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A b st r a c t

Distributed memory parallel computers offer enormous computation power, scalability 

and flexibility. However, these machines are difficult to program and this limits their 

widespread use. An important characteristic of these machines is the difference in the 

access time for data in local versus non-local memory; non-local memory accesses are 

much slower than local memory accesses. This is also a characteristic of shared memory 

machines but to a less degree.

Therefore it is essential that as far as possible, the data that needs to be accessed 

by a processor during the execution of the computation assigned to it reside in its local 

memory rather than in some other processor’s memory. Several research projects have 

concluded that proper mapping of data is key to realizing the performance potential of 

distributed memory machines. Current language design efforts such as Fortran D and 

High Performance Fortran (HPF) are based on this.

It is our thesis that for many practical codes, it is possible to derive good mappings 

through a combination of algorithms and systematic procedures. We view mapping as 

consisting of wo phases, alignment followed by distribution. For the alignment phase we 

present three constraint-based methods -  one based on a linear programming formulation 

of the problem; the second formulates the alignment problem as a constrained optimization 

problem using Lagrange multipliers; the third method uses a heuristic to decide which 

constraints to leave unsatisfied (based on the penalty of increased communication incurred 

in doing so) in order to find a mapping.

In addressing the distribution phase, we have developed two methods that integrate 

the placement of computation— loop nests in our case—with the mapping of data. For one 

distributed dimension, our approach finds the best combination of data and computation



mapping that results in low communication overhead; this is done by choosing a loop order 

that allows message vectorization. In the second method, we introduce the distribution 

preference graph and the operations on this graph allow us to integrate loop restructuring 

transformations and data mapping.

These techniques produce mappings that have been used in efficient hand-coded 

implementations of several benchmark codes.



Ch a pt e r  1

In t r o d u c t io n

Distributed memory computers (DMCs) offer great promise to scientists because of their 

scalability and potential for enormous computational power. Yet, their widespread use 

is hindered by the difficulty of parallel programming. Scientific programmers have had 

to write explicitly parallel code, and face many efficiency issues in deriving satisfactory 

performance. When a parallel program is run in a DMC, data need to be distributed among 

processors and explicit communication need to be incorporated in order to provide for the 

exchange of data among processors inherent in many programs. The processors in a DMC 

communicate by exchanging messages whenever a processor needs data which is located 

in some other processor’s memory. This exchanging of data through software is commonly 

referred to in the literature as message passing and DMCs are usually known as message 

passing computers. Deciding when to insert messages in a program, thus implementing 

data and computation partitioning, and which partitioning of data is optimal are no easy 

tasks, and much effort has gone into developing ways to relieve the programmer from this 

burden.

Data and computation partitioning are at the heart of the compilation process or 

transformation of a single processor sequential program into a Single Program Multiple 

Data (SPMD) program to be run on a distributed memory machine. The main goal 

of parallelization of code is increased performance measured by reasonable speed-ups. 

However, if code is not properly parallelized, the result could be a parallelized code 

which may be even slower than sequential code as reported by Blume and Eigenmann 

[18]. One of the main sources of this undesirable degradation in execution time is the

1
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communication among processors and the overhead incurred by this communication. This 

is covered in detail by Stone [79]. In most situations communication is unavoidable due 

to the characteristics of the code, however it can be reduced in many instances.

A key component of the compilation process is the mapping of data to processors. 

Scientific computing is the application domain we concentrate on. We concentrate on 

arrays due to the fact that it is the predominant data structure used in scientific code and on 

loops because it is in them where most of the execution time of scientific programs is spent. 

This is done by a two-step process consisting of alignment followed by distribution; see 

Figure 1.1. In the alignment phase, array elements are mapped to a template, which is an 

abstract multi-dimensional grid; this allows one to relate members of different arrays, and 

specify replication if needed. For example, in the case of arrays, this allows to specify the 

relative locations of elements of different arrays. The alignment is typically a function of 

only the data access patterns in the program, but not of the target machine architecture. In 

practice, the size of the template is much too large compared to the number of processors. 

The distribution phase partitions the template, and hence the array elements aligned to the 

template; this phase is a function of both the program and the target machine architecture.

The focus of this research is the optimization of communication among processors 

in a DMC by properly aligning data and computation, by finding good distributions, and 

by applying transformations that will allow the use of message vectorization whenever 

possible. Our work automatically finds the alignment and distribution for the program 

thus relieving the programmer from this task. Our findings will then be inserted into the 

program using the alignment and distribution declarations which are later introduced in 

Section 1.1.1.

Throughout this dissertation we will be using several metrics to model the effect of 

moving array elements from one position to another. The distance between a point p and
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Figure 1.1: Stmcture of the Data Mapping Problem, 

a point q in a A;-dimensional space using the l\ or Manhattan for is d(jp, q) = \pi — r/;|,

11 metric is realistic for a one dimensional processor array whereas the l2 metric is realistic 

for a grid of processors with nearest neighbor connections [31]. Other metrics which are 

also used in the literature are the I<*, and the Hamming metrics which are realistic for a grid 

of processors with connections to their nearest neighbors and to their diagonal neighbors 

and for hypercubes, respectively [31].

Section 1.1 of this chapter presents the scope of our research. In Section 1.2 an 

overview of the most recent and important research, as it relates to ours, is given. The rest 

of this dissertation is organized as outlined below. Chapters 2, 3, and 4 relate to the align

ment problem and they present solutions using a Linear Programming approach, a method 

using Lagrange Multipliers, and a method where the solution for over-constrained systems

and using the l2 or Euclidean metric it is d(p, q) = (pt — pi)2, where 1 <  i < k. The
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is obtained by relaxing some constraint(s), respectively. Chapter 5 presents a method to 

find distributions using matrices along with ways to reduce communication when this is 

unavoidable and Chapter 6  presents a method using a novel graph-based framework. Fi

nally, Chapter 7 presents our conclusions, and summarizes our contributions and presents 

ideas for future research.

1.1 S c o p e  o f  O u r  R e s e a r c h

As mentioned earlier, the focus of our current research is the optimization of the commu

nication among processors by properly partitioning the data and computation. It includes 

not only the alignment problem, but also the distribution problem (as shown in Figure 1.1) 

and program transformations. This latter part is not included in the figure mentioned 

above. In this chapter we provide an overview of our research.

1.1.1 A l ig n m e n t  O v e r v ie w

Alignment in data parallel programs, as illustrated in Figure 1.1, can take the form of static 

alignment, dynamic alignment, and replication of arrays. Static alignment refers to the 

alignment which is determined at compile time and dynamic alignment to the alignment 

determined at runtime. Both static and dynamic alignment can be further classified 

as axis, stride and reversal, and offset alignment. Static alignment is specified in the 

High Performance Fortran (HPF) standard using the ALIGN declaration, whereas dynamic 

alignment is specified through the executable statement REALIGN [41]. Similarly, static 

distribution is accomplished through the DISTRIBUTE declaration and refers to compile 

time distribution, and dynamic distribution via the REDISTRIBUTE executable statement 

at runtime.

It is clear by now why we need to align and distribute the arrays that are used in 

a data parallel program. But where does the need for realignment and redistribution



comes from? The answer to this question is simple: It all comes from the change in 

data access patterns in programs. Some programs may access a particular array in one 

fashion during the execution of a loop nest and then access the same array in a different 

fashion. For example, we may have a loop inside which elements of an array X  are 

computed as functions of the elements of an array Y  such as X\i] =  f (Y[i}); we may 

then have some computation performed on X  and then another loop with an instruction 

Ar [i] =  g(Y[2i  +  5]) as shown below. The notation above indicates that X[i] is assigned 

a copy of some function /  or g of some element of array Y.

D O  i =  1 , N  
X[i] =  Y[i\ 

E N D D O  
D O i  =  \ , N

X[i] =  Y[2i + 5] 
E N D D O

For the first loop it is advantageous to align X  and Y  identically, but the second loop 

dictates a different alignment. In order to reduce communication, array Y  needs to be 

realigned before the execution of the second loop.

A common case in scientific codes involving multidimensional arrays requires trans

position of one of the arrays, e.g.

DO * =  1, JV
■X[i, j] = Y[i, j]  

ENDDO 
DO i = I, N

X [ i , j ] =  Y[ j , i ] 
ENDDO

In this case array Y  needs to be transposed between the loops. A redistribution may also 

arise, for example, because the programmer decided that it was better to distribute an



array in a certain manner if the number of processors that were available was greater than 

or equal to some number and to distribute it in another manner if it was otherwise [80].

A program may also have a need for replication of arrays if doing so will result in 

a reduction of communication among processors or just simply because the programmer 

has specified it. For example, scalars and small read only arrays may be replicated onto 

the processors and, in so doing, completely eliminate the communication that could have 

arisen because a processor needed elements owned by some other processor. Also, we 

may have to replicate a one-dimensional array onto a multidimensional array for reasons 

similar to the ones previously stated. Consider the following code:

D O i =  1 , N
DO j  =  1, M

X [ i , j } = Y [ i , j } * Z [ i \
ENDDO

ENDDO

In the above piece of code the one-dimensional read-only array Z  could be replicated such 

that each processor owns a copy and thus can perform its computation without having to 

communicate, which would be the case if Z  is not replicated properly. In HPF terminology, 

we could replicate Z  along the rows or columns of a two-dimensional template to which 

both arrays X  and Y  are aligned with the result that each processor owning an element of 

X  and Y  will also own the entire array Z.

1 .1 .2  D is t r ib u t io n  O v e r v ie w

The distribution phase of the data mapping problem can be defined as the phase where the 

abstract template, and thus all the arrays aligned to it, are mapped onto the physical pro

cessors. This phase comes after the data structures have been aligned to the template. As 

with the alignment phase, the distribution phase can be subdivided into static distribution 

and dynamic distribution.
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The most commonly used distributions, which are the only ones currently available in 

the High Performance Fortran (HPF) proposed standard [41], are the cyclic, cyclic(size), 

block, and block(size) distributions, where size is a parameter which specifies the number 

of data items from a template to be assigned to a processor. The cyclic distribution assigns 

one element to each processor in turn until all the processors assigned to that dimension of 

the template are exhausted, it then assigns a new element to each processor, and continues 

until all the elements on that dimension of the template are assigned. As explained by 

Gupta and Banerjee [33], this distribution is of special importance when load balancing 

needs to be achieved in the presence of iteration spaces where the lower or upper bound 

of an iteration variable is a function of an outer iteration variable, e.g. triangular iteration 

spaces. On the other hand, this type of distribution is not the best choice when there is a lot 

of nearest neighbor communication among processors, in which case a block distribution 

would be preferred [33]. See Figure 1.2 for examples of cyclic distributions and the code 

shown below for a triangular iteration space example. Note that the lower bound for loop 

j  is an affine function of the outer loop index variable i.

DO i = I, N
DO j  = i , N

ENDDO
ENDDO

The cyclic(size) distribution provides the programmer with the ability of specifying the 

number of elements which the compiler should assign to each processor in a cyclic manner. 

Thus, cyclic(l) produces the same effect as cyclic.

The block distribution assigns a number of elements equal to the ceiling of the number 

of elements of the array in a particular dimension divided by the number of processors 

available for that dimension. Finally, the block(size) distribution assigns a programmer’s
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P21 P22 P21 P22 P21 P22 P21 P22 P21 P22 P21 P22
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(with 2 processors on 
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1 1 
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1 1 
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Figure 1.2: Cyclic and Cyclic(size) Distribution Examples.
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BLOCK PI
1 1

P2 
1 1

P3
1 1

P4
1 1

BLOCK(4) PI
_L_

P2
_J_

P3

BLOCK(4), BLOCK

(with 2 processors on 

first dimension and 4 

on the second)
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1 1 

P12

1 1 
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1 1 

P14
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1 1

P22

1 1
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1 1
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1 1

BLOCK(4), BLOCK
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on the second)

1 1 1 

P ll

1 1 1 

P12

1 1 1 

P13

P21

1 1 1

P22 

1 1 1

P23

1 1 1

Figure 1.3: Block and Block(size) Distribution Examples.
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specified number of elements to each processor. Examples are given in Figure 1.3. 

Note that both the block and the block(size) distributions can also be obtained from the 

cyclic(size) distribution. Block distributions are especially suited for rectangular iteration 

spaces and nearest neighbor (shift or offset) communication [33].

Skewed distributions are a more general class of distributions from which row, column, 

diagonal, parallelogram, etc. distributions could be derived. Both row and column 

distributions are one-dimensional distributions which can be obtained by skewing one 

dimension by a factor of zero with respect to another dimension. This factor has a 

non-zero value for diagonal distributions. These distributions are also referred to in 

the literature as hyperplanes. Skewed distributions, however general, are not currently 

supported by HPF [41].

1.2  B a c k g r o u n d  a n d  R e l a t e d  W o r k

The component alignment problem has been proven to be NP-complete by Li and Chen 

[55]. Most of the effort in this research area is very recent. We review the work of several 

researchers on the problem and discuss how it relates to our work.

Ramanujam and Sadayappan [6 8 ], present a technique which applies to one fully 

parallel loop nest at a time. Only array data partitions defined by a family of parallel 

hyperplanes are considered. Communication-free data partitioning is the main subject 

in Ramanujam and Sadayappan [6 8 ]. However, a formulation is given for minimizing 

communication while balancing the workload, which is used as a constraint, among pro

cessors when communication-free partitioning is not possible. The work by Ramanujam 

and Sadayappan [6 8 ] is architecture-independent and assumes the owner-computes rule. 

The proposed alignment and the functions used are more general than those in the High 

Performance Fortran (HPF) standard [41], where at most one index variable per subscript
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expression is allowed. To illustrate the general idea behind the work by Ramanujam and 

Sadayappan [6 8 ] consider the following assignment statement where A,  and B  are two 

2 -dimensional arrays

B[fi{ i , j ) ,gi ( i , j ) ]  <- A[fr( i , j ) , g r(i,j)].

Assume that the assignment statement above is located inside a loop nest of depth 2 with 

i as the outermost loop index variable, j  as the innermost one, and that the loop bounds 

are constant; also assume that fi,  f T, gi, and gr are affine functions of i, and j .  We can 

write the above functions as

i” = f i ( h j )  = bui +  bi2j  + bw

j  = 9 i(h j)  — bui +  b22j +  ^20

* =  f r ( h j )  = °'ll* +  a \2 j  +  &10

j  ~  !Jr(hj) =  tt21* +  0*22 j  +  «20

The subscript functions for array B  define a family of lines given by ax'  +  f3j" = c and 

those for array A  define lines given by a ' i  +  0  j '  — c . From these equations we obtain 

the following condition for array B

i(b\\a  +  621/3) +  .7(6120; +  622/?) — c — b\oa — 620/?,

and the following condition for array A

i(au a  +  0.21/3') +  j (a i2a  +  a22P') = c -  a l0a  -  a20/3'.
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For communication-free partitioning, there must be a solution to the system of equations 

above, shown below in matrix form, where at most one of a  and /? is zero, and at most 

one of a  and 0  is zero.

a 11 a2i 0

a,\2 a 22 0

-a io —fl2o 1

Consider the following loop:

DO i = Ibi, ubi
DO j  =  Ibj, ubj

A  [i,j] = f ( A [ i , j ] , B [ i -  1 , j ] , B [ i , j -  1]) 
ENDDO 

ENDDO

1
a b\\ b2\ 0 a

0 — b\2 ^22 0 P
tc —bl0 —620 1 c

where Ibi, ubi, Ibj, and ubj are the lower and upper loop bounds for loops i, and j .  These 

lower and upper loop bounds are assumed to be constant values, i.e. they are known at 

compile time. Note that there are two distinct accesses to array B.  From the A[i,j]  term 

on the rhs we have

1 0  0 a a

0  1 0 P — P

1---
-- 0 0 1 c c

from this system of equations we obtain a  = a, /3 = j3, c = c. Similarly, from 

B[i — 1, j] we obtain the following system of equations:

1 0  0
1

a a

0  1 0 0 = P

1 0  1
t

c c



which yields a  =  a, 0  — /?, a  + c = c. From this last equation we obtain 

c = c — a  . From B[i, j  — 1] we obtain the system of equations shown below:

1 0  0
/

a a

0  1 0 0 — P

0  1 1
I

c c

which yields the following equations a  =  a, 0  = [3, c =  c—/3. For communication- 

free data partitioning, the system of equations shown above must have a solution, thus we 

find the solution a  = a  = 0  — /3 =  1, i.e. both arrays A  and B  should be partitioned into 

diagonals. Note that since c =  c — 1 the corresponding partition for array B  will be one 

line below that for array A. If the only solution had been a  = a  = (3 = 0  — 0, then no 

communication-free data partitioning would be possible other than mapping everything 

to just one processor, i.e. the trivial solution.

In our work we deal with alignment for both data and computation and we do not 

assume the owner-computes rule.

Huang and Sadayappan [45] focus on partitions of iterations and data arrays that 

eliminate data communication and considers partitions of iteration and data spaces along 

sets of hyperplanes. Since data elements are not to be accessed by different processors, 

even read-only data cannot be shared. All iterations belonging to an iteration hyperplane 

and all the data belonging to a data hyperplane are assigned to one processor, thus the 

owner-computes rule is implicit. A processor will execute iterations from the iteration 

hyperplanes which are assigned to it and in so doing it will access data from its assigned 

data hyperplanes.

The article presents no way of dealing with cases when communication-free parti

tioning, while maintaining parallelism, is not possible. It begins by presenting solutions
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for a single hyperplane partitioning for each iteration and data space and moves on to 

multiple (double) hyperplanes per space at which time they propose a heuristic. Huang 

and Sadayappan [45] derive necessary and sufficient conditions for communication-free 

hyperplane partitioning of both data and computation for fully parallel loop nests in the 

absence of flow and anti-dependences. Flow and anti-dependences are treated elsewhere 

and a list of articles which treat this subject is given later in this work. For communication- 

free single hyperplane partitioning of the iteration and data spaces the following must hold 

for an access function in the form of A j k(I) +  a1- k, which accesses the k-th reference to 

the j-th data array in the i-th nested loop, where I  is used to denote the iteration vector, 

H  and G are row vectors containing the iteration and data hyperplane coefficients (which 

are rational numbers), respectively, and a  is nonzero.

1. G j \A )hk{ =  Gj2A j2M

2. Gj(ilj k{ =  G3aljki

3. Hi = a)GjA) tl

4. a^\a f2 = a ^ a f i

5. a ^ Gj i i a ^ j  -  afj ,) -  af2Gj2(af2<] -  af2 I)

An example which captures the essence of their work for the case of multiple arrays, 

multiple references, with single hyperplane partitioning is shown below for the same loop 

used previously, i.e.

DO i =  Ibi, uh
DO j  =  Ibj, ubj

A[i, j] =  f (A[ i , j } , B[ i  -  1 , j ] , B [ i , j -  1])
ENDDO

ENDDO
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Here we find

A, =
1  0

1

0
1

II

1  0

1

O

r

, d \  — )  0-2 —

0  1

1

0
•

0  1

-------
j

O

1
1 0 - 1 1 0 0

B x =
0  1

A  =
0

, b 2 =
0  1

j h  —
- 1

from which, by applying the conditions stated previously, we get

G, A[ — A i  a\ — a,2 9a \ 9a2
0 0 0 

0 0 0
0 0 0

and

Gt B\ — B 2 b\ — &2 9b \ 9b2
0 0 - 1

0  0  1
0 0 0

From the last equation we find that 9b\ =  9 b2 - The other set of equations is found from

G a G b
A\

- B x
9a \ 9a2 9 b 1 9b2

1 0

0  1

-1 0

0  - 1

0  0

which yields qa\ — 9bi, and qai = 9B2 - Therefore, we can choose
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which is the same result we. obtained using the method in Ramanujam and Sadayappan 

[6 8 ]. Additionally,

H  — qlaGaA i =  l l

for a  a — 1.

The work in Huang and Sadayappan [45] does not assume anything about the archi

tecture of the machine, and implicitly assumes the owner-computes rule. As mentioned 

earlier, no attempt is made to deal with the problem when communication is unavoidable. 

The alignment obtained and the access functions allowed are more general than what is 

allowed in the current HPF standard [41].

In our work we are also interested in obtaining communication-free data and com

putation alignment, but we do not assume the owner-computes rule; in addition, rather 

than stopping when zero communication is impossible, we use a method for reducing 

the overall communication when communication is unavoidable. For example, consider 

a loop where all the array elements on the rhs of the statement are in processors which 

are different from the processor which owns the Ihs element. In the work by Huang and 

Sadayappan [45], because communication is unavoidable, the computation would have to 

be sequentialized even though it may be possible to parallelize the loop. However, our 

method finds the alignment that would minimize communication in such a way that the 

final computation is carried out at the processor at which communication is found to be 

minimum and then this processor sends the final result to the owner of the Ihs element.

Gilbert and Schreiber [31], propose a method which considers only one expression at 

a time. The minimum cost of computing an arbitrary expression is found for architectures 

with robustness, e.g. hypercubes, linear arrays, meshes, etc. on which realistic metrics 

could be used. As Gilbert and Schreiber [31] explain, a given metric describes the cost 

of moving an array from one position to another within a machine. For example the l\
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(Manhattan), I2 (Euclidean), and Hamming metrics are realistic for a one dimensional 

processor array, a grid of processors with connections to their nearest neighbors, a grid of 

processors with connections to their nearest neighbors and their diagonal neighbors, and 

for hypercubes, respectively. In the l\ or Manhattan metric the distance d from a point x  

to a point y  on a k-dimensional space is given by

d(x , y) = Y ,  I Xi - V i \ ,  1 < i < k
i

whereas in the I<*, metric we have that

d(x, y)  =  maxi  |.x, — 2/*l > * <  * <

The cost of the expression is evaluated by embedding its rooted binary tree onto the 

architecture and then finding the minimum cost of evaluating it using an specific metric. 

Subexpressions needed to evaluate an expression are in turn evaluated where doing so is 

cheapest, i.e. at the closest processors among a set of processors at which the evaluation 

of the subexpression is possible, to the processor which will evaluate the expression. The 

authors do not assume the owner-computes rule. As an example of what is presented by 

Gilbert and Schreiber [31] we have in Figure 1.4(a) four arrays to be combined in the 

expression (w © x)  <g> (y © z), where ©, ©, and © are array operators. Each point in 

Figure 1.4 is a processor and so we could think of a grid of processors as the architecture 

which is used. In Figure 1.4(b) we have the result of applying this method to the expression 

above. Region A in Figure 1.4(b) represents the set of processors that should evaluate 

w © x,  i.e. the set of processors for which the cost of evaluating w © x  is minimal. 

Similarly, region B represents the set of processors that should evaluate subexpression 

y O z ,  and region C the set of processors that should evaluate the final expression, i.e. the
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<h>

Figure 1.4: Example from Gilbert and Schreiber [31].

root. Assume that processor p in region C is chosen to evaluate the final expression among 

all processors that can evaluate it. Then the processor in A which is closest to processor 

p is chosen to evaluate w  © x, and the processor in B which is closest to processor p is 

chosen to evaluate y © z. They both send their partial results to p which then evaluates 

the final expression.

Gilbert and Schreiber [31] use an approach where the processors at which the expres

sion under consideration, as well as its subexpressions, should be evaluated to minimize 

cost are found. The article does not deal with neither data, nor computation decomposi

tions. The work pertaining to a computation is performed by several processors. The work 

by Gilbert and Schreiber [31] is different to our work in that we consider all statements 

within a loop nest, rather than just one statement at a time. They relax the owner-computes 

rule and use the ^-metric, which is in this context, robust and realistic for a grid of proces

sors with nearest neighbor connections. We are concerned with partitioning of both data 

and computation, vectorization of messages, and mapping transformations to machine 

communication primitives. We also relax the owner-computes rule, but we assume that 

the work performed during one iteration is performed by only one processor.
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Figure 1.5: Component Affinity Graph (CAG) Partitioned by Classes of Dimensions.

Gupta and Banerjee [33], present a method restricted to partitioning of arrays, i.e. no 

computation partitioning. In their method Gupta and Banerjee select important segments 

of code to determine distribution of various arrays based on some constraints. Quality 

measures are used to choose among contradicting constraints. These quality measures may 

require user intervention. The compiler tries to combine constraints for each array in a 

consistent manner to minimize overall execution time and the entire program is considered. 

Small arrays are assumed to be replicated on all processors. The distribution of arrays 

is by rows, columns, or blocks. This work uses heuristic algorithms to determine the 

alignment of dimensions, i.e. component alignment, of various arrays since the problem 

has been shown to be NP-complete. The owner-computes rule is assumed and issues 

concerning the best way to communicate messages among processors, such as aggregate 

communication introduced in the work by Tseng [80], are dealt with. Communication 

costs are determined by Gupta and Banerjee [33] after identifying the pairs of dimensions 

that should be aligned. Consideration is given to when it would be best to replicate a 

dimension rather that to distribute it.

The idea is that the algorithm will build the Component Affinity Graph (CAG) devel

oped by Li and Chen [55], as shown in Figure 1.5, and decide to align the first dimension 

of each of the arrays and also the second dimension since it would be too costly to do 

otherwise. That is, the cheapest way to partition the node set into D = 2 disjoint subsets
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is by grouping A\,  and B i into one subset, and A 2 and B 2 into another subset, where D 

is the dimensionality of the arrays. In this way the total weight of the edges going from 

one subset to the other is zero. The cost of choosing a cyclic distribution should make it 

favorable for the algorithm to choose a contiguous distribution for both dimensions. The 

alignment done is in terms of which dimensions should be aligned but it does not calculate 

how to best aligned them.

The nodes of the CAG represent array dimensions. An edge is added between two 

nodes for every constraint in the alignment of two dimensions. The weight of the edge is 

equal to the quality measure of the constraint.

The work by Gupta and Banerjee [33] uses the owner-computes rule, requires user 

intervention, and does not attempt to compute alignments beyond alignment of dimensions. 

In our work we address both data and computation alignment, relaxing the owner-computes 

rule. We address cases of axis alignment, stride and reversal alignments, and offset 

alignment. We do agree in that small arrays, as scalars, should be replicated and also in 

optimizing the communication by moving it outside the innermost loop whenever possible.

Bau et al. [14] use elementary matrix methods to determine communication-free 

alignment of code and data. They also deal with the problem of replicating read-only 

data to eliminate communication. They incorporate data dependences in their proposed 

solution to the problem, but the owner-computes rule is assumed. Replication of data is 

also incorporated into their proposed solution. This method will be discussed in detail in 

Chapter 4.

Amarasinghe et al. [5], show how to find partitions for doall and doacross parallelism 

and, in order to minimize communication across loop nests, they use a greedy algorithm 

that tries to avoid the largest amounts of potential communication. They give examples



21

of how to obtain parallelism by incurring some communication when this is the only way 

to run in parallel.

Chatterjee et al. [23] and [24] provide an algorithm that obtains alignments which 

are more general that the owner-computes rule by decomposing alignment functions into 

several components. Chatterjee [23] et al. investigate the problem of evaluating Fortran 90 

style array expressions on massively parallel distributed-memory machines. They present 

algorithms based on dynamic programming. There are a number of other researchers who 

have also made contributions to this problem. Kim and Wolfe [50] show how to find and 

operate on the communication pattern matrix from user-aligned references. Our approach 

generates the alignment of data and computation and frees the user from this task. Li 

and Pingali [56] start with user specified data distributions and develop a systematic loop 

transformation strategy identified by them as access normalization which restructures 

loop nests to exploit locality and block transfers whenever possible. Although we are 

also interested in maintaining locality our approach and theirs are different. We develop 

the data and computation distributions based on our findings, the user does not have to 

specify them.

O’Boyle [61] proposed an automatic data partition algorithm based on the analysis of 

four distinct factors. We concur with him in his view that automatic data partitioning is 

possible and that it must be considered in the context of the whole compilation process 

rather than be left to the programmer. He does not consider partitioning of computation 

along with that of data and he is not concerned with finding the alignment that will 

minimize communication as we are in our work. Wakatani and Wolfe [81] address the 

problem of minimizing communication overhead but from a different context than ours. 

They are concerned with the communication arising from the redistribution of an array 

and proposed a technique called strip mining redistribution. They are not concerned with
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automatically generating the alignments as we are in order to free the programmer from 

this task and achieve minimum communication while preserving parallelism.

Chatterjee et al. [20] and Sheffer et al. [76] deal with determining both static and 

dynamic distributions. They use the Alignment-Distribution Graph (ADG) whose nodes 

represent program operations, the ports in the nodes represent array object manipulated by 

the program, and the edges connect array definitions to their respective uses. The ADG is 

a directed edge-weighed graph although it is used as an undirected graph. Communication 

occurs when the alignment or distribution at the end points of an edge is different. The 

completion time of a program is modeled as the sum of the cost over all the nodes 

(which accounts for computation and realignment) plus the sum over all the edges of the 

redistribution time (which takes into account the cost per data item of all-to-all personalized 

communication, the total data volume, and the discrete distance between distributions).

Ayguade et al.’s [8 ] main effort is directed toward intra-procedural data mappings. 

Candidate distributions are used to build a search space from which to determine, based 

on profitability analyses, the points at which to realign or redistribute the arrays in order to 

improve the performance by reducing the total data movement. The Component Affinity 

Graph (CAG) of Li and Chen [55] is used to determine the best local distribution for 

a particular phase of the code. All the arrays in a phase are distributed identically. 

Control flow information is used for phase sequencing identification. An intra-procedural 

remapping algorithm is provided.

Garcia et al. [30] present an approach to automatically perform static distribution us

ing a constraint based model on the Communication-Parallelism Graph (CPG). The CPG 

contains edges representing both communication and parallelization constraints. The 

constraints are formulated and solved using a linear 0-1 integer programming model and 

solver. They obtain solution for one-dimensional array distributions, i.e. only one dimen
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sion of the arrays is distributed, and use an iterative approach for the multi-dimensional 

problem.

Kremer [52] proves the dynamic remapping problem NP-complete. Kremer et al. [53] 

and Kremer [51] consider the profitability of dynamic remapping and use an interactive 

tool for automatic data layout, respectively.

Kennedy and Kremer [48, 49] deal with dynamic remapping in Fortran D [80] and 

HPF [41]. The work by Kennedy and Kremer propose a way to solve the NP-complete 

inter-dimensional alignment problem [52] using a state-of-the-art general purpose integer 

programming solver [49]. Thus Kennedy and Kremer [49] formulate the inter-dimensional 

alignment problem as a 0-1 integer programming problem. The same is done by Bixby et 

al. [17].

Palermo and Banerjee [63] deal with dynamic partitioning by building the Commu

nication Graph. In this graph the nodes correspond to statements in the program and the 

edges are flow dependences between the statements. The weight on these edges reflect 

communication. Maximal cuts are used to remove largest communication constraints 

and recursively divide the graph or subgraphs until chunks of code (phases) that should 

share the same partitioning schemes are grouped together. Thus remapping may be in

serted between phases and not within a particular phase to reduce communication between 

phases.

Although we do not intend to go over all the issues related to parallelizing compilers 

in this work, we do believe that providing a good reference list will help those unfamiliar 

with the literature coverage on this subject. On the general theory of dependence analysis 

and vectorization the reader is referred to Padua and Wolfe [62], Wolf and Lam [82], 

Wolfe [83, 84, 85, 8 6 , 87, 8 8 , 89], Banerjee [10, 11, 12, 13], Goff [32], Maydan et al. 

[59], Allen et al. [3], Allen and Kennedy [2, 4], Cytron [26], Moldovan and Fortes [60],
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Jrigoin and Triolet [46], Ramanujam and Sadayappan [69], Zima and Chapman [91], 

Blume and Eigenmann [18]. For cache and locality issues Gannon et al. [29], Gallivan 

et al. [28], Anderson and Lam [6 ], Fang and Lu [27], For a good coverage of number 

theory the books by Rosen [73], and by Zima and Chapman [91]. In the articles by 

Chatterjee et al. [21, 24], and by Stichnoth [78] the reader can find an introduction to the 

issues related with the assignment of array elements to the local memory of processors 

and how these are accessed. Alignment is treated by Chatterjee et al. [21, 22, 24]. Parallel 

machines and algorithms are covered in the books by Quinn [6 6 ], JaJa [47], and Stone

[79]. High Performance Fortran and related issues are covered in [41], Hiranandani et al. 

[42, 43, 44]. Communication-free compiling is the main topic of Huang and Sadayappan 

[45], Ramanujam and Sadayappan [6 8 ], and Fang and Lu [27] while data-flow analysis 

is treated in the books by Aho et al. [1], Parsons [64], and the article by Maydan et al. 

[58]. On inter procedural analysis issues the reader is referred to Aho et al. [1], Hall 

et al. [35, 37, 38], Hall [36], Hall and Kennedy [39], Callahan et al. [19], Havlak and 

Kennedy [40], Richardson and Ganapathi [71, 72], Shah [75], Cooper et al. [25], and 

Sebesta [74], Finally, compiling for distributed memory machines is the topic of Tseng

[80], Hiranandani et al. [43, 44], Bal et al. [9], Zima and Chapman [92], Gupta et al. [34].



C h a pter  2

U sin g  L in e a r  Pr o g r a m m in g  to  S olve  th e  
A l ig n m e n t  Pr o blem

In this chapter we present solutions to the alignment problem by first modeling it as a 

general linear programming (LP) problem and then using an LP tool to solve it. Our 

method will determine a non-trivial communication-free solution if it exists. Otherwise, 

our method will determine a solution that minimizes communication. The problem is mod

eled using the Manhattan or l\ metric. Solutions are presented for the offset alignment 

problem along with some cases of the axis and stride alignment problems. Results are 

included for several benchmarks including: Jacobi, Alternate-Direction-Implicit (ADI), 

Disper, Livermore 18, Livermore 23, and Shallow. This chapter is organized as follows: 

Section 2.1 presents the stride and reversal alignment and how to solve a class of these 

problems using Linear Programming techniques. Section 2.2 formulates the offset align

ment problem, shows how to represent and solve this problem as a linear programming 

problem, and solutions to some real life problems. In Section 2.3 a class of the axis 

alignment problem and its solution are presented. Section 2.4 deals with replication 

alignment. Section 2.5 talks about the type of solutions we will obtain using the Linear 

Programming approach. Section 2.6 presents other work in this subject and Section 2.7 a 

chapter summary.

2 .1  S t r id e  a n d  R e v e r s a l  A l ig n m e n t

When the coefficients of the loop index variables in the subscript expressions of the array 

references in a program are greater than unity, we have what has been termed as stride

25
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alignment. If any of these coefficients is negative, then it is called reversal alignment. 

Reversal alignment corresponds to mapping the reflection of the array onto the template 

Tseng [80], Stride alignment is generated by statements similar to the following

ALIGN X[i\ WITH T l [ a x i +  fix]

where a x  is a positive number, and (3X can be any number. A multidimensional array 

example is given in the statement

ALIGN Y[i, j ] WITH T2[aYli + p Yl, a YJ  +  p Yl).

An example of reversal alignment is shown in the following statement

ALIGN Y[i] WITH T 3[-i].

Consider the following loop, where array Y  is not replicated onto the available pro

cessors:

D O i =  1 , N
X[2i  -  1] =  Y[3i -  1] +  Y[3i] + Y[3i +  1]

ENDDO.

Figures 2.1 and 2.2 show two ways of aligning arrays X  and Y.  These alignments were 

found by inspection. With the alignment shown in Figure 2.1, each processor computing 

an iteration will need an element of Y  which is held by the processor to its left, assuming 

a linear array and a block distribution with block size equal to 3, except of course for the 

processor at the leftmost position.

Using the owner-computes rule we can obtain the alignment shown in Figure 2.2. 

This would require that each processor send two elements to the processor on its left 

(except for the last processor) assuming the same configuration and distribution as before 

(see Figure 2.2). Note that there are infinitely many ways to align the arrays in the
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ALIGN X (i) WITH T(3i+4)

ALIGN Y(i) WITH T(2i+1)

ALIGN i WITH T(6i+1)
DO i =  1, N

X (2i-1) = Y (3i-1) + Y(3i) + Y(3i+1) 

ENDDO

X

T

Y

Figure 2.1: Relative Alignment of Arrays X  and Y  with Respect to Template T  Using 
Computation Alignment.
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ALIGN X (i) WITH T(3i+1)

ALIGN Y (i) WITH T (2 i+ 1)

DO i =  1, N

X (2i-1) =  Y (3i-1) +  Y (3i) +  Y (3i+1) 

ENDDO

X

T

Y

Figure 2.2: Relative Alignment of Arrays X  and Y  with Respect to Template T  without 
Using Computation Alignment.

problem above. We are, however, concerned with determining the one that results in 

the least interprocessor communication and this is the reason why it is important to relax 

the owner-computes rule. If performing the computation at some processor will result in 

the least communication, then that processor should indeed be the one carrying out the 

computation regardless of whether or not it owns the Ihs element.

We will now develop a formulation for the stride alignment problem as a general linear 

programming (LP) problem and show how to use an LP tool to solve it. Later on we 

will use this formulation to derive the offset alignment formulation. This is because the 

offset alignment case can be viewed as an special case of the stride alignment problem. 

Consider the following piece of code where the arrays X  and Y  (which are not replicated)
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are aligned to a template T  as specified above and a x , f i x , ay , Py , « /, and Pi are to be 

determined.

ALIGN X[i} WITH T[ax i +  Px]
ALIGN Y[i] WITH T[aYi +  PY\
ALIGN i WITH T[aji  + Pi]
DO i = \ , N

ŝT[diz +  &i] =  ^ [c ii -j- d\] +  Y[c2i +  d2] +  • • • 4- U[cr 'i +  dr]
ENDDO

Consider iteration i only. Since we are concerned with alignment, we assume as many 

processors as needed. We want to minimize the distance from the processor(s) holding 

the elements of arrays X  and Y  that are needed to perform the computation of the element 

on the left hand side, to the processor which will be performing the computation during 

iteration i. Using the alignment specified above we find that the processor which holds 

the element on the Ihs is processor a x (aii +  b\) +  (3X . Similarly, the processor holding 

the first term of array Y  is processor a Y {c\i +  d\) +  /? y , the one holding the second term 

is a Y (c2i +  d2) +  (dY, and so on. Thus the distance between the processor which holds the 

Ihs element and the processor which performs the computation during iteration i is given 

by

I[ayY(fli'i +  &i) +  Px\ ~  [a/'i +  Pi]\ ■

Similarly we find the distance from the processor(s) holding each one of the elements on 

the right hand side to be

|[ay(c/i +  dj) +  PY] -  [ap + Pi]\, 1 <  j  < r.

Combining all the terms shown in these two expressions we find the sum of the 

distances of each processor holding an element of X  and each processor holding and 

element of Y  from the processor which performs the computation during iteration i as
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follows:

r

|(o:x(a i* +  b\) +  Px) — («/* +  Pi) | +  X  \aY (CP  +  di) +  Py ~  (a i ‘l +  Pi) I ■
j=i

We now include all the iterations to come up with the following equation:

N

We can generalize the above expression to the case when we have an arbitrary number 

I of loop nests, an arbitrary number w of statements over the various loop nests (w'J 

is the number of statements in loop nest g), and q is the total number of arrays in the 

program which are actually used. In this way we can obtain a general expression for 

the minimization of the total distance over the entire program. Note that only the arrays 

which are actually used in the program are considered here.

total distance =  X  \ (a x(a-\i + M  + Px) ~ («/* + Pi)I
i =  1

r N

+ X  X  \a y  (c/* ^  dj) +  Py  — (otii +  Pi) | . ( 2 . 1)

We want to minimize this sum of distances, i .e . ,

| X  |(«A'(a i7' +  bi) +  Px) ~  (a ii + Pi)I
I  i — l

N  )
+ X  X  \a y  ( w  + di) +  Py ~  (a P  + Pi)\ r

minimize

(2 .2)

Collecting terms and rearranging we obtain the following:

f Nminimize < X  K^a'Oi ~  a i)i + a xbi +  Px — Pi\minimize
I  i =  1

r N
(2.3)
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The generalized expression is:

{ l w9 (  q r k N

£  £  { £  £  £ I(«nSv; -  “/ ) +  / % -  Pi\
<1= 1 u ~  1 j  — \ i — \

N

+ £  Ka xa g,u -  a /)z  +  ftx*!5’" +  /?* -  /?/! 
i — I

where > 0 and represents the number of terms of an array Yk that appear on the right 

hand side of statement u  in loop nest g, and q > 1. Note that in Equation 2.4, X  is used 

for the array which appears on the Ihs of a statement u in loop nest g, and Yk is used for 

the k th occurrence of an array Y  which appears on the rhs of statement u in loop nest g, 

including X .

Adopting the convention that Yj corresponds to the array on the Ihs of statement u in 

loop nest g, and accounting for the term Y\ in r\, we can rewrite Equation 2.4 as shown 

below

{ l w g q rk N

E  E  E  £  E  I (a n cJvk -  a i)  { +  a Ykdjyk +  0Yk -  P i I f -  (2.5)
g = l  u =  1 k =  1 j  =  I  i =  1 J

Note that for any array Yk for which ^  =  1 we can reduce its contribution to the equation 

above to zero by choosing a i  =  a Ykc\Yk, and /?/ =  (3Yk 4- a Ykd\y . This will also be the 

case if rfc >  1 and the subscript expressions for array Yk are always the same. In this 

case we can use these equations as constraints on the values of both a j  and (3j and we can 

also use it to impose constraints on the values of a Yk and pYk. This constraints are easily 

added to our model using the method outlined below.

Assume for now that we have only one loop nest, i.e. g =  1, and one statement, 

i.e. w 3 — 1, at a time. Let us also assume that the stride terms for each distinct array 

are the same. Then each of the c coefficients for a particular array will be equal, i.e.

(2.4)
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ciyk = C2yk = • • • — cry so that our equation becomes

minimize J N  J2 \a YkdjYk +  Pn  ~  Pi\ \  (2 .6 )
fc=ij=i

or

<1 T k

minimize < N  ]T  zkj > (2.7)
I fc=ij=i J

where

Zkj — \a Ykdjyk +  f3yk ~  Pi\- (2.8)

We want to solve this problem using a linear programming (LP) solver, however, LP 

solvers do not accept absolute values of variables. We solve this problem by adding the 

following pair of constraints for each Zkj term in the objective function

z k j — d jy k a iyk — (3Yk +  P i  >  0

and

zkj +  djyk Otyk +  f3yk — fdj > 0 .

This results in

z ^  (optimal) =  | a ' y /fcd j v,fc +  Pyk — /?/ j - 

Thus, our problem could be formulated as

<1 r k
minimize < N  ]T  ^  zkj > (2.9)

( fc=ij=i I
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subject to

z k j ~  d j Y Oiyk — p y k +  P i  > 0 (2.10)

z k j +  d jYk a Yk +  P y u ~  P i  >  0 (2 . 11 )

(Y-i — CYkOiYk =  0  (2 . 12)

and

zkji oij, Pi, a Yk, @Yk >  0  (2.13)

for all values of k, and j .

Equation 2.9 together with the constraints 2.10, 2.11, and 2.13 describe a linear 

programming problem. Equation 2.12 is added as a new constraint on the values of « / 

and a.Yk ■

To allow our variables to take on either positive or negative values we will use the

concept of the positive and negative parts of a real number. Banerjee [11] defines the

positive part a+ and the negative part a~ of a real number a as a+ =  m a x  (a, 0 ) and 

a~ = m,ax{—a, 0 ) such that a+ =  a and a~ = 0  for a > 0 , and a+ =  0  and a,~ =  —a for 

a < 0. Note that a = a+ — a,~.

Replacing a$k -  a Yk, a f  -  ay ,  P$k -  /?yfc, and P f  -  p y  for a Yk, « /, Pvk, and /),, 

respectively, and adding the constraints

a Yk > a Yk » @Yk i P vk i a t ) a I > P f  j >  0
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the new constraints for Equation 2.9 become

zkj -  djYk(a+k -  ayk) -  (/?+ -  PyJ  +  {(it -  PJ) > 0 (2.14)

zkj +  djYk (a+ -  ayk) +  (Pih - P Y J -  {P i  -  PJ) > 0  (2.15)

cvfc («yfc -  ) =  0  (2.16)

a i  — a j  > 1, oiyk — aYk > 1 (2.17)

and

Zkj, <4k, aYh, Pik, PYk, «/+, a 7 > P i ,  PI  > 0  (2.18)

for all values of j  and k. If we do not want a specific variable to be negative we can just

add the constraint that the corresponding negative part be equal to zero. For example, if 

we do not want reversal alignment we would add constraints specifying that the negative 

parts of the values for the a-’s are set to zero.

Polynomial time algorithms have been discovered that solve the general linear pro

gramming problem, although the general integer programming problem is still NP-hard 

[47]. We use one of these LP solvers to solve for the unknown variables that will mini

mize Equation 2.9 subject to the conditions stated in Equations 2.14 thru 2.18. Note that 

with this method we add a new variable for each original equation and that each original
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constraint equation is replaced by two new equations. This method can be used for both 

stride and reversal alignment as specified previously.

After running the model for the example problem presented earlier we obtained the 

following results: aj  — 3, a x  — 3 /2 , ay  — 1, /?/ =  Py  =  0, and fix  =  3/2. Note that 

these are all rational numbers. In order to convert them to integers we simply multiply by 

the least common multiple of the denominators; note that an integer % is written as j .  For 

this example we use two, and obtain =  6 , a x  =  3, a Y = 2 ,p j  = p Y =  0, and px  =  3. 

These integer values are very similar to the values we obtained by inspection. The basic 

difference is in the value of the constant offset coefficients. We note that we still have 

communication arising from these constant offset terms. As shown in Figure 2.3 each 

processor needs one element from the processor to its right, except for the last processor. 

This is assuming the same block distribution of three elements per processor as before. 

This type of communication, however, is not too expensive if the block size exceeds the 

maximum absolute value of the offsets since it is between nearest neighbors. But we 

have taken care of a more expensive type of communication, i.e. that which arises from 

the stride terms which may not be among nearest neighbors. In terms of cost, the most 

expensive type of communication among processors is the one due to axis misalignment 

since it involves all processors across more than one dimension, followed by stride which 

is within a dimension, then replication from one to many processors, and offset.

2 .2  O f f s e t  A l ig n m e n t

Among all the different types of alignment the most common type is offset alignment. 

This is because nonzero coefficients of loop indexes in most subscripts expressions are 

either 1 or -1 [77]. All of the benchmarks used in this dissertation are examples of offset 

alignment. Offset alignment can be viewed as an special case of stride alignment where
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ALIGN X (i) WITH T(3i+3)

ALIGN Y(i) WITH T(2i)

ALIGN i WITH T(6i)

DO i = 1, N

X (2 i-1) = Y (3 i-1) + Y(3i) + Y (3 i+ 1) 

ENDDO

X

T

Y

Figure 2.3: Relative Alignment of Arrays X  and Y  with Respect to Template T  Using 
Computation Alignment and Our LP Method.
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all the stride coefficients are equal to one. An example will help illustrate how this type 

of alignment arises. Suppose that we have the loop shown below:

DO i = \ , N
X[i] =  Y[i  +  2]

ENDDO.

Note that the coefficients that multiply the index variable in the subscript expressions have 

a value of one. Remember that, in order for arrays X  and Y  to be aligned they must be 

mapped to the same template, and that it is their relative positions to this template that 

will determine how they are aligned with respect to each other. For offset alignment we 

have alignment statements of the form

ALIGN X[i] WITH T1 [2 -  1]

and

ALIGN Y[i] WITH Tl[* 4- 4].

Figures 2.4 and 2.5 illustrate several ways in which these arrays could be aligned to a 

template T.  If we align the arrays as shown in Figure 2.4(a), then we find that two 

elements need to be sent to the processor on the left, assuming a linear array and a block 

distribution with block size three. This communication is illustrated in Figure 2.4(b). If 

on the other hand we choose to align arrays X  and Y  as shown in Figure 2.5, we obtain 

perfect alignment of the arrays. As a result the communication among processors is zero 

and the code can be executed in parallel.

There is a basic difference in the way the alignment is performed in Figure 2.5(a) 

and (b). In Figure 2.5(a) computation alignment is used to map the iterations of the 

loop to the processor that will minimize communication because of its position in the 

processor array with respect to the position of the processors holding the rhs operands. In
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ALIGN X(i) W ITH T(i) 

ALIGN Y(i) W ITH T(i) 

DO i = 1, N

X(i) = Y(i+2) 
ENDDO

10 12 13 10 12 13

X 10

Y 10 12 13

X

Y
(a) (b)

Figure 2.4: (a) Relative Alignment of Arrays X  and Y  with Respect to Template T  (b) 
Elements of Array Y  That Need to Be Copied Onto X .
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ALIGN X(i) WITH T(i+4) 
ALIGN Y(i) WITH T(i+2) 
ALIGN i WITH T(i+4) 
DO i = 1, N

X(i) = Y(i+2) 
ENDDO

1 2 3 4 5 6 7 8 9 10 11

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Y 1 2 3 4 5 6 7 8 9 10 11 12 13

(a)

ALIGN X(i) WITH T(i) 
ALIGN Y(i) WITH T(i-2) 
DO i = 1, N

X(i) = Y(i +2) 
ENDDO

1 2 3 4 5 6 7 8 9 10 11

-I 0 I 2 3 4 5 6 7 8 9 10 U 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b)

Figure 2.5: Perfect alignment of arrays X  and Y  (a) Using Computation Alignment and 
(b) without Computation Alignment.
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Figure 2.5(b) the owner-computes rule is used and the computation is always performed 

by the processor holding the Ihs element. This is done without any regard to the position 

of the elements on the rhs. Although for this particular example either method can result 

in zero communication, the advantage of the computation alignment method over the 

owner-computes rule was illustrated in Section 2.1.

Now consider the following code:

ALIGN X[i\  WITH T[i + px ]
ALIGN Y[i] WITH T[i +  P v \
ALIGN i WITH T[i + pi]
DO i — \ , N

X[i  +  &i] =  Y[i  +  d,\] -\- Y[i  +  d2] +  • • • +  Y[i  +  dr]
ENDDO

where arrays X  and Y  (not replicated) are aligned to a template T  as specified above and 

P x ,  P y , and P i  are to be determined.

Note that this is the same problem we have already dealt with in Section 2.1, but in 

this case the stride coefficients c are all equal to one. Thus, we arrive at the following 

equation by replacing each alignment coefficient a  in Equation 2.6 with one.

minimize (2.19)

or

minimize (2.20)

where

Zkj — | d j Yk +  p Yk ~ P i  I • (2 .21 )
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To solve this problem using a linear programming (LP) solver we introduce additional 

variables and constraints as needed and arrive at the following equations:

*<y -  djYk ~ (P i  ~ Pvk) + (Pt -  PT) > 0 (2.22)

+ djYk + (P i  - P i ) -  (Pt ~ P T ) >  0 (2.23)

and

<%, P i , Pyk, Pt ,  P 7 >  0 (2.24)

for all values of j  and k. Again, two variables are used for each original variable and 

two constraint equations for each original equation. Thus, we have doubled the number 

of original equations and variables. As explained previously, if we do not want a specific 

variable to be negative we can just add the constraint that the corresponding negative part 

be equal to zero.

Shown below are several examples of benchmark program segments from Kremer [51 ] 

and Tseng [80] and the result of applying our LP method of determining the offset 

alignment.

The Jacobi algorithm [80] is shown in Figure 2.6. We have labeled the two statements 

SI and S2. After applying our LP method to each one of the statements we obtained the 

results shown in Table 2.1.

The code for the Alternating-Direction-Implicit (ADI) program [51] from is shown 

here as Figure 2.7. The results after applying our LP method to the ADI program segment 

are as shown in Table 2.2.
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DO j  =  2,99
DO i = 2,99

SI: l ] , £ [ z -  \ , j ] , B [ i +  1])
ENDDO 

ENDDO 
DO j  =  1,99

DO i =  1,99 
S2: B[i, j] = A[i, j]

ENDDO
ENDDO

Figure 2.6: Jacobi Program Segment.

Table 2.1: Constant Offsets (/0’s) Found Using LP Method on Jacobi.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
A 0 0
B 0 0

S2 I 0 0
A 0 0
B 0 0
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DO j  = 2, N
DO i = \ , N

SI: x[i,j] = J7i ( x [ i , j ] , x [ i , j -  1 } ,a[ i , j ] , b[ i , j -  1])
S2: b[i,j] = T 2(b[i, j],a[i, j],b[i, j  -  1])

ENDDO 
ENDDO 
D O i =  1, AT 

S3: x[i,N] =Ti (x{ i ,N} ,b[ i ,N})
ENDDO
DO j  = N  — \, 1 ,-1  

D O i = l , N
S4: x[i,j] =  j],a[i, j  +  1 ],x[i , j  +  l],6[i, j])

ENDDO 
ENDDO
DO j = \ , N

DO i — 2 , N
S5: '  x[i,j] = F 5(x[L,j},x[i -  1, j],a[i, j],b[i -  1 ,j])
S6: b[i,j\ =  ^6{b[iJ],a[i, j],b[i  -  1 , j])

ENDDO 
ENDDO 
DO j  = \ , N  

S7: x[iV,j] =  ^ 7(a:[iV,j],6[iV,j])
ENDDO 
DO j  = \ , N

DO i = N  — 1, 1 ,-1  
S8: x [i,j] = J rs(x[i, j\,a[i + \ , j ] , x [ i +  l , j],b[i, j])

ENDDO 
ENDDO

F ig u re  2 .7: A lte rn a tin g -D irec tio n -Im p lic it (A D I) P ro g ram  S egm en t.
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T able  2 .2: C o n stan t O ffse ts  (/T s) F o u n d  U sin g  L P  M e th o d  on A D I.

STATE
MENT

ARRAY
NAME

DIMENSION STATE
MENT

ARRAY
NAME

DIMENSION
ONE TWO ONE TWO

SI I 0 0 S5 I 0 0
A 0 0 A 0 0
B 0 1 B 1 0
X 0 0 X 0 0

S2 I 0 0 S6 I 0 0
A 0 0 A 0 0
B 0 0 B 0 0

S3 I 0 - S7 I - 0
B 0 - B - 0
X 0 - X - 0

S4 I 0 1 S8 I 1 0
A 0 0 A 0 0
B 0 1 B 1 0
X 0 1 X 1 0

The code for Disper [80] is shown in Figure 2.8 and the results after applying our 

method are shown in Table 2.3

A program segment is shown for Livermore 18 in Figure 2.9. The results of applying 

our methods are shown in Table 2.4. The results were as shown in Table 2.4.

A program segment is shown for Livermore 23 in Figure 2.10 [80]. The results of 

applying our methods are shown in Table 2.5.

Table 2.3: Constant Offsets (/?’s) Found Using LP Method on Disper.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND 3RD 4TH 5TH

S3 I 0 0 0 0 0
GRADY 0 - - - -

PFMR 0 0 0 0 0
DDY 0 0 0 - -



{* compute dispersion term,s *}
DO j  = 2,4

DO *3 — 1,8
DO *2 =  1,8

DO i\ =  1,256

S3: grady[ii] = (p fmr[ i { +  1 , i2, ■h , j , A:]-
pfmr[i i  -  \ , i 2, 'h, j , k}) ) /
(0.5 * (ddy[i\ +  1,*2,*3]+ 
ddy[ii -  l , i 2,'i3])+
ddy[iu i2,h])

ENDDO
ENDDO

ENDDO
ENDDO

Figure 2.8: Disper: Oil Reservoir Simulation Program Segment.
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DO I — 1, t ime
DO k = 2,99

DO j  =  2,99
SI: A] =  ^ ( Z P [ j  - \ , k ] ,  ZQ\ j  -  1, k], Z M [ j  -  1, k],

ZR[ j  -  1 ,k], Z Z [ j  -  1, k], ZA[ j  -  1 ,k], ZU[j  -  1, k], 
Z V [ j - \ , k } , Z B [ j - \ , k } )

S2: ZB\ j ,  k] =  P 2( ZP\ j  -  1 ,k], ZQ[j  -  1, k], Z M [ j  -  1 ,k],
ZR[ j  — \ ,k], Z Z [ j  -  1 ,k], ZA[ j  -  1 ,k], ZU[j  -  1 ,k],
Z V [ j - \ , k ] , Z B [ j - \ , k } )

ENDDO
ENDDO
DO k = 2 ,99

DO j  =  2,99
S3: ZU\j ,  k] = 3=AZZ\j  -  1, k \ , Z Z l j  + 1, k\ , ZA[ j  -  1 ,k\,

ZA[ j  +  1, *], ZU[j  -  1, k], ZU\ j  +  1, A:], Z F [ j -  1, A;],
Z F [j +  1, A:], Z B \ j  -  1, A:], Z B[ j  +  1, A;])

S4: ZV\ j ,  k] = P 4(ZZ[ j  -  1, A;], Z Z \ j  +  1, A:], ZA[ j  -  1, A;],
ZA[j  +  1, A:], ZU[j  - \ , k ] , Z U [ j + I ,  k], ZV[ j  -  1, A:], 
ZV[ j  + \ , k ] , Z B [ j - l , k ] , Z B [ j  + \,k})

ENDDO
ENDDO
DO k = 2,99

DO j  = 2,99 
S5: ZR[j ,  k] = P 5(ZR[j,  k],ZU[j,  k])
S6: ZZ\ j ,  k] = P 6(ZZ[j ,  k], ZV[j ,  A;])

ENDDO
ENDDO

ENDDO

F ig u re  2 .9 : L iv e rm o re  18 P ro g ram  S egm en t.
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T ab le  2 .4: C o n stan t O ffse ts  (/?’s) F o u n d  U sin g  L P  M eth o d  on  L iv e rm o re  18.

STATE ARRAY DIMENSION STATE ARRAY DIMENSION
MENT ONE TWO MENT ONE TWO

SI I 0 0 S3 I 0 0
ZA 1 0 ZA 0 0
ZB 1 0 ZB 0 0
ZM 1 0 ZU 0 0
ZP 1 0 ZV 0 0
ZQ 1 0 ZZ 0 0
ZR 1 0 S4 I 0 0
ZU 1 0 ZA 0 0
ZV 1 0 ZB 0 0
ZZ 1 0 ZU 0 0

S2 I 0 ZV 0 0
ZA 1 0 ZR 0 0
ZB 1 0 S5 I 0 0
ZM 1 0 ZR 0 0
ZP 1 0 ZU 0 0
ZQ 1 0 S6 I 0 0
ZR 1 0 ZV 0 0
ZU 1 0 ZZ 0 0
ZV 1 0
ZZ 1 0

DO 1 = 1, t ime
DO j  = 2,99

DO k  =  2,99
SI: QA =  .F1(ZA[fc>;7 +  l ] ,Z A [fc ,j -  l] ,M < fc+  \ , j ] , Z A [ k -  \ , j])
S2: Z A [ M = ^ ( ^ 4 [ M , < M )

ENDDO
ENDDO

ENDDO

Figure 2.10: Livermore 23 Program Segment.
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T ab le  2 .5 : C o n stan t O ffse ts  (/3’s) F o u n d  U sin g  L P  M eth o d  on  L iv e rm o re  23.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
ZA 0 0

S2 I 0 0
ZA 0 0

Table 2.6: Constant Offsets (/?’s) Found Using LP Method on Red Black SOR.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
V 0 0

S2 I 0 0
V 0 0

S3 I 0 0
V 0 0

S4 I 0 0
V 0 0

The code for Red Black SOR (Successive Over Relaxation) is shown in Figure 2.11 

and the results of applying our method on Table 2.6.

We have also obtained the weather prediction program Shallow from [80], Shallow is 

a 200 line benchmark that uses stencil computation that applies finite-difference methods 

to solve shallow-water equations and is a representative of a large class of existing 

supercomputer applications. The program segment for Shallow is shown in Figure 2.12. 

The results were as shown in Table 2.7.

With this we conclude our benchmarks results. We will be using these same bench

marks throughout this dissertation and will be referring back to this section for the program 

segments.



DO 1 = 1 ,  t ime
{* compute red points  *}
DO j  =  3 ,999,2

DO i = 3 ,999,2
SI: V [ i , j ] = F ( V [ i , j - \ \ , V [ i - \ , j ] , V [ i , j + l } , V [ i + \ , j } )

ENDDO 
ENDDO 
DO j  =  2,998, 2

DO i = 2 ,998,2
S2: V [ i , j ] =  T { V [ i , j  -  \ } , V [ i -  \ , j ] , V [ i , j  + \ } , V [ i + \ , j } )

ENDDO 
ENDDO
{* compute black points  *}
DO j  =  2 ,998,2

D O z =  3,999,2
S3: V [ i , j } = F ( V [ i , j - \ ] , V [ i - l , j } , V [ i , j  + \ } , V [ i + l , j } )

ENDDO 
ENDDO 
DO j  =  3 ,999,2

DO i =  2 ,998,2
S4: V [ i , j ] = T ( V [ i , j - \ ] , V [ i - l , j } , V [ i , j + l } , V [ i + \ , j } )

ENDDO 
ENDDO

ENDDO

F ig u re  2 .11: R ed  B lack  S O R  P ro g ram  S egm ent.
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D O j = l , N - l
DO i = I, N  — 1

SI: u[i +  1, j ] =  T\  (psi[i +  1 , j  + 1 ],psi[i +  1, j ])
S2: v[i , j  +  1] =  T 2{jpsi[i +  1, j  +  1 ],psi[i, j  +  1])

ENDDO
ENDDO

DO j  = \ , N  — I
DO * =  \ , N  — 1

S3: cu[i+ l , j ]  = ^ { p [ i +  1, j ] ,p[i , j ] ,u[i+ 1, j])
S4: cv[i, j  +  1] =  P 4 (p[i,j + \],p[i , j],u[i , j  + 1])
S5: z[i +  \ , j  +  1] =  F${v[i+ 1, j  +  1 ],v[i , j  +  1 ],u[i +  \ , j  +  1],

“ [*+ 1iJ'],p[m]>p[*+ h j ] , p [ i +  1J  +  1 ],p[i, j  +  1]) 
S6: h[i,j] = f 6(p[i , j],u[i+ 1 , j ] , u [ i , j ] , v [ i , j+  1],v[m ])

ENDDO 
ENDDO

DO j  =  1 ,7V - 1
DO * =  1, N  -  1

S7: unew[i  +  1, j] =  T 2(uold[i +  1, j], z[i +  1, j  +  1], z[i +  1, j],
cv[i + 1 , j +  1 ] , cv[ i , j+  1 },cv[i , j],cv[i+ 1 ,j] , 
h[i+  1 , j],h[i , j})

S8: vnew[i , j  +  1] =  !Fz(vold[i,j +  1], z[i +  1, j  +  1], z[i , j  +  1],
cu[i+ 1 , j  +  1 \ ,cu[i , j  +  1 ],cu[i , j],cu[i+ 1 ,j],
h[i , j  +  1 },h[i,j})

S9: pnew[i , j  +  1] =  F<){pold[i,j], cu[i +  1 , j],cu{i,j],
cv[i, j  +  1 ],cv[i,j})

ENDDO
ENDDO

Figure 2.12: Shallow Program Segment.
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Table 2.7: Constant Offsets (/3’s) Found Using LP Method on Shallow.

STATE
MENT

ARRAY DIMENSION STATE
MENT

ARRAY DIMENSION
ONE TWO ONE TWO

SI I 1 0 U 0 0
U 0 0 V 0 0

PSI 0 0 S7 I 1 0
S2 I 0 1 UNEW 0 0

V 0 0 UOLD 0 0
PSI 0 0 Z 0 0

S3 I 1 0 CV 0 0
c u 0 0 H 1 0
p 1 0 S8 I 0 1
u 0 0 VNEW 0 0

S4 I 0 1 VOLD 0 0
c v 0 0 Z 0 0
p 0 1 CU 0 1
V 0 0 H 0 1

S5 I 1 1 S9 I 0 0
z 0 0 PNEW 0 0
V 1 0 POLD 0 0
u 0 1 CU 0 0
p 1 0 CV 0 0

S6 I 0 0
H 0 0
p 0 0
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2 .3  Axis A l i g n m e n t

The most expensive type of interprocessor communication can be avoided through axis 

alignment. Axis alignment arises when we have a dimension permutation in the alignment 

statement for multidimensional arrays. For example, with

ALIGN X[i , j]  WITH T\[j ,  i]

we have that each row i of array X  is aligned with column i of template T 1. Likewise, each 

column j  of X  is aligned with row j  of template T \ . In other words, the first dimension 

of array X  is aligned with the second dimension of template T1 and the second dimension 

of X  is aligned with the first dimension of T \  (see Figure 2.13). Other examples include

ALIGN Z[k, j,  i] WITH T3[i, j,  k]

where the first, second, and third dimension of array Z  are aligned with the third, second, 

and first dimension of template T 3, respectively.

Consider the following code segment (where the two-dimensional arrays X  and Y  are 

not replicated)

DO * =  1, N
DO j  =  1 , N

X[i , j ]  = Y{i , j} + Y[j,i]
ENDDO

ENDDO

and assume that the alignment directives for arrays X  and Y  and iteration i , j  will be as 

follows:

ALIGN X[i,  j ] WITH T[a'x i +  P'x , a 2x j  +  p 2x ]

ALIGN Y[i, j ] WITH T [ a [Yi +  /fy, a 2Yj  + $>]

ALIGN i , j  WITH T[a\ i  +  /?], a j j  +  0}\.
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X T1

Figure 2.13: Axis Alignment of X[i , j \  with T 1 [j, i].

Using the l\ metric the total distance from the processor performing iteration i , j  to the 

processors holding each of the operands would be given by

distance =  | (c^Y -  ck}) i +  0'x  -  p\  | +  | (c?x  -  oq) j  +  0 2x  -  0 j |

+  | ( a Y  -  a ))  * +  P y  ~  P i  | +  | ( a Y  ~  « /)  J +  P y  ~  P ]|

+  |a'yj -  a \ i  +  Py -  P\ | +  |ayi -  a j j  + 0 ^ - 0 ^ .  (2.25)

Note the last two terms of the equation above. There is no non-trivial way of eliminating

the i and the j  from the equation above when we consider all the possible values that i 

and j  can take on.

Here the problem is not the metric but the actual mapping. We have a mapping from a 

two-dimensional array space and a two-dimensional iteration space to a two-dimensional 

template space, and because of the nature of the problem itself, the approach we have used
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so far is not very useful for this particular problem. However, consider the same problem 

but with a different mapping, namely the hyperplane mapping. In particular, consider that 

arrays X  and Y ,  and the iterations of the loops will be aligned using the directives shown 

below

ALIGN X[i,  j } WITH T [a lx i + p lx  + a \ j  +  p \ \

ALIGN Y[i, j]  WITH T [a lYi +  p\, +  a ^ j  +  /?£]

ALIGN i , j  WITH T[a)i  +  p\  +  a j j  + ffi]

so that the two-dimensional array space and the two-dimensional iteration space are 

mapped onto a one-dimensional template. The distance function will then be given by

distance -  | (a^Y -  a))  i + (a 2x  -  a ) ) j  +  p lx  -  P\ + P \  -  pj\

+  | ( a v  ( a y  -  a f j  j +  P y  -  P \  + P i  -  p j  |

+  | [ay — i +  (a y  — aj'J j  +  Py — P\ + Py — P} | . (2.26)

In order to reduce this distance to zero we require that

1 1 2  2 1 2  Ot-X — ^ I  — ^ I  — Oty' — OL'y •

Then the equation will be as follows

\px  — P) + Px ~  Pf\ +  |Py  ~  Pi +  Py  ~  P/ | +  |Py  ~  Pi +  Py  ~  Pi\ (2.27)

which can be reduced to zero distance by allowing Pj = Px = Py and p j = Px  = Py . 

This means that each diagonal of arrays X  and Y ,  and each diagonal of the iteration space
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X, Y

Figure 2.14: Alignment by Diagonals of Arrays X ,  and Y  to Template T.



56

would be mapped to a point in the one-dimensional template. The resulting alignment is 

illustrated in Figure 2.14.

2 .4  R e p l ic a t io n

Replication is a type of alignment which arises from the need for every processor to store 

copies of some data. Examples of replication are shown in Figure 2.15. In this figure 

each element of the one-dimensional arrays X  and Y  is aligned with each element of 

the corresponding template column and row, respectively. Therefore each processor that 

owns an element of the template will also own the corresponding element of the array. For 

example, the first part of Figure 2.15 shows the replication of the one-dimensional array 

X  onto template T.  As a result of this replication, element 1 of array X  is replicated on 

column 1 of template T, element 2 on column 2, and so on. A processor which is assigned 

an element of column 1 of template T  will also be assigned element J\T [ 1 ], if a processor is 

assigned an element of column 2 of T, then that processor will also be assigned element 

X[2] and so on. Similarly, the second part of Figure 2.15 shows a one-dimensional array 

Y  which is replicated on a two-dimensional template T1 and as a result each element F[*] 

is replicated on row * of T1 so that a processor which is assigned an element of row i of 

T l  will also be assigned element Y[i].

In order to illustrate how our method could be used to solve the replication problem 

we will use an example from Bau et al. [14]. Consider the code shown below

DO i = I, N
DO j = l , N  

S: X[ i , j ] =X[ i , j ]  + Y[ i \*Z\ j ]
ENDDO

ENDDO

Note that Y  and Z  are one-dimensional arrays and that A  is a two-dimensional array. 

Also note that all the elements of Z  that are accessed during an iteration of the outer loop
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ALIGN X(i) WITH T(*,i)

X

ALIGN Y(i) WITH TI(i, *)

Y

T1

Figure 2.15: Replication of Array X  along the Rows of Template T  and of Array Y  along 
the Columns of Template T 1.
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are also accessed during the next iteration of the outer loop and that the same element of 

Y  is accessed during all the iterations of the inner loop for a particular iteration of the 

outer loop. In other words, y[*] is used to compute all the elements in row * of X  and 

Z[j] is used to compute all the elements in column j  of X .  Lastly, note that elements of 

arrays Y  and Z  are referenced (read) but not modified (written) during each execution of 

statement S above.

As discussed earlier, arrays are aligned to each other by aligning them to a common 

template. We have seen many examples in which we have aligned arrays which are all 

of the same dimension. In this case, however, we have arrays of different dimensionality 

used in the same statement. Since Y [*] is used to compute all the elements in row i of X  

and Z\j] is used to compute all the elements in column j  of X ,  we would like to align 

X ,  Y ,  and Z  such that communication is minimized. In this case we can reduce the 

communication to zero by replicating arrays Y  and Z  along the columns and along

We find how to align the arrays using the LP method developed in Section 2.2 for 

offset alignment. This is because the example does not include stride coefficients greater 

than one nor does it include axis alignment. In this case arrays Y  and Z  can be replicated 

so that communication is reduced to zero. The resulting alignment directives are shown 

below (note the use of T[i, *] and of T[*, j ] to indicate row i and column j ,  respectively). 

These results are illustrated in Figure 2.16 for arrays Y  and Z.

ALIGN X[i , j]  WITH T[i,j]

ALIGN Y[i] WITH T[i, *]

ALIGN Z[j\  WITH T[*,j]

ALIGN i , j  WITH

This means that array Y  is replicated along the columns of X  and array Z  is replicated 

along the rows of X .
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ALIGN Y(i) WITH T(i,*), Z(i) WITH T(*,i)

T
Figure 2.16: Replication of Array Z  along the Rows of Template T  and of Array Y  along 
the Columns of Template T.
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2 .5  S o l u t io n s  U s in g  L in e a r  P r o g r a m m in g

The solution to an optimization problem such as those in this chapter which we represented 

as general linear programming problems are found at the extreme points or vertices as 

stated in the corner principle of algebra. These extreme points are the intersections 

of linear equations which are formulated using integer coefficients. The solutions are 

therefore guaranteed to be rational numbers which we can convert into whole numbers by 

multiplying by the corresponding least common multiple.

2 .6  C o m p a r is o n  W it h  O t h e r  W o r k

The component alignment problem has been proven to be NP-complete by Li and Chen 

[55]. They introduced the Component Affinity Graph (CAG) and the idea of generating 

communication primitives based on the reference patterns found in the array subscript 

expressions. The CAG is an undirected, weighted graph whose nodes represent the 

components to be aligned. The nodes are grouped in columns. An edge joins two nodes 

if the nodes have affinity. The algorithm provided by Li and Chen is based on heuristics.

Gupta and Banerjee [33], present a method restricted to partitioning of arrays, i.e. no 

computation partitioning. Their method selects important segments of code to determine 

distribution of various arrays based on some constraints. Quality measures are used 

to choose among contradicting constraints. These quality measures may require user 

intervention. The compiler tries to combine constraints for each array in a consistent 

manner to minimize overall execution time and the entire program is considered. Small 

arrays are assumed to be replicated on all processors. The distribution of arrays is by 

rows, columns, or blocks. This work uses heuristic algorithms to determine the alignment 

of dimensions, i.e. component alignment, of various arrays since the problem has been 

shown to be NP-complete. The owner-computes rule is assumed and issues concerning the
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best way to communicate messages among processors, such as aggregate communication 

introduced in the work by Tseng [80], are dealt with. Communication costs are determined 

by Gupta and Banerjee [33] after identifying the pairs of dimensions that should be aligned. 

Consideration is given to when it would be best to replicate a dimension rather that to 

distribute it. The component affinity graph is used to determine alignment.

Bau et al. [14] use elementary matrix methods to determine communication-free 

alignment of code and data. They also deal with the problem of replicating read-only data 

to eliminate communication. Their work incorporates data dependences in their proposed 

solution to the problem and the owner-computes rule is assumed. Replication of data is 

also incorporated into their proposed solution. Their work treats all types of alignment as 

equal, e.g. it does not incorporate the notion that axis alignment is more important than 

stride, replication, or offset alignment. The Smith normal form of integers is used as part 

of their method. Alignment of both data and computation is determined by finding a basis 

for the null space of a known matrix.

Chatterjee et al. [23] and [24] provide an algorithm that obtains alignments which 

are more general that the owner-computes rule by decomposing alignment functions into 

several components. Chatterjee [23] et al. investigate the problem of evaluating Fortran 90 

style array expressions on massively parallel distributed-memory machines. They present 

algorithms based on dynamic programming.

Kim and Wolfe [50] show how to find and operate on the communication pattern 

matrix from user-aligned references.

O ’Boyle [61] proposed an automatic data partition algorithm based on the analysis of 

four distinct factors. He does not consider partitioning of computation along with that of 

data and he is not concerned with finding the alignment that will minimize communication.
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Wakatani and Wolfe [81 ] address the problem of minimizing communication overhead 

but from a different context than ours. They are concerned with the communication 

arising from the redistribution of an array and proposed a technique called strip mining 

redistribution. They are not concerned with automatically generating the alignments in 

order.

Chatterjee et al. [20] and Sheffer et al. [76] deal with determining both static and 

dynamic distributions. They use the Alignment-Distribution Graph (ADG) whose nodes 

represent program operations, the ports in the nodes represent array object manipulated by 

the program, and the edges connect array definitions to their respective uses. The ADG is 

a directed edge-weighed graph although it is used as an undirected graph. Communication 

occurs when the alignment or distribution at the end points of an edge is different. At this 

time realignment and or redistribution may be needed. The completion time of a program 

is modeled as the sum of the cost over all the nodes (which accounts for computation 

and realignment) plus the sum over all the edges of the redistribution time (which takes 

into account the cost per data item of all-to-all personalized communication, the total data 

volume, and the discrete distance between distributions).

Kremer [52] proves the dynamic remapping problem NP-complete. Kremer et al. [53] 

and Kremer [51] consider the profitability of dynamic remapping and use an interactive 

tool for automatic data layout, respectively.

Kennedy and Kremer [48, 49] deal with dynamic remapping in Fortran D [80] and 

HPF [41]. The work by Kennedy and Kremer propose a way to solve the NP-complete 

inter-dimensional alignment problem [52] using a state-of-the-art general purpose integer 

programming solver [49]. Thus Kennedy and Kremer [49] formulate the inter-dimensional 

alignment problem as a 0-1 integer programming problem. The same is done by Bixby et 

al. [17],
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2 .7  C h a p t e r  S u m m a r y

We have modeled the alignment problem as a general linear programming problem using 

the l\ metric. Constraints on the values of the stride (a ' s ) and offset (P's) coefficients 

were included as part of the model. Among other things these constraints reduce the 

contribution of single referenced arrays to zero and also make the problem independent 

of the loop index variable. An LP tool was used to solve the problem. A solution was 

presented for the offset alignment problem and specific solutions were given for the Jacobi, 

Alternating-Direction- Implicit, Disper, Livermore 18, Livermore 23, Red Black SOR, 

and Shallow benchmarks. Solutions were provided also for stride and axis alignment 

along with replication alignment. For axis alignment we have required that the an array 

diagonal be mapped to a cell template in order to solve the problem. Our method will 

determine a non-trivial communication-free solution if it exists. Otherwise, our method 

will determine a solution that minimizes communication.

Since the problem is modeled using linear constraints with integer coefficients and 

since the solution to this type of problems lies in one of the extreme points resulting 

from the intersection of the linear constraints, the results are guaranteed to be rational 

numbers. Multiplying by the least common multiple of the denominators will yield 

whole numbers. Linear programming tools are readily available for most computers. The 

methods provided here are intended to be used as part of the compiler. Our framework 

does not require user intervention.



Ch a pt e r  3

U sin g  L a g r a n g e  M ultipliers to  S olve  th e  
A l ig n m e n t  Pr o blem

In this chapter we show how to solve the computation and data alignment problems using 

the Euclidean metric and the Lagrange Multiplier method. Once the problem has been 

modeled, we use the software Mathematica [90] to solve the constrained optimization 

problem. This method allows us to specify both equality and inequality constraints 

whenever necessary. We deal with the alignment problem in a uniform way, that is 

we formulate the stride, offset, axis, and replication alignment problems using the same 

constraint-based method and solve them using the Lagrange Multiplier method. Some 

researches have focused on the communication-free solution to the alignment problem and 

provide no way of dealing with the problem when no communication-free solution exists. 

Our approach deals with the problem when communication-free solutions exist and also 

when no non-trivial communication-free solution can be found. If communication-free 

alignment is possible our method will find it. Otherwise, our method will determine 

the alignment that minimizes communication in case the communication is unavoidable. 

In order to determine is the solution is communication-free one can simply substitute 

the values found into the distance function and check whether this becomes zero. Our 

approach is intended as a tool to be used with the compiler.

This chapter is organized as follows. Section 3.1 shows how to use the Lagrange 

Multiplier method for the stride and reversal alignment problems. In Section 3.2 we use 

the Lagrange Multiplier method for solving the offset alignment problem. Section 3.2 

also presents the formulation and present solutions for several benchmark codes. In

64
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Section 3.3 we provide a solution to the axis alignment problem. Section 3.4 presents 

how to use this approach for replication alignment. Section 3.5 compares what other 

researchers have done. Finally, Section 3.6 summarizes the chapter.

3.1  S t r id e  a n d  Re v e r s a l  A l ig n m e n t

When the coefficients of the loop index variables in the subscript expressions of the array 

references in a program are greater than unity, we have what has been termed as stride 

alignment. If any of these coefficients is negative, then it is called reversal alignment. 

Reversal alignment corresponds to mapping the reflection of the array onto the template 

[80]. Stride alignment is generated by statements similar to the following

ALIGN X[i) WITH T l[2 i +  3].

A multidimensional array example is given in the statement

ALIGN Y[i , j]  WITH T2[2i +  1, 3j  +  2].

An example of reversal alignment is shown in the following statement

ALIGN y[i] WITH T3[-?;].

Consider the following piece of code:

D O i =  1, N
X[o,\i +  &i] =  y [c ii +  d\] +  y[c2? +  dj] +  ■ • ■ +  y [c ri +  d,-]

ENDDO

where arrays X  and Y  (which is not replicated) will be aligned to a template T  as shown 

below

ALIGN X[i\ WITH T[ax i + fix]

ALIGN Y[i] WITH T[ay i + /3Y] 

and the iterations of the loop will be aligned with the following declaration
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ALIGN i WITH T[ari +  /?/]

where a x ,  Px,  ®y , Py , and Pi are to be determined. Whenever any coefficient of the 

loop index variables in the assignment statement are greater than one our formulation will 

yield values for the a ’s which will be greater than or equal to one.

Let us consider for now iteration i only. We want to minimize the distance from 

the processor(s) holding the elements of arrays X  and Y  that are needed to perform the 

computation of the element on the left hand side to the processor which will be performing 

the computation during iteration i. Using the alignment as specified above we can find 

that the processor which holds the element on the Ihs is processor ax(a,\i + b\) + Px- 

Similarly, the processor holding the first term of array Y  is processor ay{c\i  +  d\) + p Y, 

the one holding the second term is a y  (c2i +  d2) +  (3y, and so on. Using the l2 or Euclidean 

metric the distance from the processor which holds the Ihs element to the processor which 

performs the computation during iteration i is [ ( [ ^ ( a i 'i  +  bi) +  Px] ~  Va i'1 +  Pi])2] 2■ 

Similarly we find the distance from the processor(s) holding each one of the elements on 

the right hand side is [([a!y(c,-* +  dj) +  pY\ ~  [»/* +  Pi])2] 2 > 1 <  3 <  r -

Combining all the terms shown in the last two equations above we find the sum of the 

distances from each processor holding an element of X  and each processor holding and 

element of Y  to the processor which performs the computation during iteration i to be

( { a x ( a i i  +  b i )  +  p x ) -  ( c v / z  +  P i ) ) 2 +  ( a Y (c / i  +  d j )  +  p Y -  ( « / *  +  P i ) ) 7
i =i

If we now consider all the iterations of the loop nest, then the equation above becomes

distance =
' N

T  i +  6j) +  Px) ~  («/'i +  Pi))2
■i— 1
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r N

+  /C  (ay (cj* +  dj) +  Py ~ (aP +  Pi))2 ■ (3 . 1)

Collecting terms and rearranging the above equation we obtain the following

• N

distance =  ^  ((ax^ i — a r)i +  a x b\ + (3X ~ Pi)2

i

+ ^ 2  ^ 2  i ( a Y cj  — a i)i +  O i y d j  +  P y  ~  Pi)2 ■ (3-2)

To find an expression for the distance over the entire program we generalize the 

expressions above to the case when we have an arbitrary number I of loop nests, an 

arbitrary number w of statements over the various loop nests (w° is the number of 

statements in loop nest g), and q is the total number of arrays in the program which are 

actually used. Note that we do not account for arrays which have been declared but are 

not used. In other words

where rk > 0 represents the number of terms that involve array Yk appearing on the right 

hand side of statement u  in loop nest g, and q > 1. Note that in Equation 3.3, is used 

for the array which appears on the Ihs of a statement u in loop nest g, and Yk is used for 

the k th occurrence of an array Y  which appears on the rhs of statement u in loop nest g, 

including X .

distance =  \ ( [ a Ykcj'2 a ^ ji  + a Ykd!jyk +  PYk — P /)

(3.3)



Adopting the convention that Y\ corresponds to the array on the Ihs of statement u in 

loop nest g, and accounting for the term Y\ in r \ , we rewrite Equation 3.3 as shown below.

Note that for any array Yk for which rk — 1 we can reduce its contribution to the above 

equation to zero by choosing

This will also be the case if rk > 1 and the subscript expressions for array Yk are always 

the same. In this case we use these equations as constraints on the values of both cv/ and 

Pi and we also use it to impose constraints on the values of a Yk and f3Yk ■

In order to solve for the unknowns we require that &YkCjy‘ — a at 'u =  0. In this way 

we eliminate the terms that are multiplied by i in Equation 3.4 and arrive at the following 

equation

To solve for the unknowns in Equation 3.5 we will use the Lagrange Multiplier method 

as reported by Avriel [7], Bazaraa et al. [15], Bertsekas [16], Kuhn and Tucker [54], Pike 

[65], and Reklaitis et al. [70]. To minimize the Euclidean distance function in Equation 3.5 

subject to the conditions f i (x)  < 0, i — 1,2, • • •, h, a n d /z(x) =  0, i — h + 1, h+2,  • • ■, m,  

the necessary conditions for the existence of a relative minimum at a point x* are:

l w g q r k N

) i +  a Ykdf;ik +  p Yk -  /?/) (3.4)distance =  E E E E E (  ( « n  “  a *
g— 1  w = |  k=  1  j =  1  i = l

a i  -  a Ykc\Yk

and

Pi — Pvk +  a yJ)\Yk ■

l w a q r k N
distance (3.5)

g— 1  w = l  k=  1  j  =  1  2=1
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2. fi(x*) < 0  for i — 1,2, • • •, h

3. fi(x*) = 0  for i =  h +  1, h +  2, • ■ •, m

4. Aifi(x*) = 0  for i -  1,2, • • •, h

5. Xi > 0 for i — 1,2, • • ■, h

6. Ai is unrestricted in sign for i = h +  1, h +  2, • • •, m

where n is the number of unknowns, h is the number of inequality constraints, m  (n > m)

is the total number of constraints including equality constraints, and L  is the Lagrangian

function formed by adding the constraints and their corresponding multipliers (A’s) to the 

distance function [65]. Note that if we do not want to allow a variable to be negative we 

can specify this by adding the appropriate constraint. For example, if we do not want to 

allow reversal alignment we can constrain the values on the cFs to be positive.

The first condition sets the first partial derivatives of the Lagrangian function L  with

respect to a;,, i =  1,2, • ■ •, n equal to zero to locate the Kuhn-Tucker point x*. Conditions

2 and 3 are the inequality and equality constraints, respectively, that must be met at the 

minimum point found by solving the system of equations obtained from Condition 1. The 

fourth condition comes from setting the partial derivatives of the Lagrangian with respect 

to the slack variables equal to zero. Condition 5 arises from the fact that the rate of change 

of the distance function with respect to the parameters on the rhs of the constraints is 

equal to the negative of the corresponding Lagrange multiplier. By increasing the rhs of 

a constraint the constraint region would be enlarged, which could not result in a larger 

value for the distance function evaluated at x* but could result in a lower value. Thus 

the Lagrange multiplier must be positive to satisfy the rate of change mentioned above



[6 5 , 7 0 ] . C o n d itio n  6  is  d ue to  a p ro o f that th e L agran ge m u ltip liers a sso c ia ted  w ith  the  

eq u a lity  con stra in ts are n ot restricted  in s ig n  [6 5 ], N o te  that a n ew  variab le  is  ad d ed  for  

each  eq u a lity  con stra in t and that tw o  variab les are added  for  each  in eq u a lity  con stra in t.

T o illu stra te th e L agran ge M u ltip lier  m eth od  ap p lied  to  the stride a lig n m en t p rob lem  

w e  w ill  u se  the c o d e  sh o w n  b e lo w  w h ich  is the sa m e c o d e  w e  u sed  in a p rev io u s ex a m p le .

DO i =  1,7V
X[2i  -  1] =  Y[3i -  1] +  Y[3i] + Y[3i +  1]

ENDDO

T h e L agrangian  fu n ction  in th is ca se  is g iv e n  by

L  —  ( N  { ( P x  — c x x  — P i ) 2 +  ( P y  — P i ) 2 +  ( P y  — c x y  — P i ) 2 +  ( P y  +  « v  — P i ) 2 ')') ~ 

+  Ai ( l  +  s 2 — a i )  +  A2 ( 2 a x  ~  o c i )  +  A3 (3o!y  — ct/) (3 .6 )

and the corresp on d in g  sy stem  o f  eq u ation s is

1 • =  A 1 +  A2 +  A3 =  0

2  d L  _  __________________ %/Tv(— 1 ( - a x  ~ P l + P x ) ) _________________  _j_ — 0
d a X ((_ QX_ /3/ -|-/jx )2_|_(_0 /+ /gv,)2 + (_ o,y ^f j I + p Y y ^ olY - p I + p Y )2) J

g d L  _  __________y7V(0.5(-2(-gy — +/3y)+2(ay-/3/+/3y)) _  Q
®a y  ( ( - a x - P i + P x ) 2+ ( - P i + P Y ) 2+ ( - a Y - P i + P Y ) 2+ ( a Y - P i + P Y ) 2)'1

4  9 L  _  (0 .5(-2(-gx -/3J+/?x)-2(;3/ +/3y)-2(gy-/3/+/3y)) =  q
( ( - a x  - P i + P x )2+ ( ~ P i + P y )2+ ( - < xy  ~ P i + P y )2+ ( ocy - P i + P y )2) 1

g d L  —_______________________( - a x - P i + P x ) _____________________  _  q
9 P x  (( -a x -/3 /+ /3 x )2+ (-/3/+/9y)2+ ( - a y - /3/+/3y)2+ (ay-/3/+/3y)2)2

g  d L  _  ______ (0.5(2(-/3/+/?y)+2(-ay —|3/+j3y)+2(gy-/?j+/?y)_______  __ q
®Py  ( {—a x  —P i + P x ) 2+ ( —Pi + P y )2+ ( —ocy — Pi + P y  )2+ ( a Y - P i + P y  )2)5



The solutions that we obtain are A, =  0.47\/]V, X2 =  0, A3 =  —O AT' /N ,  s  =  0, 

a i  — 1, o t y  =  1/3, a x  =  1/2, P y  — P h  and P x  =  P i  +  1/2. Note that these are 

rational numbers. In order to convert these values to integer values we multiply by the 

least common multiple of the denominators; note that an integer i can be written as 

| .  Since A] ^  0, and s = 0 the equality holds. Note that for this example we had 

added two equality constraints and one inequality constraint to the Euclidean distance 

function in order to form the Lagrangian function. Two variables, the Lagrange multiplier 

and the slack variable, are added for each inequality constraint and one variable, the 

Lagrange multiplier, for each equality constraint. The total time that takes an IBM RISC 

System/6000 to solve this system of equations is 3.6 seconds. We should point out that, for 

this example, we obtained several sets of possible solutions which makes for the excess 

time. This is the computer we used for all the examples given in this chapter.

Let a i  = 6, a x  =  3, a Y =  2, /?/ =  0, and px  =  3. With this alignment, each 

processor computing an iteration will need an element of Y  which is held by the processor 

to its left, assuming a linear array and a block distribution with block size equal to 3, 

except of course for the processor at the leftmost position (see Figure 2.3). Note that the 

communication is with only one processor and that only one element needs to be passed 

from the sending processor to the receiving processor.

Using the owner-computes rule we obtain Px  =  1 for the same values of a Y =  2, 

a x  =  3, and pY = 1. This would require each processor to send two elements to the 

processor on its right, except for the last processor, assuming the same configuration and 

distribution as before, see Figure 2.2. Again note that the communication is with only one 

processor, but this time two messages must be communicated.
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3 .2  O f f s e t  A l ig n m e n t

Offset alignment can be viewed as a special case of stride alignment where the stride

coefficients are equal to one. Consider the following piece of code:

ALIGN X[i] WITH T[i +  px \
ALIGN Y\i\  WITH T[i +  pY\
ALIGN i WITH T[i + /?/]
DO i = I, N

X[i  +  =  Y[i +  d\\ 4- Y\ i  +  6̂ 2] +  • • • +  Y[i  +  d,T]
ENDDO

where Px, Py , and /?/ are to be determined. Consider iteration i. We want to minimize the 

distance from the processor(s) holding the elements of arrays X  and Y  that are needed to 

perform the computation of the element on the left hand side to the processor which will 

be performing the computation during iteration i. Using the alignment specified above 

we find that the processor which holds the element on the Ihs is processor i + b\ + Px- 

Similarly, the processor holding the first term of array Y  is processor i + d \ +  Py , the one 

holding the second term is i + d2 +  Py , and so on.

The distance function is

where I is the number of loops, w 9 is the number of statements in loop nest g, q is the total 

number of arrays, and Y\ corresponds to the array on the Ihs of statement u in loop nest g.

To solve for the unknowns in Equation 3.7 we will use the Lagrange Multiplier method. 

Though this method allows us to include in our system of equations a set of equality and 

inequality constraints, we do not need to do it for the offset alignment case. To illustrate 

this method let us consider the following code segment:

(3.7)
g=  I  u=  1  k=  1  j — I  z = l
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DO i — \ , N
X[i] = Y[i +  2]

ENDDO.

The first step is to form the function L,

i = ( ( A v - / ? / ) 2 +  (2 +  /? y - /5 / )2)5.

Here we repeat the necessary conditions for the existence of a relative minimum at a 

point x* for the Euclidean distance function shown in Equation 3.7 and subject to the 

conditions f i (x)  <  0 , i  =  1,2, • • • ,h, and f i (x)  — 0 , i =  h +  1, h +  2, • • ■,m , where n 

is the number of unknowns, h is the number of inequality constraints, and m  (n  >  m)  

is the total number of constraints including equality constraints [65]. These are the same 

conditions introduced and explained in Section 3.1.

2. fi{x*) < 0 for « =  1,2, • • •, /i

3. fi(x*)  =  0 for i =  h +  1, h + 2, • ■ •, m,

4. Aifi(x*) = 0  for * =  1,2, • • •, h

5. Xi > 0  for i =  1,2, • • •, h

6. A, is unrestricted in sign for i =  h +  1, h +  2, • • •, m

By solving the system of equations given by condition 1 above, the general solution

for our example would be given by Px  =  Pi, and Py  — Pi — 2.

We now use the method developed in this section to find the alignment for several

benchmark programs, i.e. Jacobi, Alternating-Direction-Implicit (ADI), Disper, Liver

more 18, Livermore 23, Red Black SOR, and Shallow.
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T ab le  3.1: C o n stan t O ffse ts  (/?’s) F o u n d  U sing  L ag ran g e  M e th o d  on  Jaco b i.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
A 0 0
B 0 0

S2 I 0 0
A 0 0
B 0 0

The code for Jacobi was presented in Figure 2.6. After applying our method to each 

one of the statements we obtained the results shown in Table 3.1.

The results of applying this method to the ADI program segment shown in Figure 2.7 

are shown in Table 3.2.

The code for Disper is shown in Figure 2.8 and the results after applying our method 

are shown in Table 3.3

A program segment for Livermore 18 is shown in Figure 2.9. The results of applying 

our methods are shown in Table 3.4. The program segment for Livermore 23 is shown in 

Figure 2.10 and the results of applying our method are shown in Table 3.5.

The code for Red Black SOR (Successive Over Relaxation) is shown in Figure 2.11 

and the results of applying our method on Table 3.6.

Shallow is a 200 line benchmark that uses stencil computation that applies finite- 

difference methods to solve shallow-water equations and is a representative of a large 

class of existing supercomputer applications. Table 3.7 shows the result of applying our 

method to Shallow. The code for Shallow is shown in Figure 2.12.

With this we conclude the report on the benchmarks after applying the Lagrange 

Multipliers method. Table 3.8 summarizes the time it took our computer to solve the 

equations for the applications mentioned above.
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Table 3.2: Constant Offsets (/5’s) Found Using Lagrange Method on ADI.

STATE ARRAY DIMENSION STATE ARRAY DIMENSION
MENT NAME 1ST 2ND MENT NAME 1ST 2ND

SI I 0 0 S5 I 0 0
A 0 0 A 0 0
B 0 1 B 1 0
X 0 1/3 X 1/3 0

S2 I 0 0 S6 I 0 0
A 0 0 A 0 0
B 0 1/3 B 1/3 0

S3 I 0 - S7 I - 0
B 0 - B - 0
X 0 - X - 0

S4 I 0 0 S8 I 0 0
A 0 -1 A -1 0
B 0 0 B 0 0
X 0 -1/3 X -1/3 0

Table 3.3: Constant Offsets (/3’s) Found Using Lagrange Method on Disper.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND 3RD 4TH 5TH

S3 I 0 0 0 0 0
GRADY 0 - - - -
PFMR 0 0 0 0 0
DDY 0 0 0 - -
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Table 3.4: Constant Offsets (/?’s) Found Using Lagrange Method on Livermore 18.

STATE ARRAY DIMENSION STATE ARRAY DIMENSION
MENT ONE TWO MENT ONE TWO

SI I -1 0 S3 I 0 0
ZA -1/2 0 ZA 0 0
ZB 0 0 ZB 0 0
ZM 0 0 ZU 0 0
ZP 0 0 ZV 0 0
ZQ 0 0 ZZ 0 0
ZR 0 0 S4 I 0 0
ZU 0 0 ZA 0 0
ZV 0 0 ZB 0 0
zz 0 0 ZU 0 0

S2 I -1 0 ZV 0 0
ZA 0 0 ZR 0 0
ZB -1/2 0 S5 I 0 0
ZM 0 0 ZR 0 0
ZP 0 0 ZU 0 0
ZQ 0 0 S6 I 0 0
ZR 0 0 ZV 0 0
ZU 0 0 zz 0 0
ZV 0 0
zz 0 0

Table 3.5: Constant Offsets (/?’s) Found Using Lagrange Method on Livermore 23.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
ZA 0 0

S2 I 0 0
ZA 0 0
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T ab le  3 .6: C o n stan t O ffsets (/3’s) F o u n d  U sing  L ag ran g e  M e th o d  on R ed  B lack  SO R .

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
V 0 0

S2 I 0 0
V 0 0

S3 I 0 0
V 0 0

S4 I 0 0
V 0 0

Table 3.7: Constant Offsets (/?’s) Found Using Lagrange Method on Shallow.

STATE
MENT

ARRAY
NAME

DIMENSION STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND 1ST 2ND

SI I 1 0 U -1/2 0
U 0 0 V 0 -1/2

PSI 0 -1/2 S7 I 1 0
S2 I 0 1 UNEW 0 0

V 0 0 UOLD 0 0
PSI -1/2 0 Z 0 -1/2

S3 I 1 0 CV 1/2 -1/2
cu 0 0 H 1/2 0
p 1/2 0 S8 I 0 1
u 0 0 VNEW 0 0

S4 I 0 1 VOLD 0 0
c v 0 0 Z -1/2 0
p 0 1/2 CU -1/2 1/2
V 0 0 H 0 1/2

S5 I 1 1 S9 I 0 0
z 0 0 PNEW 0 0
V 1/2 0 POLD 0 0
u 0 1/2 CU -1/2 0
p 1/2 1/2 CV 0 -1/2

S6 I 0 0
H 0 0
p 0 0
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Table 3.8: Time (seconds) to Solve the System of Equations for the Different Applications.

PROGRAM TIME
Jacobi 0.18
ADI 1.67

Disper 0.23
Livermore 18 5.98
Livermore 23 0.12

Red Black SOR 0.24
Shallow 1.96

3 .3  Axis A l ig n m e n t

As explained earlier, axis alignment arises when we have a dimension permutation in the 

alignment statement for multidimensional arrays. For example, in the statement

ALIGN X[i, j]  WITH Tl[ j ,  *]

we have that each row i of array X  is aligned with column i of template T 1. Likewise, each 

column j  of X  is aligned with row j  of template T l . In other words, the first dimension of 

array X  is aligned with the second dimension of template T l ,  and the second dimension 

of X  is aligned with the first dimension of T 1 (see Figure 2.13).

In what follows assume that arrays X  and Y  are two-dimensional arrays which are 

not replicated onto the available processors. Also assume that T  is a two-dimensional 

template. Consider the following code segment:

ALIGN X[i, j]  WITH T[a'x i +  /3[x , a \ j  +  /%]
ALIGN Y[i, j] WITH T [ a lYi +  a \ j  +  0$]
ALIGN i , j  WITH T[a)i  +  (3\, a ) j  +  p}\
D O i = l , N

DO j  =  1 , N
X [ i , j } = Y[i,j] + Y\j, i]

ENDDO
ENDDO
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Using the l2 metric the total distance from the processor performing iteration i , j  to the 

processors holding each of the operands would be given by

distance =  [ ( (o ^  -  a \ )  i +  p'x  -  p \ ) 2 +  ( [a2x  -  a j )  j  +  (3\ -  p j ) 2 

+  ( ( a j ,  - a \ ) i  + pY -  P i )2 +  ( ( a y  -  a j )  j  +  Py p f f
I

+  (a'yj -  a \ i  +  Py  -  P i )2 +  (a ^ i  -  a j j  +  P \  -  p f )  2 • (3.8)

Note the last two terms of the equation above. There is not a non-trivial way of eliminating 

the % and the j  from the above equation when we consider all the possible values that i, 

and j  can take on.

Here the problem is not the metric but the actual mapping. We have a mapping from a 

two-dimensional array space and a two-dimensional iteration space to a two-dimensional 

template space, and because of the nature of the problem itself, this mapping approach 

we have used so far is not very useful for this particular problem. However, consider the 

same problem but with a different mapping. In particular, consider that arrays X  and Y,  

and iteration i, j  will be aligned using

so that the two-dimensional array space and the two-dimensional iteration space are 

mapped onto a one-dimensional template. The distance function will then be given by

ALIGN X[i,  j } WITH T[u'x i +  p'x  +  a \ j  +  p \ \  

ALIGN Y [ i , j ] WITH T [ a lYi + P'Y + ofyj +  /?£] 

ALIGN i , j  WITH T[oe\i + Pi + a j j  +  0}\

distance

+ ((<4  -  4 ) * + (4 - -  4 ) 3 + P y ~  Pi + Py -  P i )2 

+ (3 .9 )
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We require that

1 1 2  2 1 2a x  = otj = a x  = otj = a Y = oiy

and thus the distance function reduces to

{fix ~ Pi +  Px ~  Pf) +  {Py ~  Pi + Py ~  Pi) +  [Py ~  Pi + Py ~  Pf) (3.10)

which is reduced to zero distance by allowing Px = P}+P] — Px  ar,d Py = Pi + Ph ~  Py 

which is the result we obtain when using our method. This means that each diagonal of 

arrays X  and Y ,  and each diagonal of the iteration space would be mapped to a point in 

the one-dimensional template. The resulting alignment is illustrated in Figure 2.14. It 

took the computer 0.11 seconds to solve the system of equations and arrive at the result 

presented above.

3 .4  R e p l ic a t io n

As explained in a previous chapter, replication is a type of alignment which arises from 

the need for every processor to store copies of some data. In this section we will use the 

example from Bau et al. [14] that we have used previously in Section 2.4. Consider the 

code shown below:

DO i = \ , N
DO j  — I, N  

S: X [ i , j ] = X [ i , j ]  + Y [ i \*Z \ j ]
ENDDO

ENDDO.

Note that Y  and Z  are one-dimensional arrays and that X  is a two-dimensional array. 

Also note that all the elements of Z  that are accessed during an iteration of the outer loop 

are also accessed during the next iteration of the outer loop and that the same element of 

Y  is accessed during all the iterations of the inner loop for a particular iteration of the



outer loop. In other words, Y[i) is used to compute all the elements in row i of X  and 

Z[j\ is used to compute all the elements in column j  of X .  Lastly, note that elements of 

arrays Y  and Z  are referenced (read) but not modified (written) during each execution of 

statement S above.

Since Y[i\ is used to compute all the elements in row i of X  and Z[j\ is used to 

compute all the elements in column j  of X ,  we would like to align X ,  Y , and Z  such that 

communication is minimized. In this case we can reduce the communication to zero by 

replicating arrays Y  and Z  along the columns and along

We find how to align the arrays using the Lagrange method developed in Section 3.2 

for offset alignment. This is because the example does not include stride coefficients 

greater than one nor does it include axis alignment. In this case arrays Y  and Z  can 

be replicated so that communication is reduced to zero. Note that array Y  is replicated 

along the columns of X  and array Z  is replicated along the rows of X .  These results are 

illustrated in Figure 2.16 for arrays Y  and Z.  The resulting alignment is as shown in the 

following directives (note the use of T[i, *] and of T[*, j] to indicate row i and column j ,  

respectively):

ALIGN X[i, j]  WITH T[i,j]

ALIGN Y[i] WITH T[i, *]

ALIGN Z[j] W ITHr[*,j]

ALIGN i , j  WITH T[i,j],

3 .5  C o m p a r is o n  W it h  O t h e r  W o r k

The component alignment problem has been proven to be NP-complete by Li and Chen 

[55]. They introduced the Component Affinity Graph (CAG) and the idea of generating 

communication primitives based on the reference patterns found in the array subscript 

expressions. The CAG is an undirected, weighted graph whose nodes represent the
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components to be aligned. The nodes are grouped in columns. An edge joins two nodes 

if the nodes have affinity. The algorithm provided by Li and Chen is based on heuristics.

Gupta and Banerjee [33], present a method restricted to partitioning of arrays, i.e. no 

computation partitioning. Their method selects important segments of code to determine 

distribution of various arrays based on some constraints. Quality measures are used 

to choose among contradicting constraints. These quality measures may require user 

intervention. The compiler tries to combine constraints for each array in a consistent 

manner to minimize overall execution time and the entire program is considered. Small 

arrays are assumed to be replicated on all processors. The distribution of arrays is by 

rows, columns, or blocks. This work uses heuristic algorithms to determine the alignment 

of dimensions, i.e. component alignment, of various arrays since the problem has been 

shown to be NP-complete. The owner-computes rule is assumed and issues concerning the 

best way to communicate messages among processors, such as aggregate communication 

introduced in the work by Tseng [80], are dealt with. Communication costs are determined 

by Gupta and Banerjee [33] after identifying the pairs of dimensions that should be aligned. 

Consideration is given to when it would be best to replicate a dimension rather that to 

distribute it. The component affinity graph is used to determine alignment.

Bau et al. [14] use elementary matrix methods to determine communication-free 

alignment of code and data. They also deal with the problem of replicating read-only data 

to eliminate communication. Their work incorporates data dependences in their proposed 

solution to the problem and the owner-computes rule is assumed. Replication of data is 

also incorporated into their proposed solution. Their work treats all types of alignment as 

equal, e.g. it does not incorporate the notion that axis alignment is more important than 

stride, replication, or offset alignment. The Smith normal form of integers is used as part
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of their method. Alignment of both data and computation is determined by finding a basis 

for the null space of a known matrix.

Chatterjee et al. [23] and [24] provide an algorithm that obtains alignments which 

are more general that the owner-computes rule by decomposing alignment functions into 

several components. Chatterjee [23] et al. investigate the problem of evaluating Fortran 90 

style array expressions on massively parallel distributed-memory machines. They present 

algorithms based on dynamic programming.

Kim and Wolfe [50] show how to find and operate on the communication pattern 

matrix from user-aligned references.

O’Boyle [61] proposed an automatic data partition algorithm based on the analysis of 

four distinct factors. He does not consider partitioning of computation along with that of 

data and he is not concerned with finding the alignment that will minimize communication.

Wakatani and Wolfe [81 ] address the problem of minimizing communication overhead 

but from a different context than ours. They are concerned with the communication 

arising from the redistribution of an array and proposed a technique called strip mining 

redistribution. They are not concerned with automatically generating the alignments in 

order.

Chatterjee et al. [20] and Sheffer et al. [76] deal with determining both static and 

dynamic distributions. They use the Alignment-Distribution Graph (ADG) whose nodes 

represent program operations, the ports in the nodes represent array object manipulated by 

the program, and the edges connect array definitions to their respective uses. The ADG is 

a directed edge-weighed graph although it is used as an undirected graph. Communication 

occurs when the alignment or distribution at the end points of an edge is different. The 

completion time of a program is modeled as the sum of the cost over all the nodes 

(which accounts for computation and realignment) plus the sum over all the edges of the
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redistribution time (which takes into account the cost per data item of all-to-all personalized 

communication, the total data volume, and the discrete distance between distributions).

Kremer [52] proves the dynamic remapping problem NP-complete. Kremer et al. [53] 

and Kremer [51] consider the profitability of dynamic remapping and use an interactive 

tool for automatic data layout, respectively.

Kennedy and Kremer [48, 49] deal with dynamic remapping in Fortran D [80] and 

HPF [41]. The work by Kennedy and Kremer propose a way to solve the NP-complete 

inter-dimensional alignment problem [52] using a state-of-the-art general purpose integer 

programming solver [49]. Thus Kennedy and Kremer [49] formulate the inter-dimensional 

alignment problem as a 0-1 integer programming problem. The same is done by Bixby et 

al. [17].

3 .6  C h a p t e r  S u m m a r y

We have presented a method for solving the alignment problem by using the Lagrange 

Multipliers method on a constrained optimization problem modeled using the Euclidean 

metric. Both equality and inequality constraints can be added to our framework as needed 

in which case the Lagrange multipliers will also be part of the function. The constraints 

are on the values permitted for the stride coefficients (a 's ) and are such that the problem 

is independent of the loop index variable. The software Mathematica was used to solve 

the system of equations obtained from our model. Solutions were provided for stride, 

offset, axis, and replication alignment using the same constrained-based method. For 

axis alignment we have required that an entire diagonal from the arrays be mapped to a 

single template cell. If communication-free alignment is possible our method will find 

it. Otherwise, our method will determine the alignment that minimizes communication in 

case the communication is unavoidable.



This is the first time this method is used to solve the alignment problem. We have 

provided the results for the Jacobi, ADI, Disper, Livermore 18, Livermore 23, Red Black 

SOR, and Shallow benchmarks and the average time it took to find them is also included. 

Our framework does not require user intervention.



C h a pt e r  4

R e l a x in g  C o n st r a in t s  in  th e  A l ig n m e n t  
Pr o b l e m

In this chapter we deal with the problem of determining which constraint or constraints to 

leave unsatisfied when we have an over-constrained system of equations from which we 

want to determine the alignment for both computation and data. The system of equations is 

obtained by using the framework by Bau et al. [14], which uses elementary linear algebra 

methods to determine a non-trivial communication-free solution to the computation and 

data alignment problem. This chapter is organized as follows: Section 4.1 is a review of 

the method presented by Bau et al. [14]. Section 4.2 presents our method of determining 

which constraint(s) to leave unsatisfied when the system is over-constrained. Section 4.3 

reviews the work that other researchers have done and Section 4.4 is a summary of our 

findings in this chapter.

4.1 R e v i e w  o f  B a u  e t  a l . ’s M e t h o d

To illustrate the method developed by Bau et al. [14] we will use the following example:

DO i = Ibi, ubi
DO j  =  Ibj, ubj

A[i, j] = f{A[ i , j ] ,B[ i  -  \ , j } , B [ i , j -  1])
ENDDO

ENDDO.

From the subscript expressions for arrays A,  and B  we obtain the following, where FA is 

the access matrix for array A, FBl and FBl are the access matrices for the first and second 

terms of array B,  respectively, f A, / b p and f Bl their corresponding constant terms, and 

C, D a , and D B are the mapping for the iterations (computations) and data elements of

86
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the arrays onto a virtual template, and Fx  is formed in order to account for the constant 

offset term f x  in the same equations where the access matrix Fx  is used. Note that this is 

done in order to account for the constant offset coefficients found in the array references. 

The resulting functions are called affine functions.

r i 1 0 0

& II Fa f  a

0 1
— 0 1 0

oo

1

B,

Fb2 —

7B\ /b ,

0 1

F b 2 f  b 2 

0 1

1 0 -1

0 1 0

0 0 1

1 0 0

0 1 -1

0 0 1

C — D a Fa , C  — D b Fb i , C  — D b Fb2,

and

V

U =

I

- F a

C D a D b

I

-Fa

I

0

I

0

0 0 — FBi —Fb2
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i.e.

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

-1 0 0 -1 0 0 0 0 0 0 0 0

V  = 0 -1 0 0 -1 0 0 0 0 0 0 0

0 0 -1 0 0 -1 0 0 0 0 0 0

0 0 0 0 0 0 -1 0 1 -1 0 0

0 0 0 0 0 0 0 -1 0 0 -1 1

0 0 0 0 0 0 0 0 -1 0 0 -1

It can be seen from the above that V TUT =  0 so that the problem is reduced to 

finding a basis for the null space of V T. An algorithm is then applied to V  so that it is 

diagonalized into its Smith Normal Form, i.e. positive diagonal entries, to reveal its rank, 

e.g. T  =  H V G ,  where H  and G  represent the elementary row and column operations, 

respectively. In other words:

E  0  

0 0

Since H  and G represent elementary operations they are unimodular matrices. In this 

dissertation a unimodular matrix is a matrix whose determinant is ±  1. This type of matrices 

are used extensively in parallelizing compilers. The only matrix which is important for 

the calculations is H  since it is this matrix which we need to obtain the solution. This 

matrix H  is premultiplied by a matrix U' to yield the solution matrix, i.e. , U =  U 'H  

where matrix U' forms a basis for the range of the orthogonal complement of the first

T  = H V G  =
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r =  rank(V) columns of matrix T:

0 0 0 1 0 0

0 0 ••• 0 0 1 ••• 0
u  =

0 0 ••• 0 0 0 1

Note that the first r columns of U are zero and that the last columns form an identity 

matrix. Premultiplying H  by U' will choose those rows of H  for which the corresponding 

rows of T  are zero, i.e. the last M  — r rows, where M  is the number of rows of V, H,  and 

T.  Continuing with our example

U =
1 1 - 1 1 1 - 1 1 1 0  

0 0 1 0  0 1 0 0 1

for

H  =

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 - 1 1 0 -1 1 0 -1 0

0 0 0 -1 0 0 0 0 0

0 0 0 0 -1 0 0 0 0

0 0 0 0 0 -1 0 0 0

0 1 0 0 1 0 0 1 0

1 1 -1 1 1 -1 1 1 0

0 0 1 0 0 1 0 0 1
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It is worth mentioning that we only need H  out of all the matrices found when computing 

the Smith Normal Form since we find from U V  =  0 that

U H ~ lH V G  =  0

where U' = U H ~ l.

Now, following the procedure by Bau et al. [14], in order to eliminate the extra 

dimension introduced when the constant (offset) terms were added, we need to find some 

(3i /  0 for which

1 0 0

1 0 0

- 1 1 1

1 0 r  n 0
P\

1 0 = 0
J 2 .- 1 1 1

1 0 0

1 0 0

0 1 1

U
E  o  

0 0
=  0

u
E

0
=  0



from which we obtain that (3\ =  0 and /?2 — 1- Since the second component of (3 is 

nonzero, we can eliminate the second row of U. Thus

and

or

c  =
1 1 - I

, D a =
1 1 - 1 II 

, 
03

1 1 0

0 0 1 0 0 1 0 0 1

C = 1 1 -1 , D a — , D b 0

C l 1 1 -1 — i +  j

D a Fa I  — 1 1 -1

1 0 0 i

0 1 0 j = i + j -

0 0 1 1

D b Fb . I 1 1 0

d b f b ,i  = 1 1 0

1 0 -1 i

0 1 0 j = i + j -  1

0 0 1 1

1 0 0 i

0 1 - 1 3

1■'-i+• sII

0 0 1 1

This means that for a communication-free solution the iteration space and the data 

space for arrays A  and B  should be partitioned into diagonals as shown above.
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4 .2  D e c id in g  o n  W h ic h  C o n s t r a in t (s ) t o  L e a v e  

U n s a t is f ie d

When the system is over-constrained the only communication-free solution is the trivial 

solution, e.g. map each iteration and each data item to one processor [6, 14, 33, 45, 68]. 

Assume that we are using Bau et al.’s framework [14] which use elementary matrix 

methods to determine communication-free alignment of code and data. If we have an 

assignment statement such as

X [ i , j ]  =  F ( X [ i , j ] , Y [ i , j } )  

then, using Bau et al.’s method, we obtain

and

u  = C D x D y

I I

V = - F x 0

0 - F y

In this case we obtain C — D X F X =  0 and C  —

D y F y  ^  0. Otherwise, the only communication-free solution is to map both the

computation and data to one processor so that C  =  D x F x  =  D y F y  =  0. We could 

rewrite the equations from Bau et al. [14] in the following way where I  represents the 

iteration vector

( C  -  D X F X ) I  — D x f x  = T x and { C  -  D Y F Y ) I  — D y f y  =  F 2.
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We can think of the vectors T\  and F 2 as estimates of the type of communication that will 

be incurred due to misalignment. In Bau et al.’s context for both a trivial and a non-trivial 

communication-free solution these functions are zero. If we look at them from another 

perspective, i.e. without fully applying Bau et al.’s [14] method, these functions could be 

thought of as including as part of their components, constant values, values that vary with 

some index variable, or values that change with more than one index variable depending 

on whether the misalignment is due to offset, stride, or axis misalignment, respectively.

If no non-trivial communication-free solution can be found we would then like the 

elements of vectors T \, and F 2 to be constants and as many of them as possible to have 

a constant value of zero. In other words, if we can not obtain a non-trivial zero commu

nication solution, we would then prefer to only have communication arising due to offset 

misalignment. This is the cheapest form of communication since it is usually between 

nearest neighbor processors. We should, in the other hand, avoid communication aris

ing from axis misalignment because this type of communication indicates interprocessor 

communication among several processors along different dimensions, similar in some 

respect to a ManyToMany type of communication if we use Gupta and Banerjee’s [33], 

and Garcia et al.’s [30] terminology.

With this in mind, when no non-trivial communication-free solution exists we would 

like to have the following T\  =  constant, F 2 — constant. For this to be possible we need 

C  — D x F x  = D YFy  to hold true so that the communication will be due solely to the 

constant offset terms used in the subscript expressions of the array references.

Thus, if it is not possible to find a solution that yields zero communication when using 

more than one processor, we should then attempt to find a solution that does not incur any 

interprocessor communication due to axis and stride misalignments, if at all possible, even 

if it means that we should have some communication due to offset misalignment. We need
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a structure that will have enough information to aid us in recognizing, among other things, 

which type of misalignment we could get if we do not satisfy a particular constraint. 

This structure should also give us information about the constant offset coefficients and 

possibly the distance vectors involved. The structure that we propose to use is what we 

call the Reference Information Table or RIT.

For example, assume that we have the following assignment statement

A  [hj] = F{A[i, j \ ,B [ i , j ] ,B [ i  -  1, j  -  1 },B[i - 2  , j  -  2 },B[i - 2  , j  + 2]).

In this case we obtain the matrices

1 0 0 1 0 0 1 0 - 1 1 0 - 2

F a = 0 1 0 to II 0 1 0 > Fb2 — 0 1 - 1 ) Fb2 — 0 1 - 2

0 0 1 0 0 1 0 0 1 0 0 1

and

ba

1 0 - 2

0 1 2 ,U  = c  D a D b

0 0 1

I I I I I

- F a 0 0 0 0

0 -- F Bl — FB 2 - F B3 --FBa

V  =

Using Bau et al.’s [14] framework we determine that the only communication-free 

solution is the trivial solution. Since there is no possibility of axis and stride misalignment 

for this example we concentrate on the offset misalignment case. Our structure should help 

us decide that it would be better to leave the constraint arising from the term B[i — 2, j  +  2]
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Table4.1: R ITfor^['i, j] = F ( A [ i , j ] , B [ i , j ] , B [ i - l , j - l ] , B [ i - 2 , j - 2 ] , B [ i - 2 , j + 2 ] )

ARRAY
N A M E

C O N S
TRAINT

NU M BER

DIM ENSION USES OFFSET
VECTOR

AX IS
lS T (i) 2N D (j)

STRIDE STRIDE
A 1 0 0 2 (0 ,0 ) 0
B 2 0 0 1 (0 ,0 ) 0

3 0 0 1 ( - 1 , - 0 0
4 0 0 1 ( - 2 , - 2 ) 0
5 0 0 1 ( - 2 , 2 ) 0

without enforcing in which case we can obtain a communication-free non-trivial solution

1 - 1  0 i.e. mapfor the rest of the terms. This solution is C  =  D a = D b - 

iteration ( i , j ,  1) and element (i, j,  1) from both arrays A  and B  to processor (i — j ) ,  and 

it can be obtained using Bau et al.’s [14] method by not satisfying the constraint arising 

from the term B[i — 2, j  +  2], i.e. using

I  I I I

V  = o1 0 0

o - F B] —Fb2 - F Bi

Thus we would incur offset misalignment communication due to only one term.

We notice that for the example above we have the nonzero offset vectors ( - 1 , - 1 ) ,  

(—2, —2), and (—2,2). We also notice that offset vectors (—1, —1) and (—2, —2) are 

linearly dependent,i.e. they lie on the same plane (and in this case on the same line), 

and that offset vector ( -2 ,2 )  is orthogonal (perpendicular) or has no projection onto the 

plane where the other two nonzero offset vectors lie. The RIT for the example above 

is as shown in Table 4.1. The first column in the RIT is the array name. The second 

column is the constraint number which comes from how the constraint appears in the 

V  matrix. Constraint 1 affects array A  only, whereas constraints 2, 3, 4, and 5 affect



array B.  These constraints are constructed following Bau et al.’s method. Constraint 1 

tells us that iteration ( i , j )  must be performed at the processor holding element 

Constraints 2, 3, 4, and 5 tell us that the same processor must also hold elements B[i,j],  

B [ i— 1, j  — \ \,B[i — 2, j  — 2} ,B[i — 2, j+2].  The third and fourth columns indicate whether 

there is a coefficient in any of the dimensions which is larger than one. In other words 

they are used to indicate the presence of stride in the subscript expression corresponding 

to the array and the constraint specified in the previous two columns. The fifth column 

indicates how many references are made to each term at the deepest loop level common 

to all the terms in the assignment statement. The use for this column will become more 

evident in a future example. Then the sixth column shows the constant offset vectors for 

the array references. The last column indicates the presence of axis misalignment in the 

constraint.

Using the information in this table we determine that there is no axis or stride mis

alignment. If it were otherwise, we would then try to satisfy the corresponding constraints 

giving priority to axis, then stride, and finally offset. Because there is no possibility for 

either axis or stride misalignment we then check the nonzero offset vectors and determine 

that we can group them into two linearly independent groups. Since one of the groups 

has two elements, i.e. ( - 1 , - 1 )  and (—2, —2) and the other one has only element (—2,2) 

we determine to leave the constraint affecting the element B[i — 2, j  +  2] unsatisfied, 

i.e. constraint 5 rather than risking not satisfying the constraints on B[i — \ , j — 1] and 

B[i — 2 , j  — 2], i.e. constraints 3 and 4. Note that if we had chosen to leave either constraint 

3 or constraint 4 without satisfying, we would have found out that we would still be unable 

to find a non-trivial communication-free solution.
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The algorithm for deciding which constraints to relax is shown in Figure 4.1. To 

explain the algoritm we will apply it to the matrix multiplication example shown below. 

In this case we have a loop nest with depth of three, i.e. the number of loops is three.

DO i — 1,7ii
DO j  — 1, rij

DO k  =  1,7ik
Z[i,j] = Z [ i , j ] + X [ i , k ] * Y [ k , j }

ENDDO
ENDDO

ENDDO

Using Bau et al.’s [14] method we obtain

Fx  =
1 0 0 0 0 1 1 0 0

,F y  = ,F Z =
0 0 1 0 1 0 0 1 0

U C D x  D y  D z , V  =

I  I

-Fx  0 

0 - F y

I

0

0

0 0  - F y .

Note that r — rank(U) =  9, i.e. V  is a full rank matrix, M  =  9, and that q =  M  — r  =  0. 

Thus, we can not use Bau et al.’s [14] method for this particular example as is. This is 

because the null space of V  is empty and thus no basis for the right null space of V T can 

be found.

Steps 1-3 Bau et al.’s method can not be applied. 

Step 4 RIT is as shown in Table 4.2.
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Step 1: If there exists a non-trivial solution, then terminate.

Step 2: Ignore offset vectors and check if there exists a non-trivial solution.

Step 3: If there exists a non-trivial solution to Step 2 above and if it is not desired to reduce 
interprocessor communication due to offset misalignment, then terminate. If it is 
desired to do otherwise then go to Step 8.

Step 4: If there does not exist a non-trivial solution to Step 2 above, then form RIT.

Step 5: Determine which constraints may result in axis misalignment and which may result 
in offset misalignment if they are not satisfied.

Step 6: If there exist constraints which could result in axis misalignment if they are not 
satisfied, then perform Bau et al.’s [14] method considering only these constraints. 
If no non-trivial solution can be found, then rank the constraints according to an 
estimate of the amount of communication that could result from each and apply Bau 
et al.’s [14] method considering only the one that would result in the largest amount 
of communication. Then add the next constraint in terms of cost of communication 
and check if there is a non-trivial solution. If a trivial solution is found, then make 
the last non-trivial solution the current solution.

Step 7: If there are no constraints which could result in axis misalignment and if there are 
constraints that could result in stride misalignment when not satisfied, then perform 
the Step 6 above but for the stride constraints.

Step 8: If at this time it is not desired to try to reduce the interprocessor communication 
arising from the constant offset vectors, then terminate. Otherwise, classify offset 
vectors of the constraints which are being satisfied in sets of linearly dependent 
vectors.

Step 9: If a non-trivial solution can be found that takes into account the largest of the offset 
vector sets, then attempt to find a non-trivial solution that includes the next set and 
continue until no non-trivial solution can be found. Make last non-trivial solution 
the current solution.

Figure 4.1: Algorithm for Choosing which Constraint(s) to Leave Unsatisfied When the 
Problem is Over-constrained.
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Step 5 As shown in RIT constraint 2 will , result in axis misalignment if not satisfied. 

Constraints 1 and 3 will result in offset misalignment if not satisfied, but constraint 

3 would result in the least communication.

Step 6 Apply Bau et al.’s method without considering constraint 3.

U C  D x  Dy , V  =

I  I

-Fx  0 

0 - F y

That is,

V  =

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 0 0 0

0 0 -1 0 0 0

0 0 0 0 0 -1

0 0 0 0 -1 0

In this case r = rank(F) =  6. Note that the number of rows of V  is M  =  7 and thus 

q =  M  — r =  1. Thus the right (column) null space (orthogonal complement) of 

V T is non-empty. This means that we should be able to find a basis for column null 

space of V T and therefore we should be able to find a solution to the problem. This 

basis will have a dimensionality of q — 1, i.e. the number of rows of the solution 

will be one. To do this we perform row operations on V  to bring it to its Smith 

normal form. Note that we do not show the effect of the column operations nor are 

we concerned with them. The resulting V  matrix after performing the necessary
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row operations on it and the corresponding H  matrix are as shown below:

V  =

Thus

and

1 0 0 1 0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 , H  = 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 -1 0 -1 -1 0

0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 1 1 0

C = 0 0 1

C l

, D X , D y =

0 0 1 J
k

— k,

D XFXI
1 0 0 

0 0 1

i

j

k

0

k,

d y f y i  =
0 0 1 

0 1 0
=  k.

Step 7 There are no constraints resulting in stride misalignment if not satisfied.

Step 8 D one.
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T ab le  4 .2 : R IT  fo r  M atrix  M u ltip lica tio n

ARRAY CONS DIMENSION USES OFFSET AXIS
NAME TRAINT lST(i) 2ND(j) VECTOR

NUMBER STRIDE STRIDE
X 1 0 0 nu (0,0) 0
Y 2 0 0 nk (0,0) 1
Z 3 0 0 2 (0,0) 0

Keeping in mind that the mapping of the array elements is given by D F  the results 

above indicate that the computation of iteration (i, j ,  k ) and elements X[i,  k], and Y[k,  j] 

should be assigned to processor k. Intuitively we see that this is correct since arrays X  

and Y  can be aligned so that the processor that has column k of X  also has row k of Y  

and executes iteration k.

4 .3  C o m p a r is o n  W it h  O t h e r  W o r k

Amarasinghe et al. [5] and Anderson and Lam [6], show how to find partitions for cloall 

and doacross parallelism and, in order to minimize communication across loop nests, they 

use a greedy algorithm that tries to avoid the largest amounts of potential communication. 

In order to find data and computation decompositions they express the problem using 

constraints in matrix notation and find the basis of the null space of known matrices. 

Their algorithm trades off extra degrees of parallelism to eliminate communication. For 

example, it may convert a parallel loop into a sequential loop. If communication is 

needed the algorithm tries to reduce the most expensive communication to inexpensive 

communication by pipelining using tiling. To find dynamic decompositions they use the 

communication graph whose nodes correspond to the loops in the program and edges 

represent where data reorganization can occur.
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Bau et al. [14] use elementary matrix methods to determine communication-free 

alignment of code and data. They also deal with the problem of replicating read-only data 

to eliminate communication. Their work incorporates data dependences in their proposed 

solution to the problem and the owner-computes rule is assumed. Replication of data is 

also incorporated into their proposed solution. Their work treats all types of alignment as 

equal, e.g. it does not incorporate the notion that axis alignment is more important than 

stride, replication, or offset alignment. The Smith normal form of integers is used as part 

of their method. Alignment of both data and computation is determined by finding a basis 

for the null space of a known matrix.

4 .4  C h a p t e r  S u m m a r y

In this chapter we have presented a heuristics-based algorithm to deal with the problem 

of determining which constraints to leave unsatisfied when we have an over-constrained 

system of equations from which we want to determine the alignment for both computation 

and data. The framework we have used is based on the work developed by Bau et al. [14] 

which uses elementary linear algebra to determine both computation and data alignment 

for a program. Our method is used when their approach finds that the only communication- 

free solution is to map all iterations and all the arrays to a single processor, i.e. the trivial 

solution. Our method aligns the non-conflicting constraints and finds a communication- 

free solution based on them. Communication will only arise due to the constraints left 

unsatisfied.

The decision on which constraints to eliminate is based on the amount of communi

cation which would result if the constraint is left unsatisfied. Constraints which result in 

higher communication are given preference and are kept over those which would result in 

less communication when left unsatisfied. This is as opposed to the Bau et al. framework
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which treats all the constraints, whether arising from axis, stride, replication, or offset 

alignment as equal.



Ch a pt e r  5

A  M atr ix-B a s e d  A ppr o a c h  to  F in d in g  
D ist r ib u t io n s

This chapter presents a technique for finding good distributions of arrays and suitable 

loop restructuring transformations so that communication is minimized in the execution 

of nested loops on message passing machines. For each possible distribution (by one 

or more dimensions), we derive the best unimodular loop transformation that results in 

block transfers of data. As defined earlier in this dissertation, unimodular matrices have a 

determinant with a value of ±  1 and they are used extensively in parallelizing compilers. 

Unlike other work which focus on either data layout or on program transformations, 

this chapter combines both array distributions and loop transformations resulting in good 

performance. The techniques described here are suitable for dense linear algebra codes.

On a distributed memory machine, local memory accesses are much faster than ac

cesses to non-local data. Inter-processor communication— resulting accesses to non-local 

data— is a major determinant of the performance of a parallel machine. When a number 

of non-local accesses are to be made between processors, it is preferable to send fewer 

but larger messages rather than several smaller messages more frequently (called message 

vectorization [80]). This is because the message setup cost is usually large. Even in 

shared memory machines, it is preferable to use block transfers.

We should point out that the interprocessor communication time can be modeled as 

t =  a  + P*  7 , where a  and P are machine dependent and 7  is the length of the message. 

Usually a  »  P and thus it is desirable to communicate longer messages rather than short 

ones whenever possible.

104
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Given a program segment, our aim is to determine the computation and data mapping 

onto processors. Parallelism can be exploited by transforming the loop nest suitably and 

then distributing the iterations of the transformed outermost loop onto the processors. The 

distribution of data onto processors may then result in communication and synchronization 

which counters the advantages obtained by parallelism. This chapter presents an algorithm 

which results in the optimal performance while simultaneously considering the conflicting 

goals of parallelism and data locality.

While a programmer can manually write code to enhance data locality by specifying 

data distribution among processors, we present a technique where we can automatically 

derive data distribution given the program structure. We present a method by which the 

program is restructured such that when the outer loop iterations are mapped onto the pro

cessors, it results in the least communication. Wherever communication is unavoidable, 

we restructure the inner loop(s) so that data can be transferred using block transfers; such 

an approach is referred to as message vectorization. Our approach relieves the program

mer from having to specify the distribution of the arrays and from having to optimize the 

communication among processors in case this communication is unavoidable.

This chapter is organized as follows: Section 5.1 talks about the need for automatic 

distribution; Section 5.2 introduces our first algorithm for automatic distribution and 

vectorization of messages; Section 5.3 is a step by step application of the algorithm to 

several examples; Section 5.4 shows the advantage of relaxing the owner-computes rule 

when our algorithm does not find a solution; Section 5.5 presents our algorithm and applies 

it to an example in a step by step fashion; Section 5.6 applies tiling after the algorithm 

to obtain higher granularity in the communication; Section 5.7 is a brief presentation of 

what others have done; and Section 5.8 is our chapter summary.
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5.1  A u t o m a t i c  D i s t r i b u t i o n

In this chapter, we consider the cases where we allocate outer iterations to processors so 

that each outer loop iteration is done by a single processor. The data is then allocated 

so that there is minimum communication and all communication is done through block 

transfers. This chapter deals with an algorithm to restructure the program to enhance 

data locality while still enabling parallelism. We construct the entries of a legal invertible 

transformation matrix so that there is a one-to-one mapping from the original iteration 

space to the transformed iteration space. This transformation when applied to the original 

loop structure will do the following:

•  Allow the outermost loop iteration to be distributed over the processors i.e., an 

entire outermost iteration is mapped on to a single processor.

• Determine the data distribution (block or cyclic distribution of a single array dimen

sion).

® Allow blocks transfers to be moved out of the innermost loop so that all the necessary 

data are transferred to the respective local memories before the execution of the 

innermost loop.

5.1.1 B ACKGROUND AND TERMINOLOGY

The transformation matrix is derived from the data reference matrix of the array references. 

Given a loop nest with indices - ■ , in which is represented by a column vector I ,  we 

define a data reference matrix, A n , for each array reference A  (distinct or non-distinct) 

in a loop nest such that the array reference can be written in the form A n l  +  b where b 

is the offset vector. In what follows we assume that the arrays are not replicated onto the 

available processors.
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Example 5.1 C o n sid e r the fo llo w in g  loop  nest.

DO * =  1, iV,
DO j  =  1 , N 2 

DO k — l , N 3
B [ i , j  -  i\ =  B [ i , j  -  i] +  A[i, j  + k] 

ENDDO 
ENDDO 

ENDDO

In the example above , the data reference matrix for array B  is

B n
1 0 0 

1 1 0

and the data reference matrix for array A  is

A n
1 0 0 

0 1 1

Note that there are two data reference matrices for array B  though they are identical. For 

each array, we use only the distinct data reference matrices.

5 .1 .2  E f f e c t  o f  a  T r a n s f o r m a t io n

On applying a transformation T  to a loop with index I ,  the transformed loop index 

becomes I '  = T I  and the transformed data reference matrix becomes A'n  = A n T ~ 1. The 

columns of T ~ l determine the array subscripts of the references in the transformed loop. 

The key aspect of the algorithm presented in this chapter is that the entries of the inverse 

of the transformation matrix are derived using the data reference matrices.
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5 . 1 . 3  M o t iv a t io n

Consider Example 5.1 above which is similar to the one given by Li and Pingali [57]. There 

are two references to array B  (though not distinct) and one reference to array A. Li and 

Pingali [57] assume that all arrays are distributed by columns and derive a transformation 

matrix that matches column distribution. In this case, the loop can be distributed in such a 

way that there is no communication incurred. Both the arrays can be distributed by rows,

i.e., each processor can be assigned an entire row of array A  and an entire row of array 

B.  This makes the loop run without any communication. We notice that the first row in

1 0 0 . This allowsthe data reference matrix for arrays A  and B  are the same i.e., 

the first dimension of both the Ihs and rhs arrays to be distributed {i.e., by rows) over the 

processors so that there is no communication. In the next section, we derive an algorithm 

to construct a transformation matrix, which determines the distribution of data.

5 .1 .4  A l g o r it h m

We restrict our analysis to affine array references in loop nests whose upper and lower 

bounds are affine. We assume that the iterations of the outermost loop are distributed 

among processors. To exploit data locality and reduce communication among processors, 

we further look at transformations that facilitate block transfers so that the data elements 

which are referenced are brought to local memory in large chunks; this allows to amortize 

the high message start-up costs over large messages. We assume that the data can be 

distributed along any one dimension of the array (wrapped or blocked) and that the loop 

index variable appearing in the subscript expression of the distributed dimension of our 

base array and any array which is identically distributed is that corresponding to the 

outermost loop. The results can be generalized where data is distributed along multiple 

dimensions and block transfers set up in outer iterations. Again we assume that the arrays
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which are used iri the iterations of the loop nest are not replicated onto the available 

processors.

5 .1 .5  C r it e r ia  f o r  C h o o s in g  t h e  E n t r ie s  in  t h e  T r a n s f o r m a t io n  

M a t r ix

Let the array indices of the original loop be . . .  , i n. Let the array indices of the 

transformed loop be j \ ,  j'2, . . . ,  j n. We look for transformations such that the Ihs array 

has the outermost loop index as the only element in any one of the dimensions of the 

array, e.g. C[*, j \ , . . . ,  *] where j \  is in the r th dimension and indicates a term 

independent of j \ .  The Ihs array can then be distributed along dimension r. This means 

that the data reference matrix C'n  of the transformed array reference C,  has at least one 

row in which the first entry is non-zero and the rest are zero, i.e., there is a row r in 

C ^T -1 =  [a, 0 , 0 , . . . ,  0]. For all arrays that appear on the right hand side:

•  If a row in all the data reference matrices of an array is identical to a row in the 

reference matrix in the Ihs array, then that array can be distributed in the same way 

as the Ihs array. There is no communication due to that array, since they are always 

mapped onto the same processor. If all the references of all the arrays have a row in 

the data reference matrix identical to that of the Ihs array, then the entire loop can 

be distributed along that dimension and there is no communication.

•  If the condition above does not hold, choose the entries in T ~1 such that the following 

conditions hold:

1. some dimension of the rhs reference consists only of the transformed innermost 

loop index, e.g. A [*, . . . ,  j n, . . . ,  *]; and

2. all the other dimensions are independent of the innermost loop index (that is,

indicates a term independent of j n).
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This means the transformed reference matrix must have only one non-zero in some 

row r , and that non-zero must occur in column n. If this condition is satisfied, 

then dimension r of the rhs array is not a distributed dimension; thus, we can move 

communication arising from that rhs reference outside the innermost loop. This 

allows a block transfer to the local memory before the execution of the innermost 

loop. This means that a row in the transformed data reference matrix X n  has a row 

with all entries zero except in the last column, which is non-zero. Also, the last 

column of the A'n  has all remaining entries as zero.

• If communication could be moved out of the innermost loop, the previous step 

can be applied repeatedly starting with the deepest loop outside the innermost and 

working outward; this process can either stop at some level of the outside which 

communication can not be moved or when there are no more loops in the loop nest 

to be considered.

The transformation should also satisfy the condition that the determinant is ±  1 and must 

preserve the dependences in the program.

5 .2  T h e  A l g o r it h m

Consider the following loop where n  is the loop nesting level and d, the dimension of the 

arrays.

DO i\ =  1, TV,

DO in -  1, N n
L[C]I + B l =  R[A]I + B r 

ENDDO

ENDDO



I l l

where

C j  i  . . .  C[7 a n  . . .  a l r

C and A  =

ddl ■ ■ ■ ddn

are the access or reference matrices for the Ihs array L  and rhs array R,  respectively,

I  =

is the iteration vector, and

b\ b\

B l = and B r =

ii

------1i

are the constant offset vectors for the Ihs and rhs arrays, respectively. Let the inverse of 

the transformation matrix be

< 7 1 1  • • •  Q\r

Q = T-

The algorithm is shown in Figure 5.1. We use the notation A[i , :] to refer to the zth row of 

a matrix A,  and A[. ,j\  to refer to the jth  column of a matrix A.
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Step 0: If a row in the reference matrix of all the arrays are the same, then 
there is no communication involved. The data can be distributed along 
the respective dimension and all the data for the computation will be in 
local memory. (Initialized <— 1).

Step 1 : Distribute Ihs array along dimension i, i.e. set c).[T '] =  
[1 0  ■ • • 0], where c) represents row i of the Ihs array C.

Step 2: Choose a rhs array which does not have a row in the reference 
matrix the same as that of Ihs array. For each row j  in turn, set: 
a?’.[T~l] =  [0 0 • ■ • 0 1] for a reference to that array and aFk^  ■ qn =  0, 
where a? represents row j  in the data reference matrix for the pth rhs 
array A, and qn is the n th column of T ~ l.
If a valid T ~ l is found, check the determinant of T ~ l. If non-zero block 
transfers are possible for that rhs array, (break) go to Step 3.
If there are no valid T ~1 or the determinant of T ~1 is zero, block transfers 
are not possible for dimension j  on that array with the given distribution 
of the Ihs array; therefore, increment j  and go to Step 2.

Step 3: Repeat Step 2 for all the reference matrices of a particular array to 
check the results for that particular value of j .

Step 4: Repeat Step 2 for all distinct arrays on rhs. (Increment p)

Step 5: Check the number of arrays where block transfers are possible.

Step 6: Repeat Step 1 to Step 4 for Ihs array distributed along each of the 
other dimensions in turn (Increment i ).

Step 7: Compare the number of arrays that can have block transfers and 
distribute Ihs array along the dimension which yields maximum number 
of block transfers for the arrays on the right hand side.

F ig u re  5 .1: A lg o rith m  fo r D a ta  D istrib u tio n  and  L o o p  T ran sfo rm atio n s
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5 .3  E x a m p l e s

We illustrate the use of the algorithm through several examples in this section. The reader 

is referred to the work by Ramanujam and Narayan [67] for a detailed discussion of the 

algorithm. In the following discussion, we refer to the matrix T ~ l as the matrix Q.

Example 5.2 Matrix Multiplication

DO i = 1,7V 
DO j  — \, N  

DO k =  1 , N
C [ i , j } = C[i,j] + A[ i ,k]*B[k , j ]

ENDDO
ENDDO

ENDDO

The reference matrices of the arrays are:

1 0 0 1 0 0 0 0 1
) A n , and B n  =

0 1 0 0 0 1 0 1 0

Step 1: C  distributed along first dimension. Set

CTC[1,:] • Q [:,l] =  l

Cn { 1,:] • Q[:,2] =  0

C *[l,:] • Q[:, 3] =  0

Therefore we have, qu =  1, gi2 =  0, and q\j =  0.

Step la : Derive distribution of array A.  Since row 1 of A is the same as that of C, i.e., 

<5k[1, :] =  Ak[  1,:]. distribute A  and C  identically.
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Step 2.1: Derive distribution for array B.  Check if you can find a matrix, B r Q  of the 

form

B n Q  —

0 0 1

? ? 0

where ? denotes entries we do not care about. Set

B n [ 1,:] • Q[:, 1] =  0 

B n [ 1,:] ■ Q[:,2] =  0 

B n [ 1,:] ■ g[:,3] =  l

Therefore we have, g3! =  0, q22 =  0, and </33 =  1. In addition, set B r [2,:] ■ Q[: 

, 3] =  0. This implies q23 =  0- Therefore, the first dimension of B  is not distributed. 

Finally we have,

1 0 0

r  = Q ~  q2\ q22 0

0 0 1

For a unimodular transformation, g22 =  ±  1. Note that the dependence vector is 

[0 0 1], and therefore, there are no constraints on q2i. This results in the identity 

matrix as the transformation matrix, and thus nothing need be done. Distribute A  and 

C  by rows, and B  by columns. The code shown next gives the best performance we 

can get in terms of parallelism and locality. Note that the communication is carried 

out outside of the innermost loop. In this way a coarser grain in the communication 

pattern is achieved by vectorizing the messages.

DO u =  I, N
DO v = I, N  

send B[*, 21]
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receive B[*,v]
DO w  =  1, N

C[u, v] — C[u, w] +  A[u, w] * B[w, w]
ENDDO

ENDDO
ENDDO

We go ahead and complete the algorithm by looking at distributing the Ihs array in 

the next dimension.

Step 1.1 : C  distributed along second dimension. Set

Cn[ 2,:] • <?[:,1] =  1 

Cn [2,:] • Q{:, 2] =  0 

Cn [ 2,:] • Q[:,3] =  0

Therefore we have, ry2i =  1, Qn =  0, and q23 =  0.

Step 1.1a: Derive distribution for array B.  Since second row of B n  is the same as the

second row of Cn  distribute B  same as C.

Step 2.2: Derive distribution for array A. Check if you can find a matrix, A n Q of the

form

0 0 1
A n Q  =

? ? 0

where ? denotes entries we do not care about. Set

A k [ 1,:] • Q[:, 1] =  0

A n [ 1,:] • Q[:, 2] =  0

A ^ l,:]  • Q[:,3] =  l
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Therefore we have, qn =  0, qi2 — 0 and g!3 =  1; and An[2,:] • Q[:, 3] =  0

(733 =  0.

Finally we have,

0 0 1

t ~1 =  i o o

531 532 0

For a unimodular transformation, g32 =  ±  1. Therefore,

j > - \  =

0 0 1 0 1 0

1 0 0 and T  — 0 0 1

0 1 0 1 0 0

Distribute arrays A, B,  and C  by columns. The transformed loop is given below:

DO u = l , N  
DO v = I, N  

send A[*, u\ 
receive A[*, v\
DO w — \, N

C[w ,'«] =  C[w, m] +  A[w, n] * B[v, u]
ENDDO

ENDDO
ENDDO

We see that the performance of the loop is similar in both cases. Therefore array C  

can either be distributed by columns with the above transformation, or by rows with no 

transformation for the same performance with respect to communication. Again notice 

that the communication is carried outside of the innermost loop.

Consider the Symmetric Rank 2K (SYR2K) code, from the Basic Linear Algebra 

Subroutines (BLAS) [56]), example shown below.
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Example 5.3 SYR2K

DO i =  I, N
DO j  =  i, m in ( i  + 2b — 2, N)

DO k =  ma,x(i — b +  1, j  — b +  1, 1), m in( i  +  b — 1 , j  + b — 1, T V )  
C[i, j  — i +  1] = C[i, j  — i +  1] +  A[k, i — k + b] * B[k, j  — k + b] 

+  A[k, j  — k +  b] * B[k, i — k +  6]
ENDDO

ENDDO
ENDDO

The reference matrices for the arrays are:

C7? —

1 0 0 0 0 1 0 0 1
4 1 — f}2 —

» tz ~  — , and A \  = B'n  =
- 1  1 0 1 0 -1 0 1 -1

Step 1: C  row distributed. Set

Cn [ 1,:] • Q[:, 1] =  1 

Cn [ 1,:] • Q[:, 2] =  0 

Cn [ 1,:] • <?[:, 3] =  0.

Therefore we have, qw — 1, gt2 =  0, and q13 =  0. None of the other references 

matrices have any row common with Cn-

Step 1.1: Derive distribution of A  for the first reference; check if first dimension of A  

can be not distributed. Check if you can find a matrix, A xn Q of the form

—

0 0 1

? ? 0
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where ? denotes entries we do not care about. Set

A jj[ l , :] 

:]

A)e[l>:]

Q[:,1] =  0 

Q[:, 2] =  0 

Q[,  3 ]=  1.

Therefore, g31 =  0, 532 =  0, and g33 =  1. In addition, Ah[2 , :] • Q[;> 3] =  0 implies 

Qn ~  (?33 =  0, which is impossible. Therefore, the first dimension of A  has to be 

distributed.

Step 1.2: Derive distribution of A  using first reference; check if second dimension of A  

can be not distributed. Check if you can find a matrix, A ln Q of the form

A xn Q —

? ? 0 

0 0 1

where ? denotes entries we do not care about. Set

A'n [ 2,:] • Q[:, 1] =  0

A [n [2,:] • Q[:, 2] =  0

^ [ 2 , : ]  ■ Q[:, 3] =  1

and v4jj[l,:] • Q[\, 3] =  0. Therefore, q n  -  q3l = 0  =$> q l3 =  1; q n  -  g32 =  0 = »  

g32 =  0; and (/)3 -  q33 =  1 ==> g33 =  — 1, which is impossible since g33 =  1. Thus 

the second dimension of A  also has to be distributed. Based on an analysis of the

first reference of A,  every dimension of A must be distributed. A similar result
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follows from an analysis of the second reference to A  as well. Since the reference 

matrix for array A  and B  are the same, there can be no block transfers for B  as well.

Step 2.0 : C  column distributed. Set

Therefore,

and

Cn [ 2,:] • Q [:,l] =  l 

Cn [ 2,:] • Q [:,2 ] = 0  

Cn [2 ,:] • Q[:, 3] =  0 .

“̂ 11 +521 — 1 = >  5n =  <721 — 1, 

— 512 +  522 =  0 =>■ 512 =  522)

—5i3 +  523 =  0 = + > 5i3 =  523-

Step 2.1a: Derive distribution of A; check if the first dimension of A  can be not dis

tributed. Set

0 

0 

1.

Therefore, =  0, 532 =  0 and 533 =  1, and

^[1,:] • Q[,  1] = 

^ [ 1 , : ]  • Q[:,2] =  

A U 1,:] ■ Q[:,3] =

:] ' <21+ 3] =  0  = »  513 -  533 =  0  7 , 3  =  1 and 523 =  1 -
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This means that under a column distribution of array C,  the first reference to array 

A,  i.e. A {n  allows A  to be not distributed along its first dimension. We now check 

if the same result can be obtained with the second reference to array A,  i.e. A \ .

Step 2.1b: Second reference of A,  check if the second reference allows the first dimension 

of A  to be not distributed: Set

1^1,:] • Q[:,1] = 0 

i ^ l , : ]  ■ Q[:,2] =  0 

^ [ 1 , : ]  • Q[:, 3] =  1.

Therefore, q3i =  0, q32 =  0 and qn =  1,

A?k[2,:] ' <9[h 3] =  0 = 4- q23 — qn — 0

and (/23 =  1.

Thus both references to A  allow A  to be not distributed by its first dimension. Thus, A  can 

be column distributed (by its second dimension). Since B  has identical array reference 

matrices as those of A,  array B  can also be distributed by columns. Recall, that we started 

out with a column distribution of C. Thus, we have the inverse of the transformation 

matrix as

qw q\i 1
f/21 qn 1

0  0  1

- . - 1

The only constraint on the unknown elements is that the resulting matrix be legal and 

unimodular.
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Thus we choose the unknown values such that T is a legal unimodular transformation. 

A possible T ~ l is as shown below.

0 1 1 -1 1 0

1 1 1 =>T = 1 0 -1
1 o o 1 0 0 1

The transformed reference matrices are as follows:

0 1 1
A ' 1 -

0 0 1 /  ^ 0 0 1
, and A £  =

1 0 0 0 1 0 1 1 0

Using the algorithm above we distribute arrays A, B,  and C  by columns. In this way we 

will have communication arising from A  and B.  Since we are using the owner-computes 

rule, the accesses to C  are all local. We can thus move the communication outside the 

innermost loop. The transformed code with block transfers is as shown below:

DO u -- m ax(0,2  — 2b ) ,m in (N  — 1, 2ft — 2)
DO v =  max(  1 — N,  1 — b),m:in(N — 1,6 — 1 — u) 

send A[*,u], B[*, v]
receive A[*, v +  6], A[*, u + v + ft], B[*, u + v + ft], B[*, v +  ft]
DO w — max(  1, 1 — v), m i n ( N  — u — v, N )

C[v + w , u +  1] =  C[v +  w, u +  1] +  A\w, v + b]* B[w, u + v + ft] 
+  A[w, u  +  v + ft] * B[w, v +  ft]

ENDDO
ENDDO

ENDDO.

5 .4  R e l a x in g  t h e  O w n e r -C o m p u t e s  R u l e

So far we have relied on the use of the owner-computes rule and have thus assumed that the 

processor who owns the Ihs element of the assignment statement is the one that performs 

the computation. There are cases, though, in which using the owner-computes rule will
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not allow block transfers. When this happens we can try the algorithm by relaxing the 

owner-computes rule.

If we apply the method presented earlier to the code shown in Example 5.4, we find 

that whether array C  is distributed by rows or by columns both arrays A  and B  must be 

distributed in all of their dimensions and thus no block transfers are possible. The code 

shown in Example 5.4 is a variation of the code we have already seen in Example 5.3.

Example 5.4 Consider the following code:

DO? =  1,7V 
DO j  = \ , N  

DO k =  1,JV
C[i,j] = C [ i , j ] +  A[k, i — k + b\* B [ k , j  -  k: + b]

+  A[k, j  — k + 6] * B[k, i — k + b\
ENDDO

ENDDO
ENDDO

By relaxing the owner-computes rule and modifying the algorithm accordingly we 

find that block transfers are indeed possible. We could distribute arrays A  and B  by rows 

and array C  by columns and obtain the following code

D O u  =  1,JV 
DO v = \ , N  

DO w = 1 , N
tmp[w\ =  tmp[w\ +  A[u, v — u +  b] * B[u, w — u + b]

4- A[u, w — u + b] * B[u, v — u + 6]
ENDDO 
send tmp[*\ 
receive C[*, u]

ENDDO
ENDDO

where tmp  is a temporary column vector used to store the column of C  which is computed 

locally. This same column storage is used each time the processor needs to compute a
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column of C. Another alternative is to distribute arrays A, B,  and C  by rows instead and 

use the code shown below

DO u = l , N  
D O v -  1 , N  

D O w  =  1, N
tmp[w] =  tmp[w\ +  A[u, w — u + b]* B[u, v — u + b]

+  A[u, v — u + b\ * B[u, w — u +
ENDDO 
send tmp[*\ 
receive C[u,*}

ENDDO
ENDDO

where tm p  is a temporary row vector used to store the row of C  which is computed locally. 

This same row storage is used each time the processor needs to compute a row of C.

We notice that when the algorithm presented previously could not find a solution that 

would allow block transfers we could then, by relaxing the owner-computes rule, allow 

block transfers by allowing some other processor to perform the computation.

5 .5  T h e  E x t e n d e d  A l g o r it h m

In order to explain the algorithm in Figure 5.2 we will use it to obtain the solution for 

the problem shown below. This is the code from Example 5.4.

DO % =  1, iV 
DO j  =  1,7V 

DO A; =  1, iV
C[i, j } = C[i, j } + A[k, i - k  + b] * B[k, j - k  + b]

+  A[k, j  — k + b] * B[k, i — k + b\
ENDDO

ENDDO
ENDDO

Notice that the accesses to the two-dimensional arrays A, B,  and C  are such that while 

C  is being accessed along its second dimension it is the first dimension of arrays A  and
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Step 0 thru Step 7: These steps are the same as in Figure 5.1.

Step 8: If no block transfers are possible, then initialize i to 1.

Step 9: Choose a rhs array and distribute it along dimension i. This array is 
now the base array.

Step 10: Choose an array which does not have a row in the reference matrix 
the same as that of the base array. For each row j  in turn, set: Vj. [T~ '] =  
[0 0 ■ • ■ 0 1] for a reference to that array and b1̂  • qn =  0.
If a valid T ~ 1 is found, check the determinant of T ~ 1. If non-zero block 
transfers are possible for that array, (break) go to Step 11.
If there are no valid T ~ 1 or the determinant of T ~ 1 is zero, block transfers 
are not possible for dimension j  on that array with the given distribution 
of the base array; therefore, increment j  and go to Step 10.

Step 11: Repeat Step 10 for all the reference matrices of a particular array to 
check the results for that particular value of j .

Step 12: Repeat Step 10 for all distinct arrays if necessary. (Increment p )

Step 13: If no block transfers are possible, then increment i and repeat 
Step 10.

Step 14: If block transfers are possible, then stop. Otherwise, initialize i to 
1, repeat Step 10 for a new rhs base array and stop when a solution is 
found or there are no more rhs arrays to be chosen as base arrays.

F ig u re  5 .2: E x p an d ed  A lg o rith m  fo r D a ta  D istrib u tio n  and  L o o p  T ran sfo rm a tio n s
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B  which is being accessed. In other words this is an example of communication along 

distinct axes. Note that the alignment phase will not be able to eliminate the interprocessor 

communication in this case because the index variables that are used for the accesses along 

the dimensions are different. In other words, the first dimension of A  and B  are indexed 

with a variable distinct to the variable used for the accesses along the second dimension 

of array C.

We identify the reference matrices as shown below

1 0 0 0 0 1 0 0 1
A 1 — R2 — A2 — R 1 — ) n  ~  n n  ~

0 1 0 1 0 -1 0 1 -1

The steps resulting from applying the algorithm to the problem above are presented in 

what follows.

1. C  distributed along its first dimension. Set

Cn{ 1,:] ■ Q [ : , l ] =  1

Cn\  1):] • <?[:, 2] =  0

Cn\  1,:] II o

from which we obtain, qn =  1, qn — 0, qn — 0. Note that there are no rows in 

any of the other reference matrices which are the same as any of the rows of Cn . 

Otherwise, we could determine at this point which of the remaining arrays could be 

distributed using the same distribution that we have for C.

(a) Derive distribution for the first dimension of array A  using the first reference 

matrix of A,  i.e. A ln  by checking if the first dimension of A  can be not
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distributed. In other words, check if we can find a matrix of the form

Set

A ^ Q
0 0 1 

? ? 0

A i m  

^ [ 1,:] 

A }j[l,:]

<3[:,1] =  0

Q[:, 2] =  0 

Q[:, 3] =  1

to obtain q \̂ =  0, g32 =  0, and q33 =  1. To satisfy the requirement that 

the innermost loop index variable must not appear in the second dimension, 

also set A ^ [ l , :] • Q[:, 3] =  0 from which we obtain <713 =  <733 =  0 which is 

a contradiction to the above finding which said that =  1. Therefore, the 

first dimension of A  must be distributed and thus we can not perform block 

transfers for A  along its first dimension. Since B \  =  A xn  this means that we 

can not perform block transfers for B  along its first dimension either. This is 

all assuming that C  is distributed along its first dimension.

(b) Derive distribution for the second dimension of array A  using the first reference 

matrix of A, i.e. A {n  by checking if the second dimension of A  can be not 

distributed. In other words, check if we can find a matrix of the form

A-jiQ
? ? 0 

0 0 1
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Set

A'n [ 2,:] • Q [ : ,1 ]= 0  

A'n [2,:\ • Q[:, 2] =  0 

A'n [ 2,:] • Q[:,3] =  l.

Therefore q\\ =  g3i =  0, ql2 =  g32 =  0, and gj3 =  g33 =  1. Now set 

A xn { 1,:] • Q[:, 3] =  0 that is, g33 =  0 which is again a contradiction to the 

above finding which said that g33 =  1. Thus, the second dimension of A  

must be distributed and thus we can not perform block transfer for A  along 

its second dimension. Since B \  =  A xn  this means that we can not perform 

block transfers for B  along its second dimension either. Remember that this 

analysis has been made assuming that the Ihs array C  is distributed along its 

first dimension.

2. C  distributed along its second dimension. Set

Cn { 2,:] • <3[;> 1] =  1 

Cn [ 2,:] • Q [ : ,2 ]= 0  

Cn { 2,:] • Q[:,3] =  0

Therefore q2\ =  1, q22 — 0, and q23 =  0. Again there are no rows in any of the other 

reference matrices that are the same to any of the rows of C-r .

(a) Derive distribution for the first dimension of array A  using the first reference 

matrix of A,  i.e. A ln  by checking if the first dimension of A  can be not
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distributed. In other words, check if we can find a matrix of the form

Set

A\iQ
0 0 1

? ? 0

A [ l > :]

A mi

A i m

<?[:,!] = 0  

Q[:,2] = 0 

Q [:,3 ]=  1

to obtain q3l =  0, q32 = 0, and q33 =  1. Also set A [ l > :] ' Q[:> 3] =  0 which 

yields qi3 =  q33 =  0 which is a contradiction. Therefore the first dimension 

of A  must be distributed. This means that we can not perform block transfers 

along the first dimension of A. Note that B \  =  A {n  and thus we can not 

perform block transfers along the first dimension of B  if C  is distributed along 

its second dimension.

(b) Derive distribution for the second dimension of array A  using the first reference 

matrix of A,  i.e. A ln  by checking if the second dimension of A  can be not 

distributed. In other words, check if we can find a matrix of the form

A\iQ  —

? ? 0 

0 0 1

Set

A[2,:] • <?[:,!] =0
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A ln [ 2,:] • Q [ : ,2 ]= 0  

< [ 2 , : ]  • Q[:, 3] =  1.

Therefore </n =  g31 =  0, qi2 =  qn  =  0, and ql2 =  q33 +  1. Now set 

A j j l , :] • Q[\, 3] =  0 which yields g33 =  0. Thus q\2 =  1. This results in

Q =

0 0 1 

1 0 0 

0 0 0

which is not unimodular. Therefore the second dimension of A  must also be 

distributed. This means that we can not perform block transfers along the 

second dimension of A  and, as before, since B \  =  A xn  we can not perform 

block transfers along the second dimension of B  either. Therefore, using the 

owner-computes rule does not allow block transfers for either array A  or array 

B.

3. At this time we relax the owner-computes rule and allow the owner of a rhs array to 

be the one performing the computation. A  distributed along its first dimension. Set

:]

:]

g [ :, l]  =  1

Q[:, 2] = 0  

Q [ : , 3 ] = 0

from which we obtain, qn =  1, qi2 =  0, g33 =  0. Note that the first row of A ^ ,  

B ^ ,  and B \  is identical to the first row of A xn . Therefore, both arrays A  and B  can 

be distributed by rows.
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(a) Derive distribution for the first dimension of array C  to check if it can be not 

distributed. Check if we can find a matrix of the form

Cn Q
0 0 1 

? ? 0

Set

Cn [ 1,:] • Q[:,1] =  0 

Cn [ 1,:] • Q[:, 2] =  0 

Cn [ 1,:] • Q[:,3] =  l

which results in q\\ — 0, 912 =  0 , and gi3 =  1. Now set

Cn [2, :]•$[:, 3] =  0

which yields q23 =  0 . This means that

Q =

0  0  1

<721 <122 0

1 0 0

which is unimodular if we choose q22 =  ±1, i.e.

Q =

0  0  1

0  1 0

1 0  0
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Therefore, by distributing A, B  by rows and C  by columns and using the transformation 

shown above we can transform the code to

DO u =  1 , N  
D O d  -  1 , N  

DO w — \ , N
tmp[w\ =  tmp[w\ + A[u, w — u + b]* B[u , v — u + b]

+  A[u, v — u + b] * B[u, w — u + b]
ENDDO 
send tmp[*\ 
receive C[*,u]

ENDDO
ENDDO.

5 .6  U s in g  T il in g  t o  O b t a in  H ig h e r  G r a n u l a r it y  in  t h e  

C o m m u n ic a t io n  Pa t t e r n

It would be advantageous to continue to increase the granularity of the communication 

between processors. One way to accomplish this is by tiling one or more dimensions of 

the iteration space. Tiling is a well known technique used to assign blocks of iterations, 

instead of just one at a time, to the available processors [5, 6, 69, 86]. In what follows we 

provide several ways in which the above code could be tiled. Note that the loops have 

been interchanged.

5 .6 .1  T il in g  O n e  D im e n s io n  O n l y

We can tile one or more dimensions of the iteration space. For every loop that we tile 

a new loop, the one that schedules the tiles, will be added. The old loop is modified to 

schedule the iterations along the tiled dimension. We will now show several examples of 

how to tile the loop nest that resulted from applying the algorithm in Figure 5.2 (relaxing 

the owner-computes rule) to the code shown in Example 5.4.

If the loops are interchanged so that the order of the loops is (w, u, v ), by tiling loop 

u, which results in an outer loop uT and an inner loop u followed by the innermost loop v,
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we could now either read a block of columns as shown in Figure 5.3(a) for the following 

code

DO w  =  1, N
DO uT =  1 , N , S

DO u =  1, min(uT + S  — l , N )
DO v — \ , N

tmp[v, u] =  tmp[u, v] +  A[w, u — w + b\* B[w, v — w + b]
+  A[w, v — w + b\* B[w, u — w  +  6]

ENDDO
ENDDO
send tmp[*, ur],tmp[*, uT + 1], ■ • •, tmp[*, u t  + S  — 1] 
receive updated block of  columns o f  C owned locally 

ENDDO 
ENDDO

or a block of rows as shown in Figure 5.3(b) for the code shown below, where tm p  is 

a temporary array with S  columns. The storage allocated to the temporary array tm p  is 

reused each time a new block of columns of C  need to be computed by the processor. The 

uT loop schedules the tiles and loops u, and v schedule iterations within the tile.

DO w =  \ , N
DO u t  =  1, N, S

DO u — \ ,m in (uT  + S  — 1, N)
DO v =  I, N

tmp[u, v\ =  tmp[u, v] +  A[w, u — w  +  b] * B[w, v — w + b\
+  A[w, v — w +  b] * B[w, u — w +  b]

ENDDO
ENDDO
send tmp[uT, *], tmp[uT +  1, *],•■•, tmp[uT + S  — 1, *] 
receive updated block o f  rows o f  C owned locally 

ENDDO 
ENDDO

Now, if in the other hand the loops are interchanged so that the order of the loops is 

(w, v, u ), by tiling loop v to obtain a tiled loop vt and an inner loop v, which encloses 

loop u, we could either read a block of rows as shown in Figure 5.4(a) for the code below
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DO w  =  1, N
DO vT =  1 , N , S

DO v =  1 , m,in(vT + S  — 1 ,  T V )
DO u = \ , N

tmp[v, u) =  tmp[v, u\ +  A[w, u — w +  b}* B[w, v — iv +  b]
+  A[w, v — w + b\* B[w, u — w + 6]

ENDDO
ENDDO
send tmp[vT, *], tmp[vT +  1, *],••■, tmp[vT +  S  — 1, *] 
receive updated block o f  rows o f  C owned locally 

ENDDO 
ENDDO

or a block of columns in Figure 5.4(b) for the following code. In either case the vt loop 

schedules the tiles and loops v, and u iterate within the tile.

DO w  =  \ , N  
D O v t  =  1 , N , S

D O « =  l , m i n { v T  +  S  — 1, N)
D O u = \ , N

tmp[u, v\ — tmp[u, v\ + A[iv, u — w + b\* B[w , v — w +  fr]
+  A[w, v — w + b\* B[w,  u — w + /;]

ENDDO
ENDDO
send tmp[*, vt], tmp[*, vT +  1], • • •, tmp[*, vT +  S  — 1] 
receive updated block o f  columns o f  C owned locally 

ENDDO 
ENDDO

5 .6 .2  T il in g  T w o  D im e n s io n s

In the previous section we showed how to tile the transformed code at the end of Section 5.5 

along one dimension of the iteration space. In this section we show how to tile two 

dimensions of the iteration space of our running example. This could be done in several 

ways one of which is shown below. Notice that both loops u, and v are tiled resulting in



134

V

A
u
A

( a )

C[v,u] = ••
( b )  

C[u,v] =

Figure 5.3: Tiling of Loop u to Result in Messages Consisting of (a) Columns or (b) 
Rows.

V

A
U

A

U -5»*V

( a )  ( b )

C[v,u] = -  C[u,v] = -.

Figure 5.4: Tiling of Loop v to Result in Messages Consisting of (a) Rows or (b) Columns.
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two new loops vt and ut along with the modified v and u loops. The tile loops vT and 

ut will schedule the tiles and loops v and u will schedule iterations within the tiles.

We are only tiling a maximum of 2 dimensions of the iteration space. In general, if 

the original loop nest consists of n  loops the tiled loop nest will consist of 2n  loops n 

of which will schedule the n — dimensional tiles and the other n  will schedule iterations 

within the tiles. Though both tile block sizes are shown using the same symbol, i.e. S,  

this does not have to be the case in general and we could have a tile size S\ for one of the 

loops and S 2 for the other.

DO w — 1, iV
DO ut =  1 , N , S  

DO vT =  1 , N , S
DO u  =  1, min(uT  +  S  — 1, N )

DO v = I , m in(vT + S  — \ , N )
tmp[v, u] =  tm,p[u, v] +  A[w, u — w + b]* B[w, v — w + b\

+  A[w, v — w + b] * B[w, u — w + b]
ENDDO

ENDDO
send tmp[vT : vt + S  — 1 , ut '■ ut + S  — 1] 
receive updated block o f  columns o f C  owned locally 

ENDDO 
ENDDO 

ENDDO

5 .7  C o m p a r is o n  W it h  O t h e r  W o r k

Li and Pingali [56] used user specified data distributions and developed a systematic loop 

transformation strategy identified by them as access normalization which restructures 

loop nests to exploit locality and block transfers whenever possible.

Li and Pingali [57] discuss the completion of partial transformations derived from the 

data access matrix of a loop nest; the rows of the data access matrix are subscript functions 

for various array accesses (excluding constant offsets). Their work assumes that all arrays 

are distributed by columns.
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Kremer [52] proves the dynamic remapping problem NP-complete. Kremer et al. [53] 

and Kremer [51] consider the profitability of dynamic remapping and use an interactive 

tool for automatic data layout, respectively.

5 .8  C h a p t e r  S u m m a r y

In this chapter a (unimodular) matrix-based approach for finding array distributions was 

presented. This approach finds a unimodular transformation which is derived from the 

array references. In this way the volume of the iteration space is not affected when 

going from the original iteration space to the transformed iteration space. In addition, 

the method also moves communication out of the innermost loop so that messages could 

be vectorized reducing the amount of communication by an order of magnitude. An 

algorithm was provided and several detail examples were used to show the effectiveness 

of this systematic approach. This algorithm begins by assuming the owner-computes rule 

and relaxes it if no block transfers solution is achieve.

This is the only method that we know of which makes use of matrices in order to 

determine the best distribution. In this way loop transformations and communication 

improvements are performed at the same time. The result is a transformed code which 

performs communication at an outer level so that the data is local to the memories before 

the execution of the innermost loop. Furthermore, we have presented how to use tiling to 

increase the granularity of the resulting communication.



C h a pt e r  6

D is t r ib u t io n : A  G r a ph -b a s e d  A ppr o a c h

The distribution phase of the data mapping problem can be defined as the phase where the 

abstract template, and thus all the arrays aligned to it, are mapped onto the physical pro

cessors. This phase comes after the data structures have been aligned to the template. As 

with the alignment phase, the distribution phase can be subdivided into static distribution 

and dynamic distribution.

The rest of this chapter is organized as follows: Section 6.1 introduces the distribution 

preference graph (DPG), Section 6.2 presents how the DPG can be used to determine the 

distribution of arrays, and Section 6.3 shows the results of applying the DPG method of 

determining the distribution of arrays to the code for Jacobi, ADI, Disper, Livermore, and 

Shallow. Section 6.4 is a review of the related work and Section 6.5 the chapter summary.

6 .1  T h e  D is t r ib u t io n  P r e f e r e n c e  G r a p h

Assume that we are using the owner-computes rule where the processor which owns the 

Ihs array element of an assignment statement is the one that performs the computation. 

Then, for a parallel loop, what we need is for the dimension of the Ihs array subscripted 

by the loop variable of the parallel loop to be the one to be distributed [30]. In this chapter 

we will be using the distribution preference graph (DPG). The DPG is a bipartite graph 

whose nodes represent loop index variables and array dimensions. Undirected edges are 

used to connect each loop index variable node to the array dimension nodes that use it 

in the subscripted expression and to connect array dimensions which use the same index 

variable. Labels are used for the loop node edges and these correspond to the constant
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coefficient which multiply the index variable in the subscripted expression. We will also 

use zero weight directed edges connecting a loop node with an array node that does not 

have the loop index variable as part of its label, though we will not be showing them most 

of the time. In other words, a zero weight directed edge will be used when the coefficient 

of the loop index variable for a particular array dimension is zero.

We are looking for disjoint cycles that will include one loop node and exactly one 

array node from each column. If this is the case we can then distribute an array along the 

dimension included in the cycle and have the loop corresponding to the loop node variable 

as the outermost loop by performing loop interchange if necessary.

6.2 How t o  U s e  t h e  DPG t o  D i s t r i b u t e  t h e  A r r a y s  

w i t h i n  a  L o o p  N e s t

Example 6.1 shows a piece of code where an array A  is assigned the transpose of array B.  

The distance vector for this loop nest is d = (0 ,0)r , i.e. either loop can be parallelized.

Example 6.1 Row and column

DO i — \ , N
DO j  — \, N

A['i, j] =  B[j,i]
ENDDO

ENDDO

The DPG for the example above is shown in Figure 6.1(a) and the available disjoint 

cycles (1 and 2) in Figure 6.1(b). In Figure 6.2(a) we show cycle 1. If the code above is 

distributed as suggested by cycle 1, then array A  will be distributed by rows and array B  by 

columns to result in no inter-processor communication. Loop i will be the outermost loop. 

If in the other hand the distribution is determined by cycle 2 in Figure 6.2(b) then array 

A  will be distributed by columns and array B  by rows also resulting in no inter-processor 

communication. In this case loop j  would be the outermost loop.
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A B

(a)

A B

cycle 1

Cycle 2
F ig u re  6.1: D P G  fo r A[i , j ]  =  B[j ,  i\ in E x am p le  6.1 .
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cycle 1

A B

cycle 2

F ig u re  6 .2: D P G  fo r  A[i , j \  =  B[j ,  i] in E x am p le  6.1 S h o w in g  th e  In d iv id u a l C ycles.
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Our next example is the code for matrix multiplication shown in Example 6.2. The 

DPG is shown in Figure 6.3(a) and the existing cycles in Figure 6.3(b). Note that there are 

three disjoint cycles (1,2, and 3) in the DPG shown in Figure 6.3(b) but none of the cycles 

visits exactly one node from each array. In this case we have that each of the cycles visits 

exactly one node from two of the three arrays. This is an indication that, unless the array 

which is not visited by a cycle is replicated, there is no communication-free solution.

Example 6.2 Matrix Multiplication

DO i = I, N
DO j  — I, N

DO k — N
' c [i,j\ = C[i,j] + A[i, k] * B[k, j]

ENDDO
ENDDO

ENDDO

In this case our options are: distribute arrays C  and A  by rows and then choose between 

a row or a column distribution for B,  or distribute C  and B  by columns and choose between 

a row or a column distribution for A.  Consider cycles 1 and 2 in Figure 6.4(a). If C  and A  

are distributed by rows as indicated by cycle 1 and B  by columns as indicated by cycle 2, 

then the communication arising due to the B  term can be moved outside of loop k  and an 

entire block (column) of B  (B[*, j \)  can be read. We can make the i loop the outermost 

loop, followed by loop j ,  and then loop k. Since cycle 2 includes index variable j  then 

the j  loop will carry the communication which could be moved outside of loop k. Note 

that there will be no communication arising from the accesses to C  and A.  The only way 

to avoid the communication due to B  is by replicating array B.

Now consider Figure 6.4(b). In this case we are considering only cycles 1 and 3. If 

C  and A  are distributed by rows (cycle 1) and B  is distributed by rows (cycle 3) then 

there will be no communication from the accesses to arrays C  and A,  but there will be
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A B

(a)

cycle 1

cycle 2

B

k*

,'j-0 ©
J

o

1 ' r e 

cycle 3

k*

(b)

F ig u re  6 .3: D P G  fo r M atrix  M u ltip lica tio n  E x am p le  6 .2  S h o w in g  (a) N o  C y c les  an d  (b)
C y c les  1, 2 , an d  3.
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C A B
cycle 1

cycle 2

(a)

C A B
cycle 1

cycle 3

F ig u re  6 .4: D P G  fo r M atrix  M u ltip lica tio n  E x am p le  6 .2  S h o w in g  (a) C y c les  1 an d  2 and
(b) C y c les  1 and  3.
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communication due to B.  Since the communication will be carried by loop k, we can make 

i the outermost loop, followed by loop k, and then loop j  and move the communication 

outside of loop j .

There are other options which can also be determined from the DPG. For example we 

could choose to distribute C  by columns and B  by rows (cycle 2) and A  by either rows 

(cycle 1) or columns (cycle 3). If A  is distributed by rows we could make j  the outermost 

loop, followed by loop i since it carries the communication due to A,  and then loop k as 

the innermost loop. In this way communication is outside of loop i. If A  is distributed 

by columns then the communication due to A  will be carried by loop k. We could then 

make j  the outermost loop, followed by k, and then loop i. The last two options involve 

making k the outermost loop. We could distribute A  by columns and B  by rows (cycle 

3) and have the choice of distributing C  by either rows (cycle 1) or columns (cycle 2). 

Therefore, the total number of options for the matrix multiplication example is six.

6.3 T h e  DPG M e t h o d  A p p lie d  t o  J a c o b i ,  ADI, D is p e r ,  

L iv e r m o r e ,  a n d  S h a l l o w

We now apply the Distribution Preference Graph (DPG) method to several programs we 

have been using throughout this work, e.g. Jacobi, ADI, Disper, Livermore 18, and a 

section of Shallow. The code segments for these programs were presented in Chapter 2. 

We will only be showing distinct nodes and in some cases we build the DPG for only 

part of the code. This is because otherwise the DPG would be too big to follow and also 

because the rest of the code does not provide any other useful information. Whenever 

necessary we will label the loop node corresponding to the loop that should be made the 

outermost loop, i.e. when the loop node is not the first loop in the DPG. In this way we 

avoid any unnecessary confusion.
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B

•  •

J J

Figure 6.5: DPG for the Jacobi algorithm in Figure 2.6.

Figure 6.5 shows the DPG for the Jacobi algorithm which was presented previously 

in Figure 2.6. The result of using the DPG method is that we have two cycles and can 

either distribute arrays A  and B  by rows or by columns. Note that we are representing the 

entire code and that we are showing only the array nodes which are distinct.

For statements S 1 and S 2 in the ADI code in Figure 2.7 the resulting DPG is shown 

in Figure 6.6. We are only showing the DPG for the above two statements because it 

is essentially the same as for the rest of the statements in Figure 2.7. Since the path 

corresponding to the second dimension in Figure 6.6 is a sequential path, our best choice 

is to distribute the first dimension of arrays x, a, and b. This choice corresponds to the 

cycle connecting the first node of all the arrays in Figure 6.6. Note that we have drawn



146

x a b

i i i

outermost
Figure 6.6: DPG for Statements S 1 and S2 in the ADI Algorithm in Figure 2.7.

only one of the two possible cycles. The other cycle corresponds to a sequential loop and 

this is why we do not consider it.

The code for Disper is shown in Figure 2.8 and its corresponding DPG in Figure 6.7. 

From Figure 6.7 the choice for the distribution of arrays grady, p f m r ,  and ddy is made 

based on the only cycle including a node from each of the arrays, i.e. distribute the arrays 

along their first dimension. The other cycles were not drawn for the sake of clarity.

The choice of distributing the arrays in the code for Livermore 18 presented in Fig

ure 2.9 along their second dimension is based on the DPG shown in Figure 6.8. This 

figure shows only cycle along the second dimension of all the arrays. The other cycle in 

Figure 6.8 corresponds to a sequential loop. This is because loop j  carries a dependence. 

Again note that we have only shown one of the two cycles.
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grady pfmr ddy

il il il

make
outermost

k

-0
Figure 6.7: DPG for the Disper Algorithm in Figure 2.8.

Z A  ZP ZQ  ZM  ZR ZZ Z U  ZV  ZB

F ig u re  6.8: D P G  fo r  the  L iv e rm o re  18 A lg o rith m  in F ig u re  2.9.



148

unew uold z cv h vnew void cu pnew pold

Figure 6.9: DPG for the Shallow Algorithm in Figure 2.12.

As opposed to the code for Livermore 18, Shallow, shown in Figure 2.12, does not have 

any dependences and thus either one of the two cycles (only one is shown) in Figure 6.9 is 

a good candidate for choosing the distribution of the arrays. The arrays can be distributed 

either along their first dimension or along their second dimension. We have drawn only 

the one corresponding to the outermost loop and the second dimension of the arrays.

6 .4  C o m p a r is o n  W it h  O t h e r  W o r k

Chatterjee et al. [20] and Sheffer et al. [76] deal with determining both static and dynamic 

distributions. They use the Alignment-Distribution Graph (ADG) whose nodes represent 

program operations, the ports in the nodes represent array object manipulated by the 

program, and the edges connect array definitions to their respective uses. The ADG is a 

directed edge-weighed graph although it is used as an undirected graph. Communication 

occurs when the alignment or distribution at the end points of an edge is different. The 

completion time of a program is modeled as the sum of the cost over all the nodes 

(which accounts for computation and realignment) plus the sum over all the edges of the 

redistribution time (which takes into account the cost per data item of all-to-all personalized 

communication, the total data volume, and the discrete distance between distributions).

Ayguade et al.’s [8] main effort is directed toward intra-procedural data mappings. 

Candidate distributions are used to build a search space from which to determine, based
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on profitability analyses, the points at which to realign or redistribute the arrays in order to 

improve the performance by reducing the total data movement. The Component Affinity 

Graph (CAG) of Li and Chen [55] is used to determine the best local distribution for 

a particular phase of the code. All the arrays in a phase are distributed identically. 

Control flow information is used for phase sequencing identification. An intra-procedural 

remapping algorithm is provided.

Garcia et al. [30] present an approach to automatically perform static distribution us

ing a constraint based model on the Communication-Parallelism Graph (CPG). The CPG 

contains edges representing both communication and parallelization constraints. The 

constraints are formulated and solved using a linear 0-1 integer programming model and 

solver. They obtain solutions for one-dimensional array distributions, i.e. only one dimen

sion of the arrays is distributed, and use an iterative approach for the multi-dimensional 

problem.

Kremer [52] proves the dynamic remapping problem NP-complete. Kremer et al. [53] 

and Kremer [51] consider the profitability of dynamic remapping and use an interactive 

tool for automatic data layout, respectively.

Palermo and Banerjee [63] deal with dynamic partitioning by building the Commu

nication Graph. In this graph the nodes correspond to statements in the program and the 

edges are flow dependences between the statements. The weight on these edges reflect 

communication. Maximal cuts are used to remove largest communication constraints 

and recursively divide the graph or subgraphs until chunks of code (phases) that should 

share the same partitioning schemes are grouped together. Thus remapping may be in

serted between phases and not within a particular phase to reduce communication between 

phases.
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6 .5  C h a p t e r  S u m m a r y

The subject of this chapter has been how to determine the distribution of arrays in a 

loop-nest by making use of a graph-based model. We have presented the distribution 

preference graph which encodes information about the arrays, the order of the loops in 

the loop-nest, the communication between nodes in the graph, the subscript variables, 

and whether the paths in the graph carry any dependences or not. The DPG is flexible 

enough to allow loop transformations such as loop interchange. An extension to this work 

is in progress to allow and record the effect of loop skewing. Results were presented for 

several problems including some benchmarks.



Ch a pt e r  7

C o n c l u sio n

In this work we have dealt with the data partitioning problem by dividing it into an 

alignment phase followed by a distribution phase, following Fortran D and HPF. We 

have presented several approaches to finding alignment and distribution for a particular 

piece of code. Our work focuses on loops with assignments to arrays, i.e. the Ihs of the 

assignment statement within a loop is an array element. We have chosen to focus on loops 

and on assignment to arrays because most of the execution of scientific programs is spent 

in loops and arrays are the predominant data structure used in scientific programming, 

respectively. As opposed to most researchers we have relaxed the owner-computes rule 

during our work.

7 .1  C o n t r i b u t i o n s

For the alignment phase we presented three constraint-based methods. One which rep

resents the problem as a general linear programming problem and makes use of a linear 

programming solver to find the optimal solution. In this case the problem is expressed as 

a set of inequality constraints based on the first norm or l\ distance between the virtual 

processors to which the elements of the template are assigned. At this point the assignment 

is considered to be one element per virtual processor and the number of virtual processors 

is assumed to be large enough. We used this method for the offset alignment problem 

assuming that the values for the parameters (a 's) multiplying the index variables are 

always one (1) and that only the offset coefficients (/?'s) needed to be found. We proved 

our method to compute both the computation and data alignment using several real life
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programs that are used in the scientific community. The method was also used to solve 

both axis and stride alignment sample problems. Linear Programming tools are readily 

available for a large variety of computer systems.

The second method uses the Lagrange Multiplier method and the software Mathemat- 

ica [90]. For this method we used the Euclidean or U metric and were able to model the 

offset alignment problem for the same programs we used during the Linear Programming 

validation phase. We were also able to model the sample problems we used for the axis 

and stride alignment cases. As in the case of the LP implementation, we were able to 

include additional constraints using this method. We have included in Appendix 7.2 an 

overview of the Lagrange Multiplier method for ease of reference.

The third method uses heuristics to decide which constraints to leave unsatisfied 

when the system of equations is over-constrained according to the penalty of increased 

communication incurred in doing so. Our decisions are based on the information stored 

in the Resource Information Table (RIT). We remind our readers that the component 

alignment problem has been proven NP-complete by Li and Chen [55].

For the distribution phase we have developed two methods to integrate the placement 

of computation with data mapping. Our scope have been one dimensional distribution 

of arrays. In the first method we find the best combination of data and computation 

mapping resulting in low communication overhead by allowing message vectorization. 

Our techniques are based on unimodular transformations. We have also made use of tiling 

to distribute iterations in chunks to further vectorize the messages. This is the first time 

that this approach to distribution is taken.

Our second approach to distribution is based on the distribution preference graph. 

This graph is a variation of the component affinity graph and it allows us to integrate loop 

restructuring transformations and data mappings. Both methods are very useful and could
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be improved further to allow multidimensional distributions. Note that communication 

will be unavoidable in the vast majority of the programs and this is the reason we did not 

restrict ourselves to communication-free problems.

7 .2  S u m m a r y  a n d  F u t u r e  W o r k

Our work fits very nicely with the most recent work of some of the researchers in this area 

where the main effort is directed towards dynamic remapping [8, 48, 49, 63]. Candidate 

alignments and/or distributions for the different loop nests are assumed and the best 

mapping (the one that minimizes execution time) is obtained using methods such as 

graph methods and 0-1 integer programming. In terms of the work performed by these 

researchers our work provides these candidates for alignment and distribution but it goes 

further in that we also deal with the problem of reducing communication when this is 

unavoidable by vectorizing the messages whenever possible.

In terms of future work the following would complement our research.

•  Expanding our distribution algorithms to include multidimensional distributions.

•  Heuristics for distribution.

•  Extending the distribution algorithms for a sequence of loops and imperfectly nested 

loops, with or without partial replication.

• Including in our framework the use of dependence vectors to guide our algorithms 

for both alignment and distribution.

•  Representing the computation and data alignment problems in such a way that an 

integer programming tool could be used to find the optimal solution including the 

optimal solution for axis and stride alignment.
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» Accurate modeling of communication costs and communication primitives available 

on each machine, and matching derived communication to the primitives.

•  Dealing with issues such as control and data flow along with interprocedural anal

ysis.
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A p p e n d ix : L a g r a n g e  M ultipliers M eth o d

The Lagrange Multipliers method is frequently used for constraint optimization problems. 

The following derivation is taken from [65]. Assume that we want to optimize a function 

of two variables y{x \ )x 2)  which is subject to constraint f ( x i , x 2) =  0. Both functions 

y ( x i, £2) and f ( x i , x 2) = 0 are expanded into a Taylor series. Using only the first order 

terms yields:

, dy , dy
dy =  T— dx\  +  — dx2

u X \  O x 2

n d f  , a. d-f A0 =  —  dxi + -K—dx 2 .
O X  1 U X 2

From the second equation above we obtain the following equation by solving for dx2

d,x2
MLdx\
M l
d 'X n

dx\.

This last equation is then substituted into the equation for dy above to obtain the equation 

below

a  d y  a  d y  dy = ^ — ax  1 -  —
O X  1 O X 2

ML
dx\
MLdxo

dx  1

from which we obtain the following equation after rearranging the terms

dy d y  d f

d x > £  d x '
dx  1
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Let A be defined at the stationary point of the constrained function in the following 

manner

dy
\ _  dx2

A  ~  d f  ■
0x2

Thus A is a constant at the stationary point. We then have

dy =
dy d f =  a t v p j )

dx  i

=  0.

But dy =  0 at the stationary point, thus

d{y +  A/)
dx  i

Define the Lagrangian function L  =  y  +  A /, then

which is a necessary condition to locate the stationary points of an unconstrained function 

L  constructed from the function y ( x u x 2) and the constraint equation f ( x u x 2) =  0. 

Similarly, the other necessary condition is found to be

A third equation is given by the constraint equation / .  Note that f  — | |  =  0.

Let z  be a vector of n  components, i.e. x  = ( x \ , x 2, ■ ■ ■, x n). Now let y be a function 

of n  variables, i.e. y(x),  subject to f i (x)  =  0, for 1 < i < m,  where n  > m.  The
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Lagrangian function is then defined as follows

m
L ( x , A) =  y(x)  +  Aif i(x).

i= 1

The stationary points of this problem are located by setting the first partial derivatives of 

the Lagrangian function with respect to the Xj’s and A,’s to zero.

So far we have only dealt with the case when we have equality constraints. If we 

need to deal with inequality constraints, then we add a slack variable to each inequality to 

convert it into an equality. We find from Avriel [7], Bazaraa et al. [15], Bertsekas [16], 

Kuhn and Tucker [54], Pike [65], and Reklaitis et al. [70] that to minimize a function

h m

L ( x , A) =  y(x) +  +  x l+i\ +  Y  Xi M x )
i= 1 1

subject to the conditions f i (x)  <  0, * =  1,2, • • •, h, and f i (x)  =  0, i =  h + 1, h+2,  ■ ■ ■, m, 

where n > m,  and the ^n+i’s are the slack variables used to convert the inequality 

constraints to equalities, the necessary conditions for the existence of a relative minimum 

at a point x* are:

2. fi(x*) < 0  for i =  1,2, — , Ai

3. fi(x*) — 0 for i = h +  1, h +  2, • • •, m

4. Xifi(x*) =  0 for i =  1,2,

5. Xi > 0 for i =  1,2, • ■ •, h

6. A{ is unrestricted in sign for i — h +  1, h +  2, • • •, m



where n  is the number of unknowns, h is the number of inequality constraints, and m  

(n > m ) is the total number of constraints including equality constraints [65]. The 

first condition sets the first partial derivatives of the Lagrangian function with respect to 

Xi, i =  1,2, • • •, n,  equal to zero to locate the Kuhn-Tucker point x*. Conditions 2 and 3 

are the inequality and equality constraints, respectively, that must be met at the minimum 

point found by solving the system of equations obtained from condition 1. The fourth 

condition comes from setting the partial derivatives of the Lagrangian with respect to the 

surplus variables equal to zero. Condition 5 arises from the fact that the rate of change 

of the distance function with respect to the parameters on the rhs of the constraints is 

equal to the negative of the corresponding Lagrange multiplier. By increasing the rhs of 

a constraint the constraint region would be enlarged, which could not result in a larger 

value for the distance function evaluated at x* but could result in a lower value. Thus 

the Lagrange multiplier must be positive to satisfy the rate of change mentioned above 

[65, 70]. Condition 6 is due to a proof that the Lagrange multipliers associated with the 

equality constraints are not restricted in sign [65],
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