parameter in our partitioning algorithms, on the output measures.

Expectation 1 As the number of blocks increases, both the integrality gap closed at

the root node and the computing time decrease.

In fact, on one hand a higher number of blocks means more (smaller) subproblems,
that can be optimized faster than a few large ones. On the other hand, more
blocks means a more fragmented convexification, that might lead to looser bounds.
We also remark that, even if we expect the master relaxation to improve as k

decreases, there is no guarantee that a simple reduction in k is useful in terms of
bound quality. In fact, different values of k give different decompositions, in which
different regions are convexified, and no a priori dominance can be established
between them. The results of our experiments are synthesized in Fig. 6.

Observation 1 The average computing time decreases as the number of blocks in-

creases.
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Fig. 6 Influence of the number k of blocks on the output measures.

Observation 2 Decompositions without linking variables usually have smallest com-

putation times among all decompositions per instance.

Observation 3 When the number of blocks is small, it is more likely to close a high

integrality gap.

This can be observed by looking at the distribution of the dots in Fig. 6, and
becomes more evident by looking at the instance-by-instance plots reported in
the appendix. Keeping the number of blocks relatively small is a key point if we
want to keep the advantage of a strong dual bound. From the experiments it is
hence also clear that we should focus on decompositions with no more than 5 or 6
blocks. On the other hand, it is important to notice that decompositions including
20 blocks exist, in which 100% of the integrality gap is closed at the root node.

This partially confirms our theoritical expectations: few blocks yield tight
bounds, but as their number increases both good and bad decompositions exist,
thus motivating the search for measures ranking good ones.

5.1.2 Percentage of Linking Variables

Second, we consider the fraction of linking variables nℓ

n in each decomposition (see
Fig. 7).

Expectation 2 As the fraction of variables in the border increases, the computing

time increases.

In fact, including variables in the border is not reducing the number of variables in
the subproblem, but is only allowing different copies of the same variable to take
different values in the subproblems. In a column generation setting, then, different
subproblems may blindly generate solutions which are found to be incompatible
at a master stage, thus slowing down the convergence of the process.

Expectation 3 As the fraction of variables in the border increases, the integrality gap

closed decreases.

As recalled in Sec 2, including variables in the border is similar to including con-
straints: due to the analogy with Lagrangian decomposition, more variables in the
border lower the potential gain by the reformulation.
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Fig. 7 Influence of the percentage of linking variables on the output measures.

Observation 4 The fraction of variables in the border and the integrality gap closed

are linked by weak negative correlation.

In fact, as the fraction of variables in the border increases, the computing time
increases, and therefore many instances run into time limit, so the integrality
gap closed decreases. Hence, our expectations are confirmed. An opposite trend
can be observed for very low fractions of variables in the border. Indeed, good
decompositions exist for some instances, that rely on including linking variables
into the border. For these instances, the single border decompositions generated
by our partitioning algorithms may be substantially worse than those with a few
linking variables, thereby worsening the average gap closed.

Observation 5 Computing times tend to get worse as the fraction of variables in the

border increases.

The expected unstable behavior is observed also in practice.

5.1.3 Percentage of Linking Constraints

Third, in Fig. 8 we take into account the fraction of linking constraints mℓ

m in each
decomposition.

Expectation 4 As the fraction of constraints in the border increases, the integrality

gap closed at the root node decreases.

The rationale is the following: when a constraint is included in a block, its corre-
sponding region of feasibility is convexified, possibly yielding tighter bounds.

At the same time, in general subproblems are MIPs, and therefore it is hard
to tell a priori the effect on computing times obtained by adding constraints.

Observation 6 As the fraction of constraints in the border increases, the integrality

gap closed at the root node decreases.

This matches our theoretical expectation.

Observation 7 Computing time is higher for very low percentages of constraints in

the border.
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Fig. 8 Influence of the percentage of linking constraints on the output measures.

Such an observation is not fully matching a modeler intuition, as when the
number of linking constraints is zero, we may have a pure block-diagonal form,
which performs perfectly in a decomposition setting. In an attempt to explain
the experimental phenomenon, we consider two factors. First, the decompositions
with very low percentages of linking constraints include those with largest per-
centage of linking variables, that according to Obs. 5 yield higher computing time.
Second, allowing a relevant percentage of constraints to stay in the border means
having more freedom in the composition of blocks. In other words, it facilitates the
partitioning algorithm to fit the remaining constraints in the best block. This ex-
planation meets also with practice: in several partitioning problems, for instance,
a natural decomposition is obtained only by assigning a relevant fraction of the
constraints to the border.

In contrast to our results in Sect. 5.1.2, where having very few linking variables
does not guarantee to provide tight bounds, having very few linking constraints
does. That is, adjusting the fraction of linking constraints experimentally offers
more control on the integrality gap closed with respect to adjusting the fraction
of linking variables.

5.1.4 Percentage of Border Area

Fourth, we investigate the effect of adjusting linking variables and linking con-
straints simultaneously, by considering the following relative border area

β =
mℓ · n+m · nℓ −mℓ · nℓ

m · n
. (8)

This is the ratio between the border “area” and the entire matrix “area,” and is
a way of encoding the intuition on visually appealing decompositions sketched in
Sect. 4: having a small border area is what a human expert usually aims to, while
trying to make a block diagonal structure appear by selectively choosing border
elements. Trivially, for a fixed number of blocks, a MIP whose constraint matrix
is in pure block diagonal form can be decomposed with border area zero.

Expectation 5 Decompositions having a reduced set of constraints and variables in

the border tend to yield tighter dual bounds.
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The rationale comes directly from Exp. 3 and 4: each constraint that appears in
the border corresponds to a constraint that is not convexified; in the same way,
each column that appears in the border requires duplicated variables and linking
constraints to be created and relaxed in a Lagrangian decomposition fashion.

From the theoretical point of view, it is hard to predict the relation between
relative border area and computing times. However, following a modeler intuition,
two extreme cases can be considered: when all the constraints and variables are
in the border, the problem becomes an LP, that can be optimized efficiently; on
the opposite, when no constraints nor variables are in the border, we are facing
the original MIP. Therefore, such an observation suggests to investigate on the
following with the results of our experiments summarized in Fig. 9:

Expectation 6 Decompositions having a reduced set of constraints and variables in

the border tend to yield higher computing times.
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Fig. 9 Influence of the relative border area on the output measures.

Observation 8 A lower relative border area correlates with a better dual bound.

As can be observed, the trend in Fig. 9 is more clear with respect to that of results
on both percentage of linking constraints (Fig. 8) and linking variables (Fig. 7).

Observation 9 Tests whose computing time is high, often correspond to decomposi-

tions having relative border area either considerably low or considerably high.

The higher percentage of slow runs with low relative border area meets Exp. 6,
and that of slow runs with considerably high relative border area meets Exp. 2 and
matches Obs. 5. Furthermore, fewer linking constraints implies more constraints
in the subproblems, and hence potentially more extreme subproblem solutions to
generate via column generation, thus yielding higher computing time.

5.2 Indirect Indicators

We also consider indirect indicators, that is, measures that cannot be reflected in
the objective function of our heuristic minimum k-way hypergraph partitioning
approach. Therefore, they are not optimized directly during the construction of a

decomposition, but only assessed a posteriori.
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5.2.1 Average Density of the Blocks

First, we investigate the influence of the density of subproblems, computed as

δi =
nzi

ni ·mi
and δ =

1

k

k
∑

i=1

δi ,

where nzi denotes the number of non-zero coefficients in Di. Each decomposition
is evaluated according to the average value δ over its blocks.

Expectation 7 Dense subproblems are more difficult to solve, thus yielding higher

computing time.

This is often observed in the behaviour of MIP solvers. Our computational results
are summarized in Fig. 10.
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Fig. 10 Influence of the average subproblem density on the output measures.

Observation 10 As the average subproblem density increases, the integrality gap closed

tends to decrease.

Observation 11 For low values of average subproblem density, as the average sub-

problem density increases, the computing time tends to decrease, while no particular

trend is observed as the average subproblem density further increases.

In order to explain this phenomenon we compared the average subproblem
density of each decomposition in our experiments with the corresponding relative
border area, see Fig. 11. We observe a strong correlation, and in fact Obs. 8 and 10
are coherent; moreover, the correlation in case of Obs. 9 and 11 is reversed, i.e.,
lower density decompositions close a large fraction of the integrality gap but take
longer to compute whereas decompositions with a lower relative border area both
tend to have good dual bounds and a lower computation time.
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Fig. 11 Correlation between relative border area and average subproblem density.

5.2.2 Average Integrality Gap of Subproblems

Finally, we analyze the relation between average integrality gap of the subprob-
lems and output measures. In order to obtain such an analysis, we considered the
MIP subproblems of each block of each decomposition independently, we set its
objective function coefficients to those in the original objective function of the
problem, we measured its LP relaxation value (LP ), and then let CPLEX run until
proven optimality (that is, in the vast majority of our experiments) or until a time
limit of 60 seconds was reached (value ILP ). The integrality gap was estimated as
|(ILP−LP )/ILP |, and for each decomposition the average among its subproblems
was computed, excluding those subproblems for which CPLEX could not find any
feasible solution within the time limit, and those having zero ILP value.

We stress that such a measure, besides being indirect in the sense discussed at
the beginning of the section, requires a potentially non-trivial MIP computation
for each subproblem, and is therefore interesting for a methodological insight only.

Theory suggests that

Expectation 8 A larger integrality gap in the subproblems may imply a larger poten-

tial for a stronger master dual bound.

This expectation has also been mentioned in the context of Lagrangean relax-
ation [17]. Trivially, a subproblem integrality gap of zero for whatever objective
function indicates that no improvement of the dual bound is possible compared to
the original LP relaxation. For the computing time, we expect the following

Expectation 9 The computing time increases as the average integrality gap in the

subproblems increases.

This is due to the fact that closing the integrality gap is the main task of any MIP
solver in tackling each subproblem. Our results are reported in Fig. 12.

Decompositions corresponding to points on the horizontal axis are actually
those tests hitting time limits. In our experiments we found the following.

Observation 12 Both integrality gap closed and computing time correlate weakly to

average subproblem integrality gap.

Future experiments may reveal the usefulness of a measure related to the sub-
problem integrality gap, perhaps by considering a more suitable definition of the
objective function.
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Fig. 12 Influence of the average integrality gap at the root node of the subproblems on the
output measures.

5.3 Evaluating and Exploiting a Proxy Measure

We remark that, when evaluating a decomposition, a strong dual bound cannot
constitute the ultimate quality measure, as this can be trivially maximized by
reformulating the whole original problem into a single subproblem (which amounts
to optimally solving the original MIP in the subproblem in a single shot).

From the analysis reported in the previous sections we drew the conclusion
that relative border area is the most appropriate proxy measure to estimate the
quality of a decomposition. In particular, it is the only measure exhibiting three
appealing features at the same time. First, the measure ranges from zero (best) to
one (worst), being zero for block-angular matrices. Second, it correlates negatively
with integrality gap closed. Third, it is eventually positively correlated also with
the time needed to compute the bound of the decompositions. In order to be more
detailed on this third feature, we present a further analysis on our results: we
rank the decompositions by relative border area, and we consider four classes of
decompositions, corresponding to the four quartiles in such a ranking; in Table 1
we report the average output measures for each quartile: the table is composed
of four rows, one of each quartile, and four columns, reporting quartile, range of
values corresponding to the quartile, average normalized integrality gap closed,
and average normalized computing time over decompositions in each quartile.

We come to the following

Observation 13 A better tradeoff between integrality gap closed and computing time

can be obtained by looking for decompositions with low relative border area.

In fact, as reported in Table 1, decompositions having relative border area in the
fourth quartile are on average worse than those in all other quartiles in terms of
both computing time and integrality gap closed.

For the remaining quartiles, decompositions having low relative border area
tend to provide higher integrality gap closed at the price of higher computing
time. Indeed, this matches Exp. 5 and 6, and supports the general intuition that
additional computational effort is needed to obtain better bounds.

In Table 2 we report, for each MIPLIB instance, the details of the DWR with
minimum relative border area among all those generated by our graph partitioning
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Quartile range norm. int. gap closed norm. cpu time

1 (0.0031,0.0546] 71.97 0.10
2 (0.0546,0.1380] 47.46 −0.07
3 (0.1380,0.3290] 29.42 −0.15
4 (0.3290,0.9360] 12.80 0.11

Table 1 Average output measures for relative border area quartiles

algorithms, as described in Sect. 4.3. Listed are: the instance features (name,
number of rows and columns), number of blocks, linking variables, and linking
constraints, maximum number of variables and constraints in a block, number
of LP problems solved during column generation and corresponding CPU time,
number of MIP subproblems solved during the column generation process and
corresponding CPU time, number of columns and extreme rays generated during
the optimization process. The table is split in two horizontal blocks, corresponding
to MIPLIB 2003 and MIPLIB 2010 instances, respectively. As can be seen, no
obvious correlation appears between the prediction given by the proxy measure
and the single features of the chosen decomposition; therefore our proxy measure
proves to be unbiased with respect to the other decomposition parameters.

Observation 14 Among those generated by our graph partitioning algorithms, a de-

composition corresponding to the best measure has either linking constraints or linking

variables, but not both, in the vast majority (36 out of 39) of the instances.

We remark that this phenomenon is not simply induced by definition (8), as a
low relative border area can also be achieved by including in the border very few
variables and constraints at the same time. That is, our proxy measure seems to
match an intuitive behavior reported in the literature: for each instance, that is
the representative of a potentially difficult combinatorial optimization problem,
Lagrangian relaxation may be more promising than Lagrangian decomposition, or
vice versa. Still, in a few cases, combining the two techniques may be promising.

Observation 15 Among those generated by our graph partitioning algorithms, a de-

composition corresponding to the best measure has no linking variables in the majority

(26 out of 39) of the instances.

This confirms another important modeler’s intuition: DWR unfolds its potential
when relaxing a few linking constraints is enough to decompose the problem in
more tractable subproblems.

6 Comparison to a State-of-the-Art MIP Solver

Finally, we sketch an answer to a very fundamental computational question: are
there generic MIP instances for which it is worthwhile to perform DWR with
an automatically generated decomposition instead of applying traditional cutting-
planes methods? The overall analysis presented in Sect. 5 motivates us to propose
the following two “automatic” algorithms.
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best decomposition features
instance features linking maximal LP MIP generated

instance cols rows blocks var cons var cons # time (s) # time (s) col rays

10teams 2025 230 9 0 95 225 15 53 0.53 468 1.69 365 0
aflow30a 842 479 2 0 28 430 230 548 40.82 1094 52.66 2097 0
aflow40b 2728 1442 10 0 39 348 179 359 55.59 3580 14.89 3490 0
fiber 1298 363 2 0 22 713 178 1168 11.7 2334 528.77 4658 0
fixnet6 878 478 2 0 14 436 235 899 2664.52 1796 173.92 3721 0
gesa2 1224 1392 2 26 0 625 696 75 0.53 148 17.14 860 0
gesa2-o 1224 1248 2 0 26 611 611 462 7.12 922 106 3191 0
glass4 322 396 2 12 0 178 212 20 0.01 37 2657.16 256 1
harp2 2993 112 10 0 39 369 9 86 0.24 850 1.34 793 0
manna81 3321 6480 2 77 0 1854 3546 896 300.23 1790 234.59 2962 0
mkc 5325 3411 2 0 31 2911 1815 201 21.43 400 84.78 1467 0
modglob 422 291 2 0 8 211 144 1385 2727.36 2768 876.17 17595 0
noswot 128 182 5 0 9 26 35 5 0 20 1.26 31 0
opt1217 769 64 4 0 16 192 12 31 0.01 120 0.06 120 0
p2756 2756 755 3 0 16 918 257 405 32.86 1212 202.09 5048 0
pp08a 240 136 8 0 8 30 16 31 0.01 160 0.46 254 10
pp08aCUTS 240 246 8 0 8 30 32 34 0 168 0.58 224 12
rout 556 291 5 0 16 111 55 20 0 95 5.9 319 0
set1ch 712 492 20 0 12 35 24 14 0.02 260 0.59 364 0
timtab1 397 171 2 13 0 206 86 22 0.03 42 244.56 320 0
timtab2 675 294 2 17 0 348 148 10 0.03 20 3271.48 228 0
tr12-30 1080 750 2 12 0 552 375 2 0 3 0.43 32 0
vpm2 378 234 2 7 0 196 117 19 0.01 36 1.04 140 0

beasleyC3 2500 1750 2 0 26 1252 862 309 2358.21 616 1242.35 5219 0
csched010 1758 351 2 1 55 823 171 102 0.81 202 1040.41 953 0
enlight13 338 169 2 25 0 196 92 35 0.05 68 1068.67 190 0
gmu-35-40 1205 424 2 0 9 432 217 18 0.04 26 0.08 30 4
m100n500k4r1 500 100 2 351 0 440 54 542 38.48 1082 48.62 2393 0
macrophage 2260 3164 2 7 0 1203 1702 8 0.03 16 3547.05 92 0
mcsched 1747 2107 5 0 32 349 415 45 0.06 220 84.24 780 0
mine-166-5 830 8429 2 0 596 416 3928 214 4.97 426 1421.13 2278 0
mine-90-10 900 6270 2 0 92 450 3090 23 0.03 44 2983.29 316 0
neos-686190 3660 3664 3 59 118 1324 1265 82 75.33 244 3330.84 1548 0
pigeon-10 490 931 2 96 40 274 477 183 18.26 364 25.85 1769 0
pw-myciel4 1059 8164 2 0 165 530 4009 59 0.12 114 27.38 146 1
ran16x16 512 288 16 0 16 32 17 25 0.01 384 0.92 475 0
reblock67 670 2523 2 0 69 335 1228 21 0.06 40 529.66 299 0
rmine6 1096 7078 2 0 354 557 3439 35 0.21 68 836.68 331 0
rococoC10-001000 3117 1293 8 0 82 447 407 160 3.36 1272 10.37 875 0

Table 2 Details of the DWR of minimum proxy measure (8), among those generated by our
graph partitioning algorithms, for the corresponding instance

DWR auto: for each instance, consider all the decompositions generated by the
graph partitioning algorithms as described in Sect. 4.3, pick one minimizing the
relative border area (8), keep the original variables in the master, including the
possible linking ones (as explained in Sect. 2), and perform a DWR of the resulting
blocks; then solve the resulting master problem by column generation.

DWR best: for each instance, consider all the decompositions generated by the
graph partitioning algorithms as described in Sect. 4.3, perform column genera-
tion on each of the resulting master problems, and keep a decomposition giving
the best dual bound.

That is, the algorithm “DWR auto” provides a benchmark for assessing the
potential of using the border area for finding decompositions yielding tight dual
bounds, whereas “DWR best” aims at assessing the potential of the overall auto-
matic DWR mechanism. Note that “DWR best” is extremely time consuming and
only meant as an assessment of the method’s potential.

As a benchmark MIP solver we use CPLEX 12.2 with full default settings, in
particular with default preprocessing and cutting planes enabled. As for DWR,
the CPLEX integrality gap closed is computed by 1−|OPT −CPLEX|/|OPT −LP |,
where OPT is the value of the best integer solution found by CPLEX in one hour
of computing time, CPLEX is the dual bound found by CPLEX in the root node,
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after preprocessing and cut generation, and LP is the LP relaxation value of the
corresponding instance.

6.1 Quality of the Dual Bound

The first set of experiments aims at assessing the quality of the bound that can
be obtained using the DWR approach. Our goal is to show that by using such an
algorithm, it is often possible to obtain a better description of the convex hull of
the full problem than that obtained by CPLEX through a cutting plane process.
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Fig. 13 Distribution of fraction of integrality gap closed for all decompositions (MIPLIB2003)
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Fig. 14 Distribution of fraction of integrality gap closed for all decompositions (MIPLIB2010)

Figs. 13 and 14 depict the distribution of fraction of integrality gap closed for
all the about 1500 decompositions (see Subsection 4.3) we tried for MIPLIB2003
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and MIPLIB2010 instances, respectively. Every dot represents one decomposition.
On two tests (instances tr12-30 and neos-686190 ), column generation could not
be completed within the time limit, and therefore the gap of the best Lagrangian
bound (potentially worse than the LP relaxation bound), obtained during the
column generation iterations, is reported [17]. One can see that a decomposition
with the respective best proxy measure (marked by a ×) most of the time leads
to a very good choice among all decompositions we tried with respect to the root
node integrality gap closed, also compared to the bound obtained by CPLEX after
the cutting plane process at the root node (marked by a #).

In Table 3 we detail, for each instance in the dataset, our results for both the
“DWR auto” and “DWR best” methods, compared to the results obtained by
CPLEX when stopped after the cutting plane process at the root node as well as the
time CPLEX needs to solve the original problem to optimality.

Listed are: the instance name, the value of an optimal solution or best solu-
tion computed by CPLEX in 1 hour (opt*), the value of the LP relaxation (LP)
and the corresponding duality gap (LP gap). Then, three vertical blocks follow,
corresponding to “DWR auto,” “DWR best,” and CPLEX, respectively. For each
we report the integrality gap, the improvement with respect to the LP relaxation
bound (a value of zero is reported if the decomposition is not able to improve over
the LP relaxation bound), the number of nodes used to attain that bound, and
the time needed to compute that bound.

The table is composed of two horizontal blocks, that refer to the 23 selected
instances of MIPLIB2003 and to the 16 selected instances of MIPLIB2010, respec-
tively. The last row of each block reports average values.

On 16 out of the 23 MIPLIB 2003 and 11 out of the 16 MIPLIB 2010 instances,
the dual bound found by our DWR approach improves on CPLEX’s root node bound
with default settings, and in four more instances the bound is the same.

On the average, whereas “DWR best” clearly outperforms CPLEX, “DWR auto”
is still competitive, experimentally supporting the meaningfulness of our proxy
measure for the quality of a decomposition.

6.2 Overall Performance Comparison

Since DWR and CPLEX produce bounds of different quality with different compu-
tational efforts, in a second set of experiments we aim at comparing the trade-off
between computing time and quality of the dual bound given by the two methods.
This is an overall index designed to measure the potential of both methods in
actually solving MIPs to optimality, and to help answering the ultimate question
of whether good dual bounds can be provided by DWR in reasonable time

We remark that, apart from the computation of bounds, the remaining ma-
chinery in branch-and-price and branch-and-cut algorithms is equivalent, as sim-
ilar preprocessing, heuristics, constraint propagation, branching techniques, etc.,
can be implemented. Also the re-optimization process in the nodes of the branch-
and-bound tree is similar, provided the same decomposition is kept along the
search tree. In fact, state of the art branch-and-price frameworks [16] keep pools
of columns, and therefore the optimization of a node is likely to start from a re-
stricted master problem containing at least the columns forming an optimal basis
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for the father node, as in standard branch-and-bound codes, and very often many
more high quality columns already generated during the optimization of siblings.

At the same time, re-implementing the techniques included in a state-of-the-art
branch-and-cut solver was beyond of the scope of this paper. Therefore, in order to
perform a comparison, we decided to consider the DWR giving best proxy measure
in “DWR auto,” and to take as a performance index the ratio between the time
required by our algorithm to obtain the dual bound at the root node, when using
such a decomposition, and the time required by CPLEX with default settings to
obtain, either at the root node or through branching, the same bound. In the
comparison we included also “DWR best.”

The results are also reported in Table 3. The last vertical block for CPLEX with
default settings shows the number of nodes and the CPU time needed to reach
the same bound as “DWR auto;” the ratio between “DWR auto” time and CPLEX

time for obtaining such a bound. Below each vertical block we report the fraction
of instances for which “DWR auto” was faster than CPLEX (< 1), within one order
of magnitude w.r.t. CPLEX (< 10) and within two orders of magnitude (< 102).

On average, CPLEX is much faster in solving the root node relaxation. At the
same time, on many instances in which good decompositions can be found, CPLEX
needs to explore many branching nodes, and to spend a high CPU time for match-
ing the bound given by “DWR auto.” Finally, it is interesting to note that in
more than half of the instances (up to 52.17% of MIPLIB2003 and up to 56.25%
of MIPLIB2010), “DWR auto” is still within a factor 102 from CPLEX, making us
optimistic that, after a suitable software engineering process, our approach would
become computationally competitive on more instances.

6.3 Performance Profiles

Finally, we compared “DWR auto” and “DWR best” to CPLEX using the methodol-
ogy of performance profiles [10]. We performed two different analyses, the first one
is based on time performance and the second one is based on bound performance,
disregarding the time needed to compute it.

The time analysis is displayed in Fig. 15(a), where we show two different com-
parisons, the first one concerns “DWR auto” and CPLEX (black lines, dashed and
solid), the second one concerns instead “DWR best” and CPLEX (grey lines, dashed
and solid). For each pair of algorithms and for each instance, we consider as a
performance index the ratio between the time needed by the “DWR” method
or CPLEX to compute the “DWR” bound (respectively “auto” or “best”) and the
smaller between the two values. Normalization is then performed with respect to
the fastest algorithm. For each value π on the horizontal axis, we report on the
vertical axis the fraction of the dataset for which the corresponding algorithm is
at most 1

π times slower than the fastest algorithm. The value on the vertical axis,
corresponding to π = 1, indicates the fraction of the instances in which the con-
sidered method is the fastest among the two considered. As far as “DWR auto”
is concerned, it outperforms CPLEX in around 8% of the instances, while “DWR
best” in around 19%. From the figure, we can also see that in around 50% of the
instances “DWR auto” is at most two orders of magnitude slower (see also discus-
sion of Table 3 in Sect. 6.2), while “DWR best” only one order of magnitude.
In Fig. 15(b), we display the second performance profile based on the bounds of
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the three methods. As a performance index we consider, for each instance and for
each method, the ratio between the bound obtained by such a method and the
best bound obtained using either “DWR auto,” “DWR best,” or CPLEX. Normal-
ization is then performed with respect to the index of the best algorithm among
the three considered. The picture reports the normalized performance index on the
horizontal axis; for each value π on the horizontal axis, we report on the vertical
axis the fraction of the dataset for which the corresponding algorithm closes at
least a fraction π of the best achieved gap, on the considered set of 39 instances.
We always assume that the LP relaxation value is available, thus the minimum
closed gap for each instance and each algorithm is set to 0. For instance, if we look
for a method which is able to close at least about 20% of the best achieved gap,
then CPLEX is the best choice. However, if we increase this requirement to about
45% both “DWR auto” and “DWR best” outperform CPLEX. Finally, in almost
70% of the cases “DWR best” provides best bound, while both CPLEX and “DWR
auto” give best bound in about 39% of the instances.
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Fig. 15 Performance profiles comparing DWR auto, DWR best and CPLEX

7 Discussion

We have performed the first systematic investigation with an automatic Dantzig-
Wolfe type reformulation of arbitrary MIPs. Even though it is clear from theory
that such a reformulation can be used to improve the dual bound, it has not
been considered a generally useful computational tool in practice. Thus, the most
unexpected outcome of our study is that already a fairly basic implementation,
combined with an automatic choice of the decomposition, is actually capable of
competing with a state-of-the-art MIP solver. For some instances the dual bound
computed by our method is so strong that, given a heuristic solution of optimal
value, optimality can be proven at the root node. Furthermore, on a relevant subset
of MIPLIB instances, we could automatically detect Dantzig-Wolfe type reformu-
lations for which the decomposition approach yields an overall better computing
behavior than a state-of-the-art branch-and-cut based general purpose solver.

The results even improve if we choose the decomposition by explicit compu-
tations, demonstrating that there is still potential. It turned out that different
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decompositions for the same instance lead to, sometimes significantly, different
dual bounds (see Figs. 13 and 14), and also to drastic differences in the com-
putation times needed to solve the resulting relaxation. Thus, out of the many
questions spawned by our work, the most important one is, both from a theoreti-
cal and a practical point of view, to characterize a good decomposition. We believe
that answers will be hard to find as they immediately relate to the very core of
computational integer programming: to better describe, in a computational and
efficient manner, the convex hull of integer feasible points. On the other hand,
approaching this important topic from a decomposition point of view may yield
new insights previously overlooked.

Our experimental setup for detecting a matrix structure certainly can be im-
proved; it is just one out of probably many conceivable approaches to come up with
a proof-of-concept. In particular, the process of generating decompositions by sim-
ply changing parameters of partitioning algorithms, and then selecting one with
best proxy measure, can give place to better and more sophisticated approaches.
Many experimental issues on the design of good proxy measures are also left open,
e.g., how the blocks’ balancing and density impact on the overall performances.

Certainly, we will see alternatives in the future. We also alert the reader that the
seeming omnipresence of arrowhead structure in MIPLIB instances (c.f. Fig. 16)
may either reproduce structures which were incorporated in the model by a hu-
man modeler, accidentally or on purpose, or simply be an artifact of the model
and algorithm we use to detect/enforce this structure. In any case, only a part of
variables and constraints describe the logic and mechanism of the problem to be
modeled. Another substantial part is present only because of “technical purposes”
and “modeling tricks.” Detecting and exploiting this information in a decomposi-
tion may lead to new insights into how a good MIP model should be formulated.

There are some possible immediate extensions concerning the implementation.
Only further experimentation can show whether the advantage in the root node
can be retained throughout the search tree (it is also conceivable that an advantage
becomes visible only further down the tree). If one is only interested in a strong
dual bound, the addition of generic cutting planes is a natural next step (see [16]).

Of course, at the moment, our work is not intended to produce a competitive
tool, but to demonstrate that the direction is promising. Even in the future, we
do not expect that decomposition techniques will become the single best option
approach to solve MIPs. However, we hope that one can soon distinguish a priori,
only based on the instance, whether it can pay to apply a decomposition like DWR
or not. Our results indicate that promising instances are more than an exception.

Taking into account the fact that state-of-the-art solvers make successful use of
generic cutting planes for about 15 years now, it is clear that outer approximations
of the integer hull have a prominent headway in experience over inner approxi-
mations. We hope to have inspired further research and experimentation with the
second option; indeed, follow-up research [14,15,24,29] is already available.

A final word is in order on what to expect in terms of measuring the quality
of a decomposition. The selection of “a good set” of cutting planes from a large
pool of available ones is a core topic in the computational cutting plane literature.
Theory suggests measures for the quality of single cutting planes, e.g., to prefer
facet-defining inequalities or deep(er) cuts etc. For selecting from a collection of
cuts, however, a theoretical argumentation is much scarcer and less-founded, and
appears only problem-specific in the literature. In that light, a general theoretical a
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priori measure of what constitutes a good Dantzig-Wolfe decomposition currently
appears to be out of reach, and we may need to fall back to computational proxies
like the one we propose.

Acknowledgments. We sincerely thank an anonymous referee for thoughtful and
motivating feedback, which led to a more meaningful experimental setup and a
much improved organization of the material.
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