
Louisiana State University Louisiana State University

LSU Digital Commons LSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1996

Automatic Data and Computation Mapping for Distributed-Automatic Data and Computation Mapping for Distributed-

Memory Machines. Memory Machines.

Isidoro Couvertier-reyes
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation

Couvertier-reyes, Isidoro, "Automatic Data and Computation Mapping for Distributed-Memory Machines."

(1996). LSU Historical Dissertations and Theses. 6181.

https://digitalcommons.lsu.edu/gradschool_disstheses/6181

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Digital Commons. For more information, please contact gradetd@lsu.edu.

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_disstheses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_disstheses?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F6181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses/6181?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F6181&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

AUTOMATIC DATA AND COMPUTATION MAPPING
FOR DISTRIBUTED MEMORY MACHINES

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Electrical and Computer Engineering

by
Isidoro Couvertier-Reyes

B.S., University of Puerto Rico-Mayagiiez, 1981
M.S., University of Wiscosin-Madison, 1983

May 1996

UMI Number: 9637768

UMI Microform 9637768
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

D edicatio n

This dissertation is dedicated to my wife Jeannette Santos, to my mother Carmen Reyes,

to my children Daniel, David, and Gabriela. It is especially dedicated to you my Father

and Lord Jesus, because everything I have is due to you and I know it very well.

A c k n o w l e d g m e n t s

I came to LSU believing by faith that Jesus Christ and God the Father are One and having

accepted Him as my Savior. Though I believe He was already in my heart it turn out

that much of what I knew about Him was only intellectual knowledge. Thus I decided

to pursue the doctorate and expected Him to follow me with His blessings. Little did I

know my Father had a different agenda for me and that I was the one that would follow,

as it ought to be. His plan was very simple: it was time for me to learn to receive and to

stop achieving and performing, the time to get rid of my pride and my reputation so that

I could finally begin to enjoy His rest, it was time to get to know Him as He intended all

along. In the process I would receive a Ph.D.

It would be impossible for me to explain what have happened to me during the last

five years. But I do want to acknowledge that without my Lord I am nothing and that there

is not a thing outside of Him that my soul needs. Thanks be to God who always leads me

in His triumph in Christ and manifests through me the sweet aroma of the knowledge of

Him in every place. What do I have that I have not received?

The period of time between the dissertation defense and submitting the final version

to the Graduate School was especially difficult. I finally began to feel anxious and that

was not very enjoyable. Once again I had to surrender and believe by faith that He would

somehow give me have victory over the circumstances. Alas, the work of the Holy Spirit

never ends.

My Lord has caused me to cross the paths of many people and these people have

made a great difference in my life. First of all is my friend Jeannette Santos. She is the

woman He personally chose to be my wife and through whom He has taught me many

lessons. It is a fact that I would have not even finish college if it were not for her and it is

because of her that I went to graduate school in the first place. I never expected to get to

love someone as the Lord is teaching me to love my wife. Carmen Reyes is the woman

whom He chose to be my mother and supporter. She made many sacrifices for me and

my brothers and sisters. It is because of my mother that I went to college. She willingly

deprived herself of many things so that I could have.

Daniel Joel Isi, David Jonatan Isi, and Gabriela Jeannette are the children whom the

Lord have given me. What a blessing to have them and to see them everyday. They

have prayed a lot for me and Daniel even corrected my English when I rehearsed with

my family my presentation. I also have to thank my parents in law, Luis Santos and

Esther Cordero, for their prayers and for taking care of our house in Puerto Rico.

I also want to thank Frank Friedmann, my pastor, whose experience the Lord used

during the most critical part of my life to show me that what was happening was the

Lord’s. Billy and Andi Holliday have been a great source of support and I believe this

dissertation is theirs too. May the Lord bless their children Jordan and Conner with the

fullness of God. My friend since sixth grade Ismael Torres has also prayed for me and I am

thankful for him too. Jerry and Naomi Zellmer and Tom and Amy Berube made our stay

in Baton Rouge more enjoyable by sharing with us and having us visit with them. Thanks

to the rest of my brothers and sisters in the Lord who have prayed for me, especially those

at Quail Ridge Bible Church.

I prayed a lot for my Father to show me whom my advisor should be. People advised

me to choose a well established and older professor and to not choose any younger person.

This is sound advice. But neither they nor me knew that it was Ram whom the Lord wanted

me to work with. It turned out that he is even younger than me. However, the Lord has

certainly blessed Ram in many ways. The most obvious one for me has been his way of

letting me know that what I did was wrong without never saying so. He never complained

or raised his voice and he always allowed me to realize my own mistakes. It turned out

that he was all I needed as an advisor. He is certainly responsible for every chapter of my

dissertation and he was always able to answer my many doubts and questions. Thanks

Lord for Ram.

Joan Abbott, Tonya Rushing, Angie Fleming in the Electrical and Computer Engi

neering along with the ladies at the counter of Records and Registration have certainly

been an oasis in a desert. Becky Powers from the Bursar’s office believed in me even

when other people did not. Thanks ladies.

Dr. Guoxiang Gu was always helpful with my many questions about Control problems.

Dr. Kemin Zhou taught me so much and it was with him that what I knew about Control

began to fall in place. Dr. Alan H. Marshak always solved the problems I brought

to him. Dr. Ramachandran Vaidyanathan treated me always as someone important.

Dr. Jerry Trahan listened and was kind enough to share some of his experiences and give

me advice. Dr. Manjunath V. Hegde was willing to ask other faculty members so that I

could have an answer to the question: What should I take for the qualifying exam? This

he did and took time from his busy schedule even though it was the first time he had seen

or heard about me. Thanks to you all.

Thanks also to Mr. Gisoon Kim and Mr. Elias Kougianos for all their advice during

my preparing to take the exams. Thanks to my little neighbor Yoon for talking to me so

much and for all his questions.

Thanks to my committee members: Dr. Doris Carver, Dr. Dewitt Braud, Dr. Suresh Rai,

Dr. Alexander Skavantzos, and Dr. Kemin Zhou. Thanks also to Dr. Luis Pumarada and the

General Engineering Department for giving me a chance when no one else was willing to

take the risk and to the Administrative Board of the University of Puerto Rico at Mayagiiez

v

for trusting in me and allowing me to come to LSU. Thanks to Professor Lourdes Morera

for taking the time to help me while taking Pre-Calculus.

Finally, thanks to GEM and Bob Lewis. Without GEM I would not have been able

to have the financial resources I needed to be here especially during my first year when I

needed them most.

May my Lord and Father Jesus Christ bless all of you with the most precious treasure

in Heaven and Earth: Himself. He gives wisdom to wise men and knowledge to men of

understanding.

vi

Ta b l e o f C o n ten t s

D e d ic a t io n ... ii

Acknow ledgments .. ii

L ist of Ta b l e s .. ix

L ist of F ig u r e s .. x

Ab s t r a c t ... xii

Chapter

1 In t r o d u c t io n .. 1
1.1 Scope of Our Research ... 4

1.1.1 Alignment Overview .. 4
1.1.2 Distribution O v e rv ie w .. 6

1.2 Background and Related W o rk ... 10

2 U sing L inear Programm ing to Solve the Alignm ent Pr o b l e m 25
2.1 Stride and Reversal A lignm en t...25
2.2 Offset Alignment .. 35
2.3 Axis A l ig n m e n t ..52
2.4 R ep lica tion .. 56
2.5 Solutions Using Linear P ro g ra m m in g ...60
2.6 Comparison With Other W o r k ...60
2.7 Chapter S u m m a r y .. 63

3 U sing L agrange Multipliers to Solve the Alignm ent Pr o b l e m64
3.1 Stride and Reversal A lignm ent...65
3.2 Offset Alignment ..72
3.3 Axis A l ig n m e n t ..78
3.4 R ep lica tion .. 80
3.5 Comparison With Other W o r k ...81
3.6 Chapter S u m m a r y .. 84

4 Relaxing Constraints in the A lignment Pr o b l e m .. 86
4.1 Review o f Bau et al.’s M e th o d ...86
4.2 Deciding on W hich Constraint(s) to Leave U n s a t is f ie d 92
4.3 Comparison With Other W o r k ... 101
4.4 Chapter S u m m a r y .. 102

vii

5 A M atrix-Based Approach to F inding D is t r ib u t io n s104
5.1 Automatic D istribu tion ..106

5.1.1 Background and T e rm in o lo g y ... 106
5.1.2 Effect of a T ransform ation .. 107
5.1.3 M o tiv a tio n ...108
5.1.4 A lg o r ith m ...108
5.1.5 Criteria for Choosing the Entries in the Transformation M atrix . . 109

5.2 The A lg o rith m ..110
5.3 Examples ... 113
5.4 Relaxing the Owner-Computes R u le ... 121
5.5 The Extended A lgo rithm .. 123
5.6 Using Tiling to Obtain Higher Granularity in the Communication Pattern . 131

5.6.1 Tiling One Dimension O n l y ...131
5.6.2 Tiling Two D im e n s io n s ..133

5.7 Comparison With Other W o r k ..135
5.8 Chapter S u m m a r y ... 136

6 D istribution : A Graph-based Approach ..137
6.1 The Distribution Preference G ra p h137
6.2 How to Use the DPG to Distribute the Arrays within a Loop N e s t 138
6.3 The DPG M ethod Applied to Jacobi, ADI, Disper, Livermore, and Shallow 144
6.4 Comparison With Other W o r k ..148
6.5 Chapter S u m m a r y ...150

7 Co n c l u s io n .. 151
7.1 Contributions ..151
7.2 Summary and Future Work ... 153

B ib l io g r a p h y .. 155

A ppen d ix : Lagrange Multipliers M e t h o d .. 163

V i t a .. 167

viii

L ist of Ta b l e s

2.1 Constant Offsets (3's) Found Using LP Method on Jacobi................................... 42

2 .2 Constant Offsets /3’s) Found Using LP Method on ADI....................................... 44

2.3 Constant Offsets /3’s) Found Using LP Method on Disper................................... 44

2.4 Constant Offsets (3's) Found Using LP Method on Livermore 18....................... 47

2.5 Constant Offsets /3’s) Found Using LP Method on Livermore 23....................... 48

2 .6 Constant Offsets /3’s) Found Using LP Method on Red Black SOR................... 48

2.7 Constant Offsets /3’s) Found Using LP Method on Shallow................................. 51

3.1 Constant Offsets /3’s) Found Using Lagrange Method on Jacobi........................ 74

3.2 Constant Offsets /3’s) Found Using Lagrange Method on ADI........................... 75

3.3 Constant Offsets /3’s) Found Using Lagrange Method on Disper........................ 75

3.4 Constant Offsets /3’s) Found Using Lagrange Method on Livermore 18. . . . 76

3.5 Constant Offsets /3’s) Found Using Lagrange Method on Livermore 23. . . . 76

3.6 Constant Offsets /3’s) Found Using Lagrange Method on Red Black SOR. . . 77

3.7 Constant Offsets /3’s) Found Using Lagrange Method on Shallow..................... 77

3.8 Time (seconds) to Solve the System of Equations for the Different Applications. 78

4.1 RIT iovA[i, j] =

4.2 RIT for Matrix M ultip lication .. 101

L ist o f F ig ur es

1.1 Structure of the Data Mapping Problem.. 3

1.2 Cyclic and Cyclic(size) Distribution Examples.. 8

1.3 Block and Block(size) Distribution Examples.. 9

1.4 Example from Gilbert and Schreiber [31].. 18

1.5 Component Affinity Graph (CAG) Partitioned by Classes of D im ensions.. . . 19

2.1 Relative Alignment of Arrays X and Y with Respect to Template T Using
Computation Alignment.. 27

2.2 Relative Alignment of Arrays X and Y with Respect to Template T without
Using Computation Alignment...28

2.3 Relative Alignment of Arrays X and Y with Respect to Template T Using
Computation Alignment and Our LP Method.. 36

2.4 (a) Relative Alignment of Arrays X and Y with Respect to Template T (b)
Elements of Array Y That Need to Be Copied Onto X ..38

2.5 Perfect alignment of arrays X and Y (a) Using Computation Alignment and
(b) without Computation Alignment..39

2.6 Jacobi Program Segment.. 42

2.7 Alternating-Direction-Implicit (ADI) Program Segment.. 43

2.8 Disper: Oil Reservoir Simulation Program Segment...45

2.9 Livermore 18 Program Segment... 46

2.10 Livermore 23 Program Segment... 47

2.11 Red Black SOR Program Segment..49

2.12 Shallow Program Segment... 50

x

2.13 Axis Alignment of X[i , j] with T\[j , i] ..53

2.14 Alignment by Diagonals of Arrays X , and Y to Template T 55

2.15 Replication of Array X along the Rows of Template T and of Array Y along
the Columns of Template T 1.. 57

2.16 Replication of Array Z along the Rows of Template T and of Array Y along
the Columns of Template T .. 59

4.1 Algorithm for Choosing which Constraint(s) to Leave Unsatisfied When the
Problem is Over-constrained...98

5.1 Algorithm for Data Distribution and Loop Transform ations.................................112

5.2 Expanded Algorithm for Data Distribution and Loop Transformations 124

5.3 Tiling of Loop u to Result in Messages Consisting of (a) Columns or (b) Rows. 134

5.4 Tiling of Loop v to Result in Messages Consisting of (a) Rows or (b) Columns. 134

6.1 ,DPG for A[i, j \ = B[j, i] in Example 6 .1 ...139

6.2 DPG for = B\j , i] in Example 6.1 Showing the Individual Cycles. . . . 140

6.3 DPG for Matrix Multiplication Example 6.2 Showing (a) No Cycles and (b)
Cycles 1, 2, and 3.. 142

6.4 DPG for Matrix Multiplication Example 6.2 Showing (a) Cycles 1 and 2 and
(b) Cycles 1 and 3... 143

6.5 DPG for the Jacobi algorithm in Figure 2 .6 ..145

6 .6 DPG for Statements S 1 and S2 in the ADI Algorithm in Figure 2 .7146

6.7 DPG for the Disper Algorithm in Figure 2 .8 ..147

6.8 DPG for the Livermore 18 Algorithm in Figure 2 .9 ..147

6.9 DPG for the Shallow Algorithm in Figure 2 .1 2 ..148

A b st r a c t

Distributed memory parallel computers offer enormous computation power, scalability

and flexibility. However, these machines are difficult to program and this limits their

widespread use. An important characteristic of these machines is the difference in the

access time for data in local versus non-local memory; non-local memory accesses are

much slower than local memory accesses. This is also a characteristic of shared memory

machines but to a less degree.

Therefore it is essential that as far as possible, the data that needs to be accessed

by a processor during the execution of the computation assigned to it reside in its local

memory rather than in some other processor’s memory. Several research projects have

concluded that proper mapping of data is key to realizing the performance potential of

distributed memory machines. Current language design efforts such as Fortran D and

High Performance Fortran (HPF) are based on this.

It is our thesis that for many practical codes, it is possible to derive good mappings

through a combination of algorithms and systematic procedures. We view mapping as

consisting of wo phases, alignment followed by distribution. For the alignment phase we

present three constraint-based methods - one based on a linear programming formulation

of the problem; the second formulates the alignment problem as a constrained optimization

problem using Lagrange multipliers; the third method uses a heuristic to decide which

constraints to leave unsatisfied (based on the penalty of increased communication incurred

in doing so) in order to find a mapping.

In addressing the distribution phase, we have developed two methods that integrate

the placement of computation— loop nests in our case—with the mapping of data. For one

distributed dimension, our approach finds the best combination of data and computation

mapping that results in low communication overhead; this is done by choosing a loop order

that allows message vectorization. In the second method, we introduce the distribution

preference graph and the operations on this graph allow us to integrate loop restructuring

transformations and data mapping.

These techniques produce mappings that have been used in efficient hand-coded

implementations of several benchmark codes.

Ch a pt e r 1

In t r o d u c t io n

Distributed memory computers (DMCs) offer great promise to scientists because of their

scalability and potential for enormous computational power. Yet, their widespread use

is hindered by the difficulty of parallel programming. Scientific programmers have had

to write explicitly parallel code, and face many efficiency issues in deriving satisfactory

performance. When a parallel program is run in a DMC, data need to be distributed among

processors and explicit communication need to be incorporated in order to provide for the

exchange of data among processors inherent in many programs. The processors in a DMC

communicate by exchanging messages whenever a processor needs data which is located

in some other processor’s memory. This exchanging of data through software is commonly

referred to in the literature as message passing and DMCs are usually known as message

passing computers. Deciding when to insert messages in a program, thus implementing

data and computation partitioning, and which partitioning of data is optimal are no easy

tasks, and much effort has gone into developing ways to relieve the programmer from this

burden.

Data and computation partitioning are at the heart of the compilation process or

transformation of a single processor sequential program into a Single Program Multiple

Data (SPMD) program to be run on a distributed memory machine. The main goal

of parallelization of code is increased performance measured by reasonable speed-ups.

However, if code is not properly parallelized, the result could be a parallelized code

which may be even slower than sequential code as reported by Blume and Eigenmann

[18]. One of the main sources of this undesirable degradation in execution time is the

1

2

communication among processors and the overhead incurred by this communication. This

is covered in detail by Stone [79]. In most situations communication is unavoidable due

to the characteristics of the code, however it can be reduced in many instances.

A key component of the compilation process is the mapping of data to processors.

Scientific computing is the application domain we concentrate on. We concentrate on

arrays due to the fact that it is the predominant data structure used in scientific code and on

loops because it is in them where most of the execution time of scientific programs is spent.

This is done by a two-step process consisting of alignment followed by distribution; see

Figure 1.1. In the alignment phase, array elements are mapped to a template, which is an

abstract multi-dimensional grid; this allows one to relate members of different arrays, and

specify replication if needed. For example, in the case of arrays, this allows to specify the

relative locations of elements of different arrays. The alignment is typically a function of

only the data access patterns in the program, but not of the target machine architecture. In

practice, the size of the template is much too large compared to the number of processors.

The distribution phase partitions the template, and hence the array elements aligned to the

template; this phase is a function of both the program and the target machine architecture.

The focus of this research is the optimization of communication among processors

in a DMC by properly aligning data and computation, by finding good distributions, and

by applying transformations that will allow the use of message vectorization whenever

possible. Our work automatically finds the alignment and distribution for the program

thus relieving the programmer from this task. Our findings will then be inserted into the

program using the alignment and distribution declarations which are later introduced in

Section 1.1.1.

Throughout this dissertation we will be using several metrics to model the effect of

moving array elements from one position to another. The distance between a point p and

3

AUC.NMI-NT ni.STIUDUTION

STATIC DYNAMIC STATIC

AXIS s t iu d k s t k ip k (JFKSKT

Figure 1.1: Stmcture of the Data Mapping Problem,

a point q in a A;-dimensional space using the l\ or Manhattan for is d(jp, q) = \pi — r/;|,

11 metric is realistic for a one dimensional processor array whereas the l2 metric is realistic

for a grid of processors with nearest neighbor connections [31]. Other metrics which are

also used in the literature are the I<*, and the Hamming metrics which are realistic for a grid

of processors with connections to their nearest neighbors and to their diagonal neighbors

and for hypercubes, respectively [31].

Section 1.1 of this chapter presents the scope of our research. In Section 1.2 an

overview of the most recent and important research, as it relates to ours, is given. The rest

of this dissertation is organized as outlined below. Chapters 2, 3, and 4 relate to the align

ment problem and they present solutions using a Linear Programming approach, a method

using Lagrange Multipliers, and a method where the solution for over-constrained systems

and using the l2 or Euclidean metric it is d(p, q) = (pt — pi)2, where 1 < i < k. The

4

is obtained by relaxing some constraint(s), respectively. Chapter 5 presents a method to

find distributions using matrices along with ways to reduce communication when this is

unavoidable and Chapter 6 presents a method using a novel graph-based framework. Fi

nally, Chapter 7 presents our conclusions, and summarizes our contributions and presents

ideas for future research.

1.1 S c o p e o f O u r R e s e a r c h

As mentioned earlier, the focus of our current research is the optimization of the commu

nication among processors by properly partitioning the data and computation. It includes

not only the alignment problem, but also the distribution problem (as shown in Figure 1.1)

and program transformations. This latter part is not included in the figure mentioned

above. In this chapter we provide an overview of our research.

1.1.1 A l ig n m e n t O v e r v ie w

Alignment in data parallel programs, as illustrated in Figure 1.1, can take the form of static

alignment, dynamic alignment, and replication of arrays. Static alignment refers to the

alignment which is determined at compile time and dynamic alignment to the alignment

determined at runtime. Both static and dynamic alignment can be further classified

as axis, stride and reversal, and offset alignment. Static alignment is specified in the

High Performance Fortran (HPF) standard using the ALIGN declaration, whereas dynamic

alignment is specified through the executable statement REALIGN [41]. Similarly, static

distribution is accomplished through the DISTRIBUTE declaration and refers to compile

time distribution, and dynamic distribution via the REDISTRIBUTE executable statement

at runtime.

It is clear by now why we need to align and distribute the arrays that are used in

a data parallel program. But where does the need for realignment and redistribution

comes from? The answer to this question is simple: It all comes from the change in

data access patterns in programs. Some programs may access a particular array in one

fashion during the execution of a loop nest and then access the same array in a different

fashion. For example, we may have a loop inside which elements of an array X are

computed as functions of the elements of an array Y such as X\i] = f (Y[i}); we may

then have some computation performed on X and then another loop with an instruction

Ar [i] = g(Y[2i + 5]) as shown below. The notation above indicates that X[i] is assigned

a copy of some function / or g of some element of array Y.

D O i = 1 , N
X[i] = Y[i\

E N D D O
D O i = \ , N

X[i] = Y[2i + 5]
E N D D O

For the first loop it is advantageous to align X and Y identically, but the second loop

dictates a different alignment. In order to reduce communication, array Y needs to be

realigned before the execution of the second loop.

A common case in scientific codes involving multidimensional arrays requires trans

position of one of the arrays, e.g.

DO * = 1, JV
■X[i, j] = Y[i, j]

ENDDO
DO i = I, N

X [i , j] = Y[j , i]
ENDDO

In this case array Y needs to be transposed between the loops. A redistribution may also

arise, for example, because the programmer decided that it was better to distribute an

array in a certain manner if the number of processors that were available was greater than

or equal to some number and to distribute it in another manner if it was otherwise [80].

A program may also have a need for replication of arrays if doing so will result in

a reduction of communication among processors or just simply because the programmer

has specified it. For example, scalars and small read only arrays may be replicated onto

the processors and, in so doing, completely eliminate the communication that could have

arisen because a processor needed elements owned by some other processor. Also, we

may have to replicate a one-dimensional array onto a multidimensional array for reasons

similar to the ones previously stated. Consider the following code:

D O i = 1 , N
DO j = 1, M

X [i , j } = Y [i , j } * Z [i \
ENDDO

ENDDO

In the above piece of code the one-dimensional read-only array Z could be replicated such

that each processor owns a copy and thus can perform its computation without having to

communicate, which would be the case if Z is not replicated properly. In HPF terminology,

we could replicate Z along the rows or columns of a two-dimensional template to which

both arrays X and Y are aligned with the result that each processor owning an element of

X and Y will also own the entire array Z.

1 .1 .2 D is t r ib u t io n O v e r v ie w

The distribution phase of the data mapping problem can be defined as the phase where the

abstract template, and thus all the arrays aligned to it, are mapped onto the physical pro

cessors. This phase comes after the data structures have been aligned to the template. As

with the alignment phase, the distribution phase can be subdivided into static distribution

and dynamic distribution.

7

The most commonly used distributions, which are the only ones currently available in

the High Performance Fortran (HPF) proposed standard [41], are the cyclic, cyclic(size),

block, and block(size) distributions, where size is a parameter which specifies the number

of data items from a template to be assigned to a processor. The cyclic distribution assigns

one element to each processor in turn until all the processors assigned to that dimension of

the template are exhausted, it then assigns a new element to each processor, and continues

until all the elements on that dimension of the template are assigned. As explained by

Gupta and Banerjee [33], this distribution is of special importance when load balancing

needs to be achieved in the presence of iteration spaces where the lower or upper bound

of an iteration variable is a function of an outer iteration variable, e.g. triangular iteration

spaces. On the other hand, this type of distribution is not the best choice when there is a lot

of nearest neighbor communication among processors, in which case a block distribution

would be preferred [33]. See Figure 1.2 for examples of cyclic distributions and the code

shown below for a triangular iteration space example. Note that the lower bound for loop

j is an affine function of the outer loop index variable i.

DO i = I, N
DO j = i , N

ENDDO
ENDDO

The cyclic(size) distribution provides the programmer with the ability of specifying the

number of elements which the compiler should assign to each processor in a cyclic manner.

Thus, cyclic(l) produces the same effect as cyclic.

The block distribution assigns a number of elements equal to the ceiling of the number

of elements of the array in a particular dimension divided by the number of processors

available for that dimension. Finally, the block(size) distribution assigns a programmer’s

CYCLIC

CYCLIC(3)

CYCLIC, CYCLIC

PI
1 1

P2
1 1

PI
1 1

P2
1 1

P ll P12 P ll P12 P ll P12 P ll P12 P ll P12 P ll P12

P21 P22 P21 P22 P21 P22 P21 P22 P21 P22 P21 P22

P ll P12 P ll P12 P ll P12 P ll P12 P ll P12 P ll P12

P21 P22 P21 P22 P21 P22 P21 P22 P21 P22 P21 P22

P ll P12 P ll P12 P ll P12 P ll P12 P ll P12 P ll P12

P21 P22 P21 P22 P21 P22 P21 P22 P21 P22 P21 P22

P ll P12 P ll P12 P ll P12 P ll P12 P ll P12 P ll P12

P21 P22 P21 P22 P21 P22 P21 P22 P21 P22 P21 P22

PI P2 PI P2 PI P2 PI P2 PI P2 PI P2

CYCLIC(2), CYCLIC(3)

(with 2 processors on

first dimension and 2

on the second)

1 1

P l l

1 1

P12

1 1

P ll

1 1

P12

P21 P22 P21 P22

P ll P12 P ll P12

P21

1 1

P22

1 1

P21

1 1

P22

1 1

Figure 1.2: Cyclic and Cyclic(size) Distribution Examples.

9

BLOCK PI
1 1

P2
1 1

P3
1 1

P4
1 1

BLOCK(4) PI
L

P2
J

P3

BLOCK(4), BLOCK

(with 2 processors on

first dimension and 4

on the second)

1 1

P ll

1 1

P12

1 1

P13

1 1

P14

P21

1 1

P22

1 1

P23

1 1

P24

1 1

BLOCK(4), BLOCK

(with 2 processors on

first dimension and 3
on the second)

1 1 1

P ll

1 1 1

P12

1 1 1

P13

P21

1 1 1

P22

1 1 1

P23

1 1 1

Figure 1.3: Block and Block(size) Distribution Examples.

10

specified number of elements to each processor. Examples are given in Figure 1.3.

Note that both the block and the block(size) distributions can also be obtained from the

cyclic(size) distribution. Block distributions are especially suited for rectangular iteration

spaces and nearest neighbor (shift or offset) communication [33].

Skewed distributions are a more general class of distributions from which row, column,

diagonal, parallelogram, etc. distributions could be derived. Both row and column

distributions are one-dimensional distributions which can be obtained by skewing one

dimension by a factor of zero with respect to another dimension. This factor has a

non-zero value for diagonal distributions. These distributions are also referred to in

the literature as hyperplanes. Skewed distributions, however general, are not currently

supported by HPF [41].

1.2 B a c k g r o u n d a n d R e l a t e d W o r k

The component alignment problem has been proven to be NP-complete by Li and Chen

[55]. Most of the effort in this research area is very recent. We review the work of several

researchers on the problem and discuss how it relates to our work.

Ramanujam and Sadayappan [6 8], present a technique which applies to one fully

parallel loop nest at a time. Only array data partitions defined by a family of parallel

hyperplanes are considered. Communication-free data partitioning is the main subject

in Ramanujam and Sadayappan [6 8]. However, a formulation is given for minimizing

communication while balancing the workload, which is used as a constraint, among pro

cessors when communication-free partitioning is not possible. The work by Ramanujam

and Sadayappan [6 8] is architecture-independent and assumes the owner-computes rule.

The proposed alignment and the functions used are more general than those in the High

Performance Fortran (HPF) standard [41], where at most one index variable per subscript

11

expression is allowed. To illustrate the general idea behind the work by Ramanujam and

Sadayappan [6 8] consider the following assignment statement where A, and B are two

2 -dimensional arrays

B[fi{ i , j) ,gi (i , j)] <- A[fr(i , j) , g r(i,j)].

Assume that the assignment statement above is located inside a loop nest of depth 2 with

i as the outermost loop index variable, j as the innermost one, and that the loop bounds

are constant; also assume that fi, f T, gi, and gr are affine functions of i, and j . We can

write the above functions as

i” = f i (h j) = bui + bi2j + bw

j = 9 i(h j) — bui + b22j + ^20

* = f r (h j) = °'ll* + a \2 j + &10

j ~ !Jr(hj) = tt21* + 0*22 j + «20

The subscript functions for array B define a family of lines given by ax' + f3j" = c and

those for array A define lines given by a ' i + 0 j ' — c . From these equations we obtain

the following condition for array B

i(b\\a + 621/3) + .7(6120; + 622/?) — c — b\oa — 620/?,

and the following condition for array A

i(au a + 0.21/3') + j (a i2a + a22P') = c - a l0a - a20/3'.

12

For communication-free partitioning, there must be a solution to the system of equations

above, shown below in matrix form, where at most one of a and /? is zero, and at most

one of a and 0 is zero.

a 11 a2i 0

a,\2 a 22 0

-a io —fl2o 1

Consider the following loop:

DO i = Ibi, ubi
DO j = Ibj, ubj

A [i,j] = f (A [i , j] , B [i - 1 , j] , B [i , j - 1])
ENDDO

ENDDO

1
a b\\ b2\ 0 a

0 — b\2 ^22 0 P
tc —bl0 —620 1 c

where Ibi, ubi, Ibj, and ubj are the lower and upper loop bounds for loops i, and j . These

lower and upper loop bounds are assumed to be constant values, i.e. they are known at

compile time. Note that there are two distinct accesses to array B. From the A[i,j] term

on the rhs we have

1 0 0 a a

0 1 0 P — P

1---
-- 0 0 1 c c

from this system of equations we obtain a = a, /3 = j3, c = c. Similarly, from

B[i — 1, j] we obtain the following system of equations:

1 0 0
1

a a

0 1 0 0 = P

1 0 1
t

c c

which yields a = a, 0 — /?, a + c = c. From this last equation we obtain

c = c — a . From B[i, j — 1] we obtain the system of equations shown below:

1 0 0
/

a a

0 1 0 0 — P

0 1 1
I

c c

which yields the following equations a = a, 0 = [3, c = c—/3. For communication-

free data partitioning, the system of equations shown above must have a solution, thus we

find the solution a = a = 0 — /3 = 1, i.e. both arrays A and B should be partitioned into

diagonals. Note that since c = c — 1 the corresponding partition for array B will be one

line below that for array A. If the only solution had been a = a = (3 = 0 — 0, then no

communication-free data partitioning would be possible other than mapping everything

to just one processor, i.e. the trivial solution.

In our work we deal with alignment for both data and computation and we do not

assume the owner-computes rule.

Huang and Sadayappan [45] focus on partitions of iterations and data arrays that

eliminate data communication and considers partitions of iteration and data spaces along

sets of hyperplanes. Since data elements are not to be accessed by different processors,

even read-only data cannot be shared. All iterations belonging to an iteration hyperplane

and all the data belonging to a data hyperplane are assigned to one processor, thus the

owner-computes rule is implicit. A processor will execute iterations from the iteration

hyperplanes which are assigned to it and in so doing it will access data from its assigned

data hyperplanes.

The article presents no way of dealing with cases when communication-free parti

tioning, while maintaining parallelism, is not possible. It begins by presenting solutions

14

for a single hyperplane partitioning for each iteration and data space and moves on to

multiple (double) hyperplanes per space at which time they propose a heuristic. Huang

and Sadayappan [45] derive necessary and sufficient conditions for communication-free

hyperplane partitioning of both data and computation for fully parallel loop nests in the

absence of flow and anti-dependences. Flow and anti-dependences are treated elsewhere

and a list of articles which treat this subject is given later in this work. For communication-

free single hyperplane partitioning of the iteration and data spaces the following must hold

for an access function in the form of A j k(I) + a1- k, which accesses the k-th reference to

the j-th data array in the i-th nested loop, where I is used to denote the iteration vector,

H and G are row vectors containing the iteration and data hyperplane coefficients (which

are rational numbers), respectively, and a is nonzero.

1. G j \A)hk{ = Gj2A j2M

2. Gj(ilj k{ = G3aljki

3. Hi = a)GjA) tl

4. a^\a f2 = a ^ a f i

5. a ^ Gj i i a ^ j - afj ,) - af2Gj2(af2<] - af2 I)

An example which captures the essence of their work for the case of multiple arrays,

multiple references, with single hyperplane partitioning is shown below for the same loop

used previously, i.e.

DO i = Ibi, uh
DO j = Ibj, ubj

A[i, j] = f (A[i , j } , B[i - 1 , j] , B [i , j - 1])
ENDDO

ENDDO

15

Here we find

A, =
1 0

1

0
1

II

1 0

1

O

r

, d \ —) 0-2 —

0 1

1

0
•

0 1

j

O

1
1 0 - 1 1 0 0

B x =
0 1

A =
0

, b 2 =
0 1

j h —
- 1

from which, by applying the conditions stated previously, we get

G, A[— A i a\ — a,2 9a \ 9a2
0 0 0

0 0 0
0 0 0

and

Gt B\ — B 2 b\ — &2 9b \ 9b2
0 0 - 1

0 0 1
0 0 0

From the last equation we find that 9b\ = 9 b2 - The other set of equations is found from

G a G b
A\

- B x
9a \ 9a2 9 b 1 9b2

1 0

0 1

-1 0

0 - 1

0 0

which yields qa\ — 9bi, and qai = 9B2 - Therefore, we can choose

16

which is the same result we. obtained using the method in Ramanujam and Sadayappan

[6 8]. Additionally,

H — qlaGaA i = l l

for a a — 1.

The work in Huang and Sadayappan [45] does not assume anything about the archi

tecture of the machine, and implicitly assumes the owner-computes rule. As mentioned

earlier, no attempt is made to deal with the problem when communication is unavoidable.

The alignment obtained and the access functions allowed are more general than what is

allowed in the current HPF standard [41].

In our work we are also interested in obtaining communication-free data and com

putation alignment, but we do not assume the owner-computes rule; in addition, rather

than stopping when zero communication is impossible, we use a method for reducing

the overall communication when communication is unavoidable. For example, consider

a loop where all the array elements on the rhs of the statement are in processors which

are different from the processor which owns the Ihs element. In the work by Huang and

Sadayappan [45], because communication is unavoidable, the computation would have to

be sequentialized even though it may be possible to parallelize the loop. However, our

method finds the alignment that would minimize communication in such a way that the

final computation is carried out at the processor at which communication is found to be

minimum and then this processor sends the final result to the owner of the Ihs element.

Gilbert and Schreiber [31], propose a method which considers only one expression at

a time. The minimum cost of computing an arbitrary expression is found for architectures

with robustness, e.g. hypercubes, linear arrays, meshes, etc. on which realistic metrics

could be used. As Gilbert and Schreiber [31] explain, a given metric describes the cost

of moving an array from one position to another within a machine. For example the l\

17

(Manhattan), I2 (Euclidean), and Hamming metrics are realistic for a one dimensional

processor array, a grid of processors with connections to their nearest neighbors, a grid of

processors with connections to their nearest neighbors and their diagonal neighbors, and

for hypercubes, respectively. In the l\ or Manhattan metric the distance d from a point x

to a point y on a k-dimensional space is given by

d(x , y) = Y , I Xi - V i \ , 1 < i < k
i

whereas in the I<*, metric we have that

d(x, y) = maxi |.x, — 2/*l > * < * <

The cost of the expression is evaluated by embedding its rooted binary tree onto the

architecture and then finding the minimum cost of evaluating it using an specific metric.

Subexpressions needed to evaluate an expression are in turn evaluated where doing so is

cheapest, i.e. at the closest processors among a set of processors at which the evaluation

of the subexpression is possible, to the processor which will evaluate the expression. The

authors do not assume the owner-computes rule. As an example of what is presented by

Gilbert and Schreiber [31] we have in Figure 1.4(a) four arrays to be combined in the

expression (w © x) <g> (y © z), where ©, ©, and © are array operators. Each point in

Figure 1.4 is a processor and so we could think of a grid of processors as the architecture

which is used. In Figure 1.4(b) we have the result of applying this method to the expression

above. Region A in Figure 1.4(b) represents the set of processors that should evaluate

w © x, i.e. the set of processors for which the cost of evaluating w © x is minimal.

Similarly, region B represents the set of processors that should evaluate subexpression

y O z , and region C the set of processors that should evaluate the final expression, i.e. the

18

<h>

Figure 1.4: Example from Gilbert and Schreiber [31].

root. Assume that processor p in region C is chosen to evaluate the final expression among

all processors that can evaluate it. Then the processor in A which is closest to processor

p is chosen to evaluate w © x, and the processor in B which is closest to processor p is

chosen to evaluate y © z. They both send their partial results to p which then evaluates

the final expression.

Gilbert and Schreiber [31] use an approach where the processors at which the expres

sion under consideration, as well as its subexpressions, should be evaluated to minimize

cost are found. The article does not deal with neither data, nor computation decomposi

tions. The work pertaining to a computation is performed by several processors. The work

by Gilbert and Schreiber [31] is different to our work in that we consider all statements

within a loop nest, rather than just one statement at a time. They relax the owner-computes

rule and use the ^-metric, which is in this context, robust and realistic for a grid of proces

sors with nearest neighbor connections. We are concerned with partitioning of both data

and computation, vectorization of messages, and mapping transformations to machine

communication primitives. We also relax the owner-computes rule, but we assume that

the work performed during one iteration is performed by only one processor.

19

AI O cl o
A2o o B2

Figure 1.5: Component Affinity Graph (CAG) Partitioned by Classes of Dimensions.

Gupta and Banerjee [33], present a method restricted to partitioning of arrays, i.e. no

computation partitioning. In their method Gupta and Banerjee select important segments

of code to determine distribution of various arrays based on some constraints. Quality

measures are used to choose among contradicting constraints. These quality measures may

require user intervention. The compiler tries to combine constraints for each array in a

consistent manner to minimize overall execution time and the entire program is considered.

Small arrays are assumed to be replicated on all processors. The distribution of arrays

is by rows, columns, or blocks. This work uses heuristic algorithms to determine the

alignment of dimensions, i.e. component alignment, of various arrays since the problem

has been shown to be NP-complete. The owner-computes rule is assumed and issues

concerning the best way to communicate messages among processors, such as aggregate

communication introduced in the work by Tseng [80], are dealt with. Communication

costs are determined by Gupta and Banerjee [33] after identifying the pairs of dimensions

that should be aligned. Consideration is given to when it would be best to replicate a

dimension rather that to distribute it.

The idea is that the algorithm will build the Component Affinity Graph (CAG) devel

oped by Li and Chen [55], as shown in Figure 1.5, and decide to align the first dimension

of each of the arrays and also the second dimension since it would be too costly to do

otherwise. That is, the cheapest way to partition the node set into D = 2 disjoint subsets

20

is by grouping A\, and B i into one subset, and A 2 and B 2 into another subset, where D

is the dimensionality of the arrays. In this way the total weight of the edges going from

one subset to the other is zero. The cost of choosing a cyclic distribution should make it

favorable for the algorithm to choose a contiguous distribution for both dimensions. The

alignment done is in terms of which dimensions should be aligned but it does not calculate

how to best aligned them.

The nodes of the CAG represent array dimensions. An edge is added between two

nodes for every constraint in the alignment of two dimensions. The weight of the edge is

equal to the quality measure of the constraint.

The work by Gupta and Banerjee [33] uses the owner-computes rule, requires user

intervention, and does not attempt to compute alignments beyond alignment of dimensions.

In our work we address both data and computation alignment, relaxing the owner-computes

rule. We address cases of axis alignment, stride and reversal alignments, and offset

alignment. We do agree in that small arrays, as scalars, should be replicated and also in

optimizing the communication by moving it outside the innermost loop whenever possible.

Bau et al. [14] use elementary matrix methods to determine communication-free

alignment of code and data. They also deal with the problem of replicating read-only

data to eliminate communication. They incorporate data dependences in their proposed

solution to the problem, but the owner-computes rule is assumed. Replication of data is

also incorporated into their proposed solution. This method will be discussed in detail in

Chapter 4.

Amarasinghe et al. [5], show how to find partitions for doall and doacross parallelism

and, in order to minimize communication across loop nests, they use a greedy algorithm

that tries to avoid the largest amounts of potential communication. They give examples

21

of how to obtain parallelism by incurring some communication when this is the only way

to run in parallel.

Chatterjee et al. [23] and [24] provide an algorithm that obtains alignments which

are more general that the owner-computes rule by decomposing alignment functions into

several components. Chatterjee [23] et al. investigate the problem of evaluating Fortran 90

style array expressions on massively parallel distributed-memory machines. They present

algorithms based on dynamic programming. There are a number of other researchers who

have also made contributions to this problem. Kim and Wolfe [50] show how to find and

operate on the communication pattern matrix from user-aligned references. Our approach

generates the alignment of data and computation and frees the user from this task. Li

and Pingali [56] start with user specified data distributions and develop a systematic loop

transformation strategy identified by them as access normalization which restructures

loop nests to exploit locality and block transfers whenever possible. Although we are

also interested in maintaining locality our approach and theirs are different. We develop

the data and computation distributions based on our findings, the user does not have to

specify them.

O’Boyle [61] proposed an automatic data partition algorithm based on the analysis of

four distinct factors. We concur with him in his view that automatic data partitioning is

possible and that it must be considered in the context of the whole compilation process

rather than be left to the programmer. He does not consider partitioning of computation

along with that of data and he is not concerned with finding the alignment that will

minimize communication as we are in our work. Wakatani and Wolfe [81] address the

problem of minimizing communication overhead but from a different context than ours.

They are concerned with the communication arising from the redistribution of an array

and proposed a technique called strip mining redistribution. They are not concerned with

22

automatically generating the alignments as we are in order to free the programmer from

this task and achieve minimum communication while preserving parallelism.

Chatterjee et al. [20] and Sheffer et al. [76] deal with determining both static and

dynamic distributions. They use the Alignment-Distribution Graph (ADG) whose nodes

represent program operations, the ports in the nodes represent array object manipulated by

the program, and the edges connect array definitions to their respective uses. The ADG is

a directed edge-weighed graph although it is used as an undirected graph. Communication

occurs when the alignment or distribution at the end points of an edge is different. The

completion time of a program is modeled as the sum of the cost over all the nodes

(which accounts for computation and realignment) plus the sum over all the edges of the

redistribution time (which takes into account the cost per data item of all-to-all personalized

communication, the total data volume, and the discrete distance between distributions).

Ayguade et al.’s [8] main effort is directed toward intra-procedural data mappings.

Candidate distributions are used to build a search space from which to determine, based

on profitability analyses, the points at which to realign or redistribute the arrays in order to

improve the performance by reducing the total data movement. The Component Affinity

Graph (CAG) of Li and Chen [55] is used to determine the best local distribution for

a particular phase of the code. All the arrays in a phase are distributed identically.

Control flow information is used for phase sequencing identification. An intra-procedural

remapping algorithm is provided.

Garcia et al. [30] present an approach to automatically perform static distribution us

ing a constraint based model on the Communication-Parallelism Graph (CPG). The CPG

contains edges representing both communication and parallelization constraints. The

constraints are formulated and solved using a linear 0-1 integer programming model and

solver. They obtain solution for one-dimensional array distributions, i.e. only one dimen

23

sion of the arrays is distributed, and use an iterative approach for the multi-dimensional

problem.

Kremer [52] proves the dynamic remapping problem NP-complete. Kremer et al. [53]

and Kremer [51] consider the profitability of dynamic remapping and use an interactive

tool for automatic data layout, respectively.

Kennedy and Kremer [48, 49] deal with dynamic remapping in Fortran D [80] and

HPF [41]. The work by Kennedy and Kremer propose a way to solve the NP-complete

inter-dimensional alignment problem [52] using a state-of-the-art general purpose integer

programming solver [49]. Thus Kennedy and Kremer [49] formulate the inter-dimensional

alignment problem as a 0-1 integer programming problem. The same is done by Bixby et

al. [17].

Palermo and Banerjee [63] deal with dynamic partitioning by building the Commu

nication Graph. In this graph the nodes correspond to statements in the program and the

edges are flow dependences between the statements. The weight on these edges reflect

communication. Maximal cuts are used to remove largest communication constraints

and recursively divide the graph or subgraphs until chunks of code (phases) that should

share the same partitioning schemes are grouped together. Thus remapping may be in

serted between phases and not within a particular phase to reduce communication between

phases.

Although we do not intend to go over all the issues related to parallelizing compilers

in this work, we do believe that providing a good reference list will help those unfamiliar

with the literature coverage on this subject. On the general theory of dependence analysis

and vectorization the reader is referred to Padua and Wolfe [62], Wolf and Lam [82],

Wolfe [83, 84, 85, 8 6 , 87, 8 8 , 89], Banerjee [10, 11, 12, 13], Goff [32], Maydan et al.

[59], Allen et al. [3], Allen and Kennedy [2, 4], Cytron [26], Moldovan and Fortes [60],

24

Jrigoin and Triolet [46], Ramanujam and Sadayappan [69], Zima and Chapman [91],

Blume and Eigenmann [18]. For cache and locality issues Gannon et al. [29], Gallivan

et al. [28], Anderson and Lam [6], Fang and Lu [27], For a good coverage of number

theory the books by Rosen [73], and by Zima and Chapman [91]. In the articles by

Chatterjee et al. [21, 24], and by Stichnoth [78] the reader can find an introduction to the

issues related with the assignment of array elements to the local memory of processors

and how these are accessed. Alignment is treated by Chatterjee et al. [21, 22, 24]. Parallel

machines and algorithms are covered in the books by Quinn [6 6], JaJa [47], and Stone

[79]. High Performance Fortran and related issues are covered in [41], Hiranandani et al.

[42, 43, 44]. Communication-free compiling is the main topic of Huang and Sadayappan

[45], Ramanujam and Sadayappan [6 8], and Fang and Lu [27] while data-flow analysis

is treated in the books by Aho et al. [1], Parsons [64], and the article by Maydan et al.

[58]. On inter procedural analysis issues the reader is referred to Aho et al. [1], Hall

et al. [35, 37, 38], Hall [36], Hall and Kennedy [39], Callahan et al. [19], Havlak and

Kennedy [40], Richardson and Ganapathi [71, 72], Shah [75], Cooper et al. [25], and

Sebesta [74], Finally, compiling for distributed memory machines is the topic of Tseng

[80], Hiranandani et al. [43, 44], Bal et al. [9], Zima and Chapman [92], Gupta et al. [34].

C h a pter 2

U sin g L in e a r Pr o g r a m m in g to S olve th e
A l ig n m e n t Pr o blem

In this chapter we present solutions to the alignment problem by first modeling it as a

general linear programming (LP) problem and then using an LP tool to solve it. Our

method will determine a non-trivial communication-free solution if it exists. Otherwise,

our method will determine a solution that minimizes communication. The problem is mod

eled using the Manhattan or l\ metric. Solutions are presented for the offset alignment

problem along with some cases of the axis and stride alignment problems. Results are

included for several benchmarks including: Jacobi, Alternate-Direction-Implicit (ADI),

Disper, Livermore 18, Livermore 23, and Shallow. This chapter is organized as follows:

Section 2.1 presents the stride and reversal alignment and how to solve a class of these

problems using Linear Programming techniques. Section 2.2 formulates the offset align

ment problem, shows how to represent and solve this problem as a linear programming

problem, and solutions to some real life problems. In Section 2.3 a class of the axis

alignment problem and its solution are presented. Section 2.4 deals with replication

alignment. Section 2.5 talks about the type of solutions we will obtain using the Linear

Programming approach. Section 2.6 presents other work in this subject and Section 2.7 a

chapter summary.

2 .1 S t r id e a n d R e v e r s a l A l ig n m e n t

When the coefficients of the loop index variables in the subscript expressions of the array

references in a program are greater than unity, we have what has been termed as stride

25

26

alignment. If any of these coefficients is negative, then it is called reversal alignment.

Reversal alignment corresponds to mapping the reflection of the array onto the template

Tseng [80], Stride alignment is generated by statements similar to the following

ALIGN X[i\ WITH T l [a x i + fix]

where a x is a positive number, and (3X can be any number. A multidimensional array

example is given in the statement

ALIGN Y[i, j] WITH T2[aYli + p Yl, a YJ + p Yl).

An example of reversal alignment is shown in the following statement

ALIGN Y[i] WITH T 3[-i].

Consider the following loop, where array Y is not replicated onto the available pro

cessors:

D O i = 1 , N
X[2i - 1] = Y[3i - 1] + Y[3i] + Y[3i + 1]

ENDDO.

Figures 2.1 and 2.2 show two ways of aligning arrays X and Y. These alignments were

found by inspection. With the alignment shown in Figure 2.1, each processor computing

an iteration will need an element of Y which is held by the processor to its left, assuming

a linear array and a block distribution with block size equal to 3, except of course for the

processor at the leftmost position.

Using the owner-computes rule we can obtain the alignment shown in Figure 2.2.

This would require that each processor send two elements to the processor on its left

(except for the last processor) assuming the same configuration and distribution as before

(see Figure 2.2). Note that there are infinitely many ways to align the arrays in the

27

ALIGN X (i) WITH T(3i+4)

ALIGN Y(i) WITH T(2i+1)

ALIGN i WITH T(6i+1)
DO i = 1, N

X (2i-1) = Y (3i-1) + Y(3i) + Y(3i+1)

ENDDO

X

T

Y

Figure 2.1: Relative Alignment of Arrays X and Y with Respect to Template T Using
Computation Alignment.

28

ALIGN X (i) WITH T(3i+1)

ALIGN Y (i) WITH T (2 i+ 1)

DO i = 1, N

X (2i-1) = Y (3i-1) + Y (3i) + Y (3i+1)

ENDDO

X

T

Y

Figure 2.2: Relative Alignment of Arrays X and Y with Respect to Template T without
Using Computation Alignment.

problem above. We are, however, concerned with determining the one that results in

the least interprocessor communication and this is the reason why it is important to relax

the owner-computes rule. If performing the computation at some processor will result in

the least communication, then that processor should indeed be the one carrying out the

computation regardless of whether or not it owns the Ihs element.

We will now develop a formulation for the stride alignment problem as a general linear

programming (LP) problem and show how to use an LP tool to solve it. Later on we

will use this formulation to derive the offset alignment formulation. This is because the

offset alignment case can be viewed as an special case of the stride alignment problem.

Consider the following piece of code where the arrays X and Y (which are not replicated)

29

are aligned to a template T as specified above and a x , f i x , ay , Py , « /, and Pi are to be

determined.

ALIGN X[i} WITH T[ax i + Px]
ALIGN Y[i] WITH T[aYi + PY\
ALIGN i WITH T[aji + Pi]
DO i = \ , N

ŝT[diz + &i] = ^ [c ii -j- d\] + Y[c2i + d2] + • • • 4- U[cr 'i + dr]
ENDDO

Consider iteration i only. Since we are concerned with alignment, we assume as many

processors as needed. We want to minimize the distance from the processor(s) holding

the elements of arrays X and Y that are needed to perform the computation of the element

on the left hand side, to the processor which will be performing the computation during

iteration i. Using the alignment specified above we find that the processor which holds

the element on the Ihs is processor a x (aii + b\) + (3X . Similarly, the processor holding

the first term of array Y is processor a Y {c\i + d\) + /? y , the one holding the second term

is a Y (c2i + d2) + (dY, and so on. Thus the distance between the processor which holds the

Ihs element and the processor which performs the computation during iteration i is given

by

I[ayY(fli'i + &i) + Px\ ~ [a/'i + Pi]\ ■

Similarly we find the distance from the processor(s) holding each one of the elements on

the right hand side to be

|[ay(c/i + dj) + PY] - [ap + Pi]\, 1 < j < r.

Combining all the terms shown in these two expressions we find the sum of the

distances of each processor holding an element of X and each processor holding and

element of Y from the processor which performs the computation during iteration i as

30

follows:

r

|(o:x(a i* + b\) + Px) — («/* + Pi) | + X \aY (CP + di) + Py ~ (a i ‘l + Pi) I ■
j=i

We now include all the iterations to come up with the following equation:

N

We can generalize the above expression to the case when we have an arbitrary number

I of loop nests, an arbitrary number w of statements over the various loop nests (w'J

is the number of statements in loop nest g), and q is the total number of arrays in the

program which are actually used. In this way we can obtain a general expression for

the minimization of the total distance over the entire program. Note that only the arrays

which are actually used in the program are considered here.

total distance = X \ (a x(a-\i + M + Px) ~ («/* + Pi)I
i = 1

r N

+ X X \a y (c/* ^ dj) + Py — (otii + Pi) | . (2 . 1)

We want to minimize this sum of distances, i .e . ,

| X |(«A'(a i7' + bi) + Px) ~ (a ii + Pi)I
I i — l

N)
+ X X \a y (w + di) + Py ~ (a P + Pi)\ r

minimize

(2 .2)

Collecting terms and rearranging we obtain the following:

f Nminimize < X K^a'Oi ~ a i)i + a xbi + Px — Pi\minimize
I i = 1

r N
(2.3)

31

The generalized expression is:

{ l w9 (q r k N

£ £ { £ £ £ I(«nSv; - “/) + / % - Pi\
<1= 1 u ~ 1 j — \ i — \

N

+ £ Ka xa g,u - a /)z + ftx*!5’" + /?* - /?/!
i — I

where > 0 and represents the number of terms of an array Yk that appear on the right

hand side of statement u in loop nest g, and q > 1. Note that in Equation 2.4, X is used

for the array which appears on the Ihs of a statement u in loop nest g, and Yk is used for

the k th occurrence of an array Y which appears on the rhs of statement u in loop nest g,

including X .

Adopting the convention that Yj corresponds to the array on the Ihs of statement u in

loop nest g, and accounting for the term Y\ in r\, we can rewrite Equation 2.4 as shown

below

{ l w g q rk N

E E E £ E I (a n cJvk - a i) { + a Ykdjyk + 0Yk - P i I f - (2.5)
g = l u = 1 k = 1 j = I i = 1 J

Note that for any array Yk for which ^ = 1 we can reduce its contribution to the equation

above to zero by choosing a i = a Ykc\Yk, and /?/ = (3Yk 4- a Ykd\y . This will also be the

case if rfc > 1 and the subscript expressions for array Yk are always the same. In this

case we can use these equations as constraints on the values of both a j and (3j and we can

also use it to impose constraints on the values of a Yk and pYk. This constraints are easily

added to our model using the method outlined below.

Assume for now that we have only one loop nest, i.e. g = 1, and one statement,

i.e. w 3 — 1, at a time. Let us also assume that the stride terms for each distinct array

are the same. Then each of the c coefficients for a particular array will be equal, i.e.

(2.4)

32

ciyk = C2yk = • • • — cry so that our equation becomes

minimize J N J2 \a YkdjYk + Pn ~ Pi\ \ (2 .6)
fc=ij=i

or

<1 T k

minimize < N]T zkj > (2.7)
I fc=ij=i J

where

Zkj — \a Ykdjyk + f3yk ~ Pi\- (2.8)

We want to solve this problem using a linear programming (LP) solver, however, LP

solvers do not accept absolute values of variables. We solve this problem by adding the

following pair of constraints for each Zkj term in the objective function

z k j — d jy k a iyk — (3Yk + P i > 0

and

zkj + djyk Otyk + f3yk — fdj > 0 .

This results in

z ^ (optimal) = | a ' y /fcd j v,fc + Pyk — /?/ j -

Thus, our problem could be formulated as

<1 r k
minimize < N]T ^ zkj > (2.9)

(fc=ij=i I

33

subject to

z k j ~ d j Y Oiyk — p y k + P i > 0 (2.10)

z k j + d jYk a Yk + P y u ~ P i > 0 (2 . 11)

(Y-i — CYkOiYk = 0 (2 . 12)

and

zkji oij, Pi, a Yk, @Yk > 0 (2.13)

for all values of k, and j .

Equation 2.9 together with the constraints 2.10, 2.11, and 2.13 describe a linear

programming problem. Equation 2.12 is added as a new constraint on the values of « /

and a.Yk ■

To allow our variables to take on either positive or negative values we will use the

concept of the positive and negative parts of a real number. Banerjee [11] defines the

positive part a+ and the negative part a~ of a real number a as a+ = m a x (a, 0) and

a~ = m,ax{—a, 0) such that a+ = a and a~ = 0 for a > 0 , and a+ = 0 and a,~ = —a for

a < 0. Note that a = a+ — a,~.

Replacing a$k - a Yk, a f - ay , P$k - /?yfc, and P f - p y for a Yk, « /, Pvk, and /),,

respectively, and adding the constraints

a Yk > a Yk » @Yk i P vk i a t) a I > P f j > 0

34

the new constraints for Equation 2.9 become

zkj - djYk(a+k - ayk) - (/?+ - PyJ + {(it - PJ) > 0 (2.14)

zkj + djYk (a+ - ayk) + (Pih - P Y J - {P i - PJ) > 0 (2.15)

cvfc («yfc -) = 0 (2.16)

a i — a j > 1, oiyk — aYk > 1 (2.17)

and

Zkj, <4k, aYh, Pik, PYk, «/+, a 7 > P i , PI > 0 (2.18)

for all values of j and k. If we do not want a specific variable to be negative we can just

add the constraint that the corresponding negative part be equal to zero. For example, if

we do not want reversal alignment we would add constraints specifying that the negative

parts of the values for the a-’s are set to zero.

Polynomial time algorithms have been discovered that solve the general linear pro

gramming problem, although the general integer programming problem is still NP-hard

[47]. We use one of these LP solvers to solve for the unknown variables that will mini

mize Equation 2.9 subject to the conditions stated in Equations 2.14 thru 2.18. Note that

with this method we add a new variable for each original equation and that each original

35

constraint equation is replaced by two new equations. This method can be used for both

stride and reversal alignment as specified previously.

After running the model for the example problem presented earlier we obtained the

following results: aj — 3, a x — 3 /2 , ay — 1, /?/ = Py = 0, and fix = 3/2. Note that

these are all rational numbers. In order to convert them to integers we simply multiply by

the least common multiple of the denominators; note that an integer % is written as j . For

this example we use two, and obtain = 6 , a x = 3, a Y = 2 ,p j = p Y = 0, and px = 3.

These integer values are very similar to the values we obtained by inspection. The basic

difference is in the value of the constant offset coefficients. We note that we still have

communication arising from these constant offset terms. As shown in Figure 2.3 each

processor needs one element from the processor to its right, except for the last processor.

This is assuming the same block distribution of three elements per processor as before.

This type of communication, however, is not too expensive if the block size exceeds the

maximum absolute value of the offsets since it is between nearest neighbors. But we

have taken care of a more expensive type of communication, i.e. that which arises from

the stride terms which may not be among nearest neighbors. In terms of cost, the most

expensive type of communication among processors is the one due to axis misalignment

since it involves all processors across more than one dimension, followed by stride which

is within a dimension, then replication from one to many processors, and offset.

2 .2 O f f s e t A l ig n m e n t

Among all the different types of alignment the most common type is offset alignment.

This is because nonzero coefficients of loop indexes in most subscripts expressions are

either 1 or -1 [77]. All of the benchmarks used in this dissertation are examples of offset

alignment. Offset alignment can be viewed as an special case of stride alignment where

36

ALIGN X (i) WITH T(3i+3)

ALIGN Y(i) WITH T(2i)

ALIGN i WITH T(6i)

DO i = 1, N

X (2 i-1) = Y (3 i-1) + Y(3i) + Y (3 i+ 1)

ENDDO

X

T

Y

Figure 2.3: Relative Alignment of Arrays X and Y with Respect to Template T Using
Computation Alignment and Our LP Method.

37

all the stride coefficients are equal to one. An example will help illustrate how this type

of alignment arises. Suppose that we have the loop shown below:

DO i = \ , N
X[i] = Y[i + 2]

ENDDO.

Note that the coefficients that multiply the index variable in the subscript expressions have

a value of one. Remember that, in order for arrays X and Y to be aligned they must be

mapped to the same template, and that it is their relative positions to this template that

will determine how they are aligned with respect to each other. For offset alignment we

have alignment statements of the form

ALIGN X[i] WITH T1 [2 - 1]

and

ALIGN Y[i] WITH Tl[* 4- 4].

Figures 2.4 and 2.5 illustrate several ways in which these arrays could be aligned to a

template T. If we align the arrays as shown in Figure 2.4(a), then we find that two

elements need to be sent to the processor on the left, assuming a linear array and a block

distribution with block size three. This communication is illustrated in Figure 2.4(b). If

on the other hand we choose to align arrays X and Y as shown in Figure 2.5, we obtain

perfect alignment of the arrays. As a result the communication among processors is zero

and the code can be executed in parallel.

There is a basic difference in the way the alignment is performed in Figure 2.5(a)

and (b). In Figure 2.5(a) computation alignment is used to map the iterations of the

loop to the processor that will minimize communication because of its position in the

processor array with respect to the position of the processors holding the rhs operands. In

38

ALIGN X(i) W ITH T(i)

ALIGN Y(i) W ITH T(i)

DO i = 1, N

X(i) = Y(i+2)
ENDDO

10 12 13 10 12 13

X 10

Y 10 12 13

X

Y
(a) (b)

Figure 2.4: (a) Relative Alignment of Arrays X and Y with Respect to Template T (b)
Elements of Array Y That Need to Be Copied Onto X .

39

ALIGN X(i) WITH T(i+4)
ALIGN Y(i) WITH T(i+2)
ALIGN i WITH T(i+4)
DO i = 1, N

X(i) = Y(i+2)
ENDDO

1 2 3 4 5 6 7 8 9 10 11

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Y 1 2 3 4 5 6 7 8 9 10 11 12 13

(a)

ALIGN X(i) WITH T(i)
ALIGN Y(i) WITH T(i-2)
DO i = 1, N

X(i) = Y(i +2)
ENDDO

1 2 3 4 5 6 7 8 9 10 11

-I 0 I 2 3 4 5 6 7 8 9 10 U 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b)

Figure 2.5: Perfect alignment of arrays X and Y (a) Using Computation Alignment and
(b) without Computation Alignment.

40

Figure 2.5(b) the owner-computes rule is used and the computation is always performed

by the processor holding the Ihs element. This is done without any regard to the position

of the elements on the rhs. Although for this particular example either method can result

in zero communication, the advantage of the computation alignment method over the

owner-computes rule was illustrated in Section 2.1.

Now consider the following code:

ALIGN X[i\ WITH T[i + px]
ALIGN Y[i] WITH T[i + P v \
ALIGN i WITH T[i + pi]
DO i — \ , N

X[i + &i] = Y[i + d,\] -\- Y[i + d2] + • • • + Y[i + dr]
ENDDO

where arrays X and Y (not replicated) are aligned to a template T as specified above and

P x , P y , and P i are to be determined.

Note that this is the same problem we have already dealt with in Section 2.1, but in

this case the stride coefficients c are all equal to one. Thus, we arrive at the following

equation by replacing each alignment coefficient a in Equation 2.6 with one.

minimize (2.19)

or

minimize (2.20)

where

Zkj — | d j Yk + p Yk ~ P i I • (2 .21)

41

To solve this problem using a linear programming (LP) solver we introduce additional

variables and constraints as needed and arrive at the following equations:

*<y - djYk ~ (P i ~ Pvk) + (Pt - PT) > 0 (2.22)

+ djYk + (P i - P i) - (Pt ~ P T) > 0 (2.23)

and

<%, P i , Pyk, Pt , P 7 > 0 (2.24)

for all values of j and k. Again, two variables are used for each original variable and

two constraint equations for each original equation. Thus, we have doubled the number

of original equations and variables. As explained previously, if we do not want a specific

variable to be negative we can just add the constraint that the corresponding negative part

be equal to zero.

Shown below are several examples of benchmark program segments from Kremer [51]

and Tseng [80] and the result of applying our LP method of determining the offset

alignment.

The Jacobi algorithm [80] is shown in Figure 2.6. We have labeled the two statements

SI and S2. After applying our LP method to each one of the statements we obtained the

results shown in Table 2.1.

The code for the Alternating-Direction-Implicit (ADI) program [51] from is shown

here as Figure 2.7. The results after applying our LP method to the ADI program segment

are as shown in Table 2.2.

4 2

DO j = 2,99
DO i = 2,99

SI: l] , £ [z - \ , j] , B [i + 1])
ENDDO

ENDDO
DO j = 1,99

DO i = 1,99
S2: B[i, j] = A[i, j]

ENDDO
ENDDO

Figure 2.6: Jacobi Program Segment.

Table 2.1: Constant Offsets (/0’s) Found Using LP Method on Jacobi.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
A 0 0
B 0 0

S2 I 0 0
A 0 0
B 0 0

43

DO j = 2, N
DO i = \ , N

SI: x[i,j] = J7i (x [i , j] , x [i , j - 1 } ,a[i , j] , b[i , j - 1])
S2: b[i,j] = T 2(b[i, j],a[i, j],b[i, j - 1])

ENDDO
ENDDO
D O i = 1, AT

S3: x[i,N] =Ti (x{ i ,N} ,b[i ,N})
ENDDO
DO j = N — \, 1 ,-1

D O i = l , N
S4: x[i,j] = j],a[i, j + 1],x[i , j + l],6[i, j])

ENDDO
ENDDO
DO j = \ , N

DO i — 2 , N
S5: ' x[i,j] = F 5(x[L,j},x[i - 1, j],a[i, j],b[i - 1 ,j])
S6: b[i,j\ = ^6{b[iJ],a[i, j],b[i - 1 , j])

ENDDO
ENDDO
DO j = \ , N

S7: x[iV,j] = ^ 7(a:[iV,j],6[iV,j])
ENDDO
DO j = \ , N

DO i = N — 1, 1 ,-1
S8: x [i,j] = J rs(x[i, j\,a[i + \ , j] , x [i + l , j],b[i, j])

ENDDO
ENDDO

F ig u re 2 .7: A lte rn a tin g -D irec tio n -Im p lic it (A D I) P ro g ram S egm en t.

44

T able 2 .2: C o n stan t O ffse ts (/T s) F o u n d U sin g L P M e th o d on A D I.

STATE
MENT

ARRAY
NAME

DIMENSION STATE
MENT

ARRAY
NAME

DIMENSION
ONE TWO ONE TWO

SI I 0 0 S5 I 0 0
A 0 0 A 0 0
B 0 1 B 1 0
X 0 0 X 0 0

S2 I 0 0 S6 I 0 0
A 0 0 A 0 0
B 0 0 B 0 0

S3 I 0 - S7 I - 0
B 0 - B - 0
X 0 - X - 0

S4 I 0 1 S8 I 1 0
A 0 0 A 0 0
B 0 1 B 1 0
X 0 1 X 1 0

The code for Disper [80] is shown in Figure 2.8 and the results after applying our

method are shown in Table 2.3

A program segment is shown for Livermore 18 in Figure 2.9. The results of applying

our methods are shown in Table 2.4. The results were as shown in Table 2.4.

A program segment is shown for Livermore 23 in Figure 2.10 [80]. The results of

applying our methods are shown in Table 2.5.

Table 2.3: Constant Offsets (/?’s) Found Using LP Method on Disper.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND 3RD 4TH 5TH

S3 I 0 0 0 0 0
GRADY 0 - - - -

PFMR 0 0 0 0 0
DDY 0 0 0 - -

{* compute dispersion term,s *}
DO j = 2,4

DO *3 — 1,8
DO *2 = 1,8

DO i\ = 1,256

S3: grady[ii] = (p fmr[i { + 1 , i2, ■h , j , A:]-
pfmr[i i - \ , i 2, 'h, j , k})) /
(0.5 * (ddy[i\ + 1,*2,*3]+
ddy[ii - l , i 2,'i3])+
ddy[iu i2,h])

ENDDO
ENDDO

ENDDO
ENDDO

Figure 2.8: Disper: Oil Reservoir Simulation Program Segment.

46

DO I — 1, t ime
DO k = 2,99

DO j = 2,99
SI: A] = ^ (Z P [j - \ , k] , ZQ\ j - 1, k], Z M [j - 1, k],

ZR[j - 1 ,k], Z Z [j - 1, k], ZA[j - 1 ,k], ZU[j - 1, k],
Z V [j - \ , k } , Z B [j - \ , k })

S2: ZB\ j , k] = P 2(ZP\ j - 1 ,k], ZQ[j - 1, k], Z M [j - 1 ,k],
ZR[j — \ ,k], Z Z [j - 1 ,k], ZA[j - 1 ,k], ZU[j - 1 ,k],
Z V [j - \ , k] , Z B [j - \ , k })

ENDDO
ENDDO
DO k = 2 ,99

DO j = 2,99
S3: ZU\j , k] = 3=AZZ\j - 1, k \ , Z Z l j + 1, k\ , ZA[j - 1 ,k\,

ZA[j + 1, *], ZU[j - 1, k], ZU\ j + 1, A:], Z F [j - 1, A;],
Z F [j + 1, A:], Z B \ j - 1, A:], Z B[j + 1, A;])

S4: ZV\ j , k] = P 4(ZZ[j - 1, A;], Z Z \ j + 1, A:], ZA[j - 1, A;],
ZA[j + 1, A:], ZU[j - \ , k] , Z U [j + I , k], ZV[j - 1, A:],
ZV[j + \ , k] , Z B [j - l , k] , Z B [j + \,k})

ENDDO
ENDDO
DO k = 2,99

DO j = 2,99
S5: ZR[j , k] = P 5(ZR[j, k],ZU[j, k])
S6: ZZ\ j , k] = P 6(ZZ[j , k], ZV[j , A;])

ENDDO
ENDDO

ENDDO

F ig u re 2 .9 : L iv e rm o re 18 P ro g ram S egm en t.

47

T ab le 2 .4: C o n stan t O ffse ts (/?’s) F o u n d U sin g L P M eth o d on L iv e rm o re 18.

STATE ARRAY DIMENSION STATE ARRAY DIMENSION
MENT ONE TWO MENT ONE TWO

SI I 0 0 S3 I 0 0
ZA 1 0 ZA 0 0
ZB 1 0 ZB 0 0
ZM 1 0 ZU 0 0
ZP 1 0 ZV 0 0
ZQ 1 0 ZZ 0 0
ZR 1 0 S4 I 0 0
ZU 1 0 ZA 0 0
ZV 1 0 ZB 0 0
ZZ 1 0 ZU 0 0

S2 I 0 ZV 0 0
ZA 1 0 ZR 0 0
ZB 1 0 S5 I 0 0
ZM 1 0 ZR 0 0
ZP 1 0 ZU 0 0
ZQ 1 0 S6 I 0 0
ZR 1 0 ZV 0 0
ZU 1 0 ZZ 0 0
ZV 1 0
ZZ 1 0

DO 1 = 1, t ime
DO j = 2,99

DO k = 2,99
SI: QA = .F1(ZA[fc>;7 + l] ,Z A [fc ,j - l] ,M < fc+ \ , j] , Z A [k - \ , j])
S2: Z A [M = ^ (^ 4 [M , < M)

ENDDO
ENDDO

ENDDO

Figure 2.10: Livermore 23 Program Segment.

48

T ab le 2 .5 : C o n stan t O ffse ts (/3’s) F o u n d U sin g L P M eth o d on L iv e rm o re 23.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
ZA 0 0

S2 I 0 0
ZA 0 0

Table 2.6: Constant Offsets (/?’s) Found Using LP Method on Red Black SOR.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
V 0 0

S2 I 0 0
V 0 0

S3 I 0 0
V 0 0

S4 I 0 0
V 0 0

The code for Red Black SOR (Successive Over Relaxation) is shown in Figure 2.11

and the results of applying our method on Table 2.6.

We have also obtained the weather prediction program Shallow from [80], Shallow is

a 200 line benchmark that uses stencil computation that applies finite-difference methods

to solve shallow-water equations and is a representative of a large class of existing

supercomputer applications. The program segment for Shallow is shown in Figure 2.12.

The results were as shown in Table 2.7.

With this we conclude our benchmarks results. We will be using these same bench

marks throughout this dissertation and will be referring back to this section for the program

segments.

DO 1 = 1 , t ime
{* compute red points *}
DO j = 3 ,999,2

DO i = 3 ,999,2
SI: V [i , j] = F (V [i , j - \ \ , V [i - \ , j] , V [i , j + l } , V [i + \ , j })

ENDDO
ENDDO
DO j = 2,998, 2

DO i = 2 ,998,2
S2: V [i , j] = T { V [i , j - \ } , V [i - \ , j] , V [i , j + \ } , V [i + \ , j })

ENDDO
ENDDO
{* compute black points *}
DO j = 2 ,998,2

D O z = 3,999,2
S3: V [i , j } = F (V [i , j - \] , V [i - l , j } , V [i , j + \ } , V [i + l , j })

ENDDO
ENDDO
DO j = 3 ,999,2

DO i = 2 ,998,2
S4: V [i , j] = T (V [i , j - \] , V [i - l , j } , V [i , j + l } , V [i + \ , j })

ENDDO
ENDDO

ENDDO

F ig u re 2 .11: R ed B lack S O R P ro g ram S egm ent.

50

D O j = l , N - l
DO i = I, N — 1

SI: u[i + 1, j] = T\ (psi[i + 1 , j + 1],psi[i + 1, j])
S2: v[i , j + 1] = T 2{jpsi[i + 1, j + 1],psi[i, j + 1])

ENDDO
ENDDO

DO j = \ , N — I
DO * = \ , N — 1

S3: cu[i+ l , j] = ^ { p [i + 1, j] ,p[i , j] ,u[i+ 1, j])
S4: cv[i, j + 1] = P 4 (p[i,j + \],p[i , j],u[i , j + 1])
S5: z[i + \ , j + 1] = F${v[i+ 1, j + 1],v[i , j + 1],u[i + \ , j + 1],

“ [*+ 1iJ'],p[m]>p[*+ h j] , p [i + 1J + 1],p[i, j + 1])
S6: h[i,j] = f 6(p[i , j],u[i+ 1 , j] , u [i , j] , v [i , j+ 1],v[m])

ENDDO
ENDDO

DO j = 1 ,7V - 1
DO * = 1, N - 1

S7: unew[i + 1, j] = T 2(uold[i + 1, j], z[i + 1, j + 1], z[i + 1, j],
cv[i + 1 , j + 1] , cv[i , j+ 1 },cv[i , j],cv[i+ 1 ,j] ,
h[i+ 1 , j],h[i , j})

S8: vnew[i , j + 1] = !Fz(vold[i,j + 1], z[i + 1, j + 1], z[i , j + 1],
cu[i+ 1 , j + 1 \ ,cu[i , j + 1],cu[i , j],cu[i+ 1 ,j],
h[i , j + 1 },h[i,j})

S9: pnew[i , j + 1] = F<){pold[i,j], cu[i + 1 , j],cu{i,j],
cv[i, j + 1],cv[i,j})

ENDDO
ENDDO

Figure 2.12: Shallow Program Segment.

51

Table 2.7: Constant Offsets (/3’s) Found Using LP Method on Shallow.

STATE
MENT

ARRAY DIMENSION STATE
MENT

ARRAY DIMENSION
ONE TWO ONE TWO

SI I 1 0 U 0 0
U 0 0 V 0 0

PSI 0 0 S7 I 1 0
S2 I 0 1 UNEW 0 0

V 0 0 UOLD 0 0
PSI 0 0 Z 0 0

S3 I 1 0 CV 0 0
c u 0 0 H 1 0
p 1 0 S8 I 0 1
u 0 0 VNEW 0 0

S4 I 0 1 VOLD 0 0
c v 0 0 Z 0 0
p 0 1 CU 0 1
V 0 0 H 0 1

S5 I 1 1 S9 I 0 0
z 0 0 PNEW 0 0
V 1 0 POLD 0 0
u 0 1 CU 0 0
p 1 0 CV 0 0

S6 I 0 0
H 0 0
p 0 0

52

2 .3 Axis A l i g n m e n t

The most expensive type of interprocessor communication can be avoided through axis

alignment. Axis alignment arises when we have a dimension permutation in the alignment

statement for multidimensional arrays. For example, with

ALIGN X[i , j] WITH T\[j , i]

we have that each row i of array X is aligned with column i of template T 1. Likewise, each

column j of X is aligned with row j of template T \ . In other words, the first dimension

of array X is aligned with the second dimension of template T1 and the second dimension

of X is aligned with the first dimension of T \ (see Figure 2.13). Other examples include

ALIGN Z[k, j, i] WITH T3[i, j, k]

where the first, second, and third dimension of array Z are aligned with the third, second,

and first dimension of template T 3, respectively.

Consider the following code segment (where the two-dimensional arrays X and Y are

not replicated)

DO * = 1, N
DO j = 1 , N

X[i , j] = Y{i , j} + Y[j,i]
ENDDO

ENDDO

and assume that the alignment directives for arrays X and Y and iteration i , j will be as

follows:

ALIGN X[i, j] WITH T[a'x i + P'x , a 2x j + p 2x]

ALIGN Y[i, j] WITH T [a [Yi + /fy, a 2Yj + $>]

ALIGN i , j WITH T[a\ i + /?], a j j + 0}\.

53

X T1

Figure 2.13: Axis Alignment of X[i , j \ with T 1 [j, i].

Using the l\ metric the total distance from the processor performing iteration i , j to the

processors holding each of the operands would be given by

distance = | (c^Y - ck}) i + 0'x - p\ | + | (c?x - oq) j + 0 2x - 0 j |

+ | (a Y - a)) * + P y ~ P i | + | (a Y ~ « /) J + P y ~ P]|

+ |a'yj - a \ i + Py - P\ | + |ayi - a j j + 0 ^ - 0 ^ . (2.25)

Note the last two terms of the equation above. There is no non-trivial way of eliminating

the i and the j from the equation above when we consider all the possible values that i

and j can take on.

Here the problem is not the metric but the actual mapping. We have a mapping from a

two-dimensional array space and a two-dimensional iteration space to a two-dimensional

template space, and because of the nature of the problem itself, the approach we have used

54

so far is not very useful for this particular problem. However, consider the same problem

but with a different mapping, namely the hyperplane mapping. In particular, consider that

arrays X and Y , and the iterations of the loops will be aligned using the directives shown

below

ALIGN X[i, j } WITH T [a lx i + p lx + a \ j + p \ \

ALIGN Y[i, j] WITH T [a lYi + p\, + a ^ j + /?£]

ALIGN i , j WITH T[a)i + p\ + a j j + ffi]

so that the two-dimensional array space and the two-dimensional iteration space are

mapped onto a one-dimensional template. The distance function will then be given by

distance - | (a^Y - a)) i + (a 2x - a)) j + p lx - P\ + P \ - pj\

+ | (a v (a y - a f j j + P y - P \ + P i - p j |

+ | [ay — i + (a y — aj'J j + Py — P\ + Py — P} | . (2.26)

In order to reduce this distance to zero we require that

1 1 2 2 1 2 Ot-X — ^ I — ^ I — Oty' — OL'y •

Then the equation will be as follows

\px — P) + Px ~ Pf\ + |Py ~ Pi + Py ~ P/ | + |Py ~ Pi + Py ~ Pi\ (2.27)

which can be reduced to zero distance by allowing Pj = Px = Py and p j = Px = Py .

This means that each diagonal of arrays X and Y , and each diagonal of the iteration space

55

X, Y

Figure 2.14: Alignment by Diagonals of Arrays X , and Y to Template T.

56

would be mapped to a point in the one-dimensional template. The resulting alignment is

illustrated in Figure 2.14.

2 .4 R e p l ic a t io n

Replication is a type of alignment which arises from the need for every processor to store

copies of some data. Examples of replication are shown in Figure 2.15. In this figure

each element of the one-dimensional arrays X and Y is aligned with each element of

the corresponding template column and row, respectively. Therefore each processor that

owns an element of the template will also own the corresponding element of the array. For

example, the first part of Figure 2.15 shows the replication of the one-dimensional array

X onto template T. As a result of this replication, element 1 of array X is replicated on

column 1 of template T, element 2 on column 2, and so on. A processor which is assigned

an element of column 1 of template T will also be assigned element J\T [1], if a processor is

assigned an element of column 2 of T, then that processor will also be assigned element

X[2] and so on. Similarly, the second part of Figure 2.15 shows a one-dimensional array

Y which is replicated on a two-dimensional template T1 and as a result each element F[*]

is replicated on row * of T1 so that a processor which is assigned an element of row i of

T l will also be assigned element Y[i].

In order to illustrate how our method could be used to solve the replication problem

we will use an example from Bau et al. [14]. Consider the code shown below

DO i = I, N
DO j = l , N

S: X[i , j] =X[i , j] + Y[i *Z\ j]
ENDDO

ENDDO

Note that Y and Z are one-dimensional arrays and that A is a two-dimensional array.

Also note that all the elements of Z that are accessed during an iteration of the outer loop

57

ALIGN X(i) WITH T(*,i)

X

ALIGN Y(i) WITH TI(i, *)

Y

T1

Figure 2.15: Replication of Array X along the Rows of Template T and of Array Y along
the Columns of Template T 1.

58

are also accessed during the next iteration of the outer loop and that the same element of

Y is accessed during all the iterations of the inner loop for a particular iteration of the

outer loop. In other words, y[*] is used to compute all the elements in row * of X and

Z[j] is used to compute all the elements in column j of X . Lastly, note that elements of

arrays Y and Z are referenced (read) but not modified (written) during each execution of

statement S above.

As discussed earlier, arrays are aligned to each other by aligning them to a common

template. We have seen many examples in which we have aligned arrays which are all

of the same dimension. In this case, however, we have arrays of different dimensionality

used in the same statement. Since Y [*] is used to compute all the elements in row i of X

and Z\j] is used to compute all the elements in column j of X , we would like to align

X , Y , and Z such that communication is minimized. In this case we can reduce the

communication to zero by replicating arrays Y and Z along the columns and along

We find how to align the arrays using the LP method developed in Section 2.2 for

offset alignment. This is because the example does not include stride coefficients greater

than one nor does it include axis alignment. In this case arrays Y and Z can be replicated

so that communication is reduced to zero. The resulting alignment directives are shown

below (note the use of T[i, *] and of T[*, j] to indicate row i and column j , respectively).

These results are illustrated in Figure 2.16 for arrays Y and Z.

ALIGN X[i , j] WITH T[i,j]

ALIGN Y[i] WITH T[i, *]

ALIGN Z[j\ WITH T[*,j]

ALIGN i , j WITH

This means that array Y is replicated along the columns of X and array Z is replicated

along the rows of X .

59

ALIGN Y(i) WITH T(i,*), Z(i) WITH T(*,i)

T
Figure 2.16: Replication of Array Z along the Rows of Template T and of Array Y along
the Columns of Template T.

60

2 .5 S o l u t io n s U s in g L in e a r P r o g r a m m in g

The solution to an optimization problem such as those in this chapter which we represented

as general linear programming problems are found at the extreme points or vertices as

stated in the corner principle of algebra. These extreme points are the intersections

of linear equations which are formulated using integer coefficients. The solutions are

therefore guaranteed to be rational numbers which we can convert into whole numbers by

multiplying by the corresponding least common multiple.

2 .6 C o m p a r is o n W it h O t h e r W o r k

The component alignment problem has been proven to be NP-complete by Li and Chen

[55]. They introduced the Component Affinity Graph (CAG) and the idea of generating

communication primitives based on the reference patterns found in the array subscript

expressions. The CAG is an undirected, weighted graph whose nodes represent the

components to be aligned. The nodes are grouped in columns. An edge joins two nodes

if the nodes have affinity. The algorithm provided by Li and Chen is based on heuristics.

Gupta and Banerjee [33], present a method restricted to partitioning of arrays, i.e. no

computation partitioning. Their method selects important segments of code to determine

distribution of various arrays based on some constraints. Quality measures are used

to choose among contradicting constraints. These quality measures may require user

intervention. The compiler tries to combine constraints for each array in a consistent

manner to minimize overall execution time and the entire program is considered. Small

arrays are assumed to be replicated on all processors. The distribution of arrays is by

rows, columns, or blocks. This work uses heuristic algorithms to determine the alignment

of dimensions, i.e. component alignment, of various arrays since the problem has been

shown to be NP-complete. The owner-computes rule is assumed and issues concerning the

61

best way to communicate messages among processors, such as aggregate communication

introduced in the work by Tseng [80], are dealt with. Communication costs are determined

by Gupta and Banerjee [33] after identifying the pairs of dimensions that should be aligned.

Consideration is given to when it would be best to replicate a dimension rather that to

distribute it. The component affinity graph is used to determine alignment.

Bau et al. [14] use elementary matrix methods to determine communication-free

alignment of code and data. They also deal with the problem of replicating read-only data

to eliminate communication. Their work incorporates data dependences in their proposed

solution to the problem and the owner-computes rule is assumed. Replication of data is

also incorporated into their proposed solution. Their work treats all types of alignment as

equal, e.g. it does not incorporate the notion that axis alignment is more important than

stride, replication, or offset alignment. The Smith normal form of integers is used as part

of their method. Alignment of both data and computation is determined by finding a basis

for the null space of a known matrix.

Chatterjee et al. [23] and [24] provide an algorithm that obtains alignments which

are more general that the owner-computes rule by decomposing alignment functions into

several components. Chatterjee [23] et al. investigate the problem of evaluating Fortran 90

style array expressions on massively parallel distributed-memory machines. They present

algorithms based on dynamic programming.

Kim and Wolfe [50] show how to find and operate on the communication pattern

matrix from user-aligned references.

O ’Boyle [61] proposed an automatic data partition algorithm based on the analysis of

four distinct factors. He does not consider partitioning of computation along with that of

data and he is not concerned with finding the alignment that will minimize communication.

62

Wakatani and Wolfe [81] address the problem of minimizing communication overhead

but from a different context than ours. They are concerned with the communication

arising from the redistribution of an array and proposed a technique called strip mining

redistribution. They are not concerned with automatically generating the alignments in

order.

Chatterjee et al. [20] and Sheffer et al. [76] deal with determining both static and

dynamic distributions. They use the Alignment-Distribution Graph (ADG) whose nodes

represent program operations, the ports in the nodes represent array object manipulated by

the program, and the edges connect array definitions to their respective uses. The ADG is

a directed edge-weighed graph although it is used as an undirected graph. Communication

occurs when the alignment or distribution at the end points of an edge is different. At this

time realignment and or redistribution may be needed. The completion time of a program

is modeled as the sum of the cost over all the nodes (which accounts for computation

and realignment) plus the sum over all the edges of the redistribution time (which takes

into account the cost per data item of all-to-all personalized communication, the total data

volume, and the discrete distance between distributions).

Kremer [52] proves the dynamic remapping problem NP-complete. Kremer et al. [53]

and Kremer [51] consider the profitability of dynamic remapping and use an interactive

tool for automatic data layout, respectively.

Kennedy and Kremer [48, 49] deal with dynamic remapping in Fortran D [80] and

HPF [41]. The work by Kennedy and Kremer propose a way to solve the NP-complete

inter-dimensional alignment problem [52] using a state-of-the-art general purpose integer

programming solver [49]. Thus Kennedy and Kremer [49] formulate the inter-dimensional

alignment problem as a 0-1 integer programming problem. The same is done by Bixby et

al. [17],

63

2 .7 C h a p t e r S u m m a r y

We have modeled the alignment problem as a general linear programming problem using

the l\ metric. Constraints on the values of the stride (a ' s) and offset (P's) coefficients

were included as part of the model. Among other things these constraints reduce the

contribution of single referenced arrays to zero and also make the problem independent

of the loop index variable. An LP tool was used to solve the problem. A solution was

presented for the offset alignment problem and specific solutions were given for the Jacobi,

Alternating-Direction- Implicit, Disper, Livermore 18, Livermore 23, Red Black SOR,

and Shallow benchmarks. Solutions were provided also for stride and axis alignment

along with replication alignment. For axis alignment we have required that the an array

diagonal be mapped to a cell template in order to solve the problem. Our method will

determine a non-trivial communication-free solution if it exists. Otherwise, our method

will determine a solution that minimizes communication.

Since the problem is modeled using linear constraints with integer coefficients and

since the solution to this type of problems lies in one of the extreme points resulting

from the intersection of the linear constraints, the results are guaranteed to be rational

numbers. Multiplying by the least common multiple of the denominators will yield

whole numbers. Linear programming tools are readily available for most computers. The

methods provided here are intended to be used as part of the compiler. Our framework

does not require user intervention.

Ch a pt e r 3

U sin g L a g r a n g e M ultipliers to S olve th e
A l ig n m e n t Pr o blem

In this chapter we show how to solve the computation and data alignment problems using

the Euclidean metric and the Lagrange Multiplier method. Once the problem has been

modeled, we use the software Mathematica [90] to solve the constrained optimization

problem. This method allows us to specify both equality and inequality constraints

whenever necessary. We deal with the alignment problem in a uniform way, that is

we formulate the stride, offset, axis, and replication alignment problems using the same

constraint-based method and solve them using the Lagrange Multiplier method. Some

researches have focused on the communication-free solution to the alignment problem and

provide no way of dealing with the problem when no communication-free solution exists.

Our approach deals with the problem when communication-free solutions exist and also

when no non-trivial communication-free solution can be found. If communication-free

alignment is possible our method will find it. Otherwise, our method will determine

the alignment that minimizes communication in case the communication is unavoidable.

In order to determine is the solution is communication-free one can simply substitute

the values found into the distance function and check whether this becomes zero. Our

approach is intended as a tool to be used with the compiler.

This chapter is organized as follows. Section 3.1 shows how to use the Lagrange

Multiplier method for the stride and reversal alignment problems. In Section 3.2 we use

the Lagrange Multiplier method for solving the offset alignment problem. Section 3.2

also presents the formulation and present solutions for several benchmark codes. In

64

65

Section 3.3 we provide a solution to the axis alignment problem. Section 3.4 presents

how to use this approach for replication alignment. Section 3.5 compares what other

researchers have done. Finally, Section 3.6 summarizes the chapter.

3.1 S t r id e a n d Re v e r s a l A l ig n m e n t

When the coefficients of the loop index variables in the subscript expressions of the array

references in a program are greater than unity, we have what has been termed as stride

alignment. If any of these coefficients is negative, then it is called reversal alignment.

Reversal alignment corresponds to mapping the reflection of the array onto the template

[80]. Stride alignment is generated by statements similar to the following

ALIGN X[i) WITH T l[2 i + 3].

A multidimensional array example is given in the statement

ALIGN Y[i , j] WITH T2[2i + 1, 3j + 2].

An example of reversal alignment is shown in the following statement

ALIGN y[i] WITH T3[-?;].

Consider the following piece of code:

D O i = 1, N
X[o,\i + &i] = y [c ii + d\] + y[c2? + dj] + ■ • ■ + y [c ri + d,-]

ENDDO

where arrays X and Y (which is not replicated) will be aligned to a template T as shown

below

ALIGN X[i\ WITH T[ax i + fix]

ALIGN Y[i] WITH T[ay i + /3Y]

and the iterations of the loop will be aligned with the following declaration

66

ALIGN i WITH T[ari + /?/]

where a x , Px, ®y , Py , and Pi are to be determined. Whenever any coefficient of the

loop index variables in the assignment statement are greater than one our formulation will

yield values for the a ’s which will be greater than or equal to one.

Let us consider for now iteration i only. We want to minimize the distance from

the processor(s) holding the elements of arrays X and Y that are needed to perform the

computation of the element on the left hand side to the processor which will be performing

the computation during iteration i. Using the alignment as specified above we can find

that the processor which holds the element on the Ihs is processor ax(a,\i + b\) + Px-

Similarly, the processor holding the first term of array Y is processor ay{c\i + d\) + p Y,

the one holding the second term is a y (c2i + d2) + (3y, and so on. Using the l2 or Euclidean

metric the distance from the processor which holds the Ihs element to the processor which

performs the computation during iteration i is [([^ (a i 'i + bi) + Px] ~ Va i'1 + Pi])2] 2■

Similarly we find the distance from the processor(s) holding each one of the elements on

the right hand side is [([a!y(c,-* + dj) + pY\ ~ [»/* + Pi])2] 2 > 1 < 3 < r -

Combining all the terms shown in the last two equations above we find the sum of the

distances from each processor holding an element of X and each processor holding and

element of Y to the processor which performs the computation during iteration i to be

({ a x (a i i + b i) + p x) - (c v / z + P i)) 2 + (a Y (c / i + d j) + p Y - (« / * + P i)) 7
i =i

If we now consider all the iterations of the loop nest, then the equation above becomes

distance =
' N

T i + 6j) + Px) ~ («/'i + Pi))2
■i— 1

67

r N

+ /C (ay (cj* + dj) + Py ~ (aP + Pi))2 ■ (3 . 1)

Collecting terms and rearranging the above equation we obtain the following

• N

distance = ^ ((ax^ i — a r)i + a x b\ + (3X ~ Pi)2

i

+ ^ 2 ^ 2 i (a Y cj — a i)i + O i y d j + P y ~ Pi)2 ■ (3-2)

To find an expression for the distance over the entire program we generalize the

expressions above to the case when we have an arbitrary number I of loop nests, an

arbitrary number w of statements over the various loop nests (w° is the number of

statements in loop nest g), and q is the total number of arrays in the program which are

actually used. Note that we do not account for arrays which have been declared but are

not used. In other words

where rk > 0 represents the number of terms that involve array Yk appearing on the right

hand side of statement u in loop nest g, and q > 1. Note that in Equation 3.3, is used

for the array which appears on the Ihs of a statement u in loop nest g, and Yk is used for

the k th occurrence of an array Y which appears on the rhs of statement u in loop nest g,

including X .

distance = \ ([a Ykcj'2 a ^ ji + a Ykd!jyk + PYk — P /)

(3.3)

Adopting the convention that Y\ corresponds to the array on the Ihs of statement u in

loop nest g, and accounting for the term Y\ in r \ , we rewrite Equation 3.3 as shown below.

Note that for any array Yk for which rk — 1 we can reduce its contribution to the above

equation to zero by choosing

This will also be the case if rk > 1 and the subscript expressions for array Yk are always

the same. In this case we use these equations as constraints on the values of both cv/ and

Pi and we also use it to impose constraints on the values of a Yk and f3Yk ■

In order to solve for the unknowns we require that &YkCjy‘ — a at 'u = 0. In this way

we eliminate the terms that are multiplied by i in Equation 3.4 and arrive at the following

equation

To solve for the unknowns in Equation 3.5 we will use the Lagrange Multiplier method

as reported by Avriel [7], Bazaraa et al. [15], Bertsekas [16], Kuhn and Tucker [54], Pike

[65], and Reklaitis et al. [70]. To minimize the Euclidean distance function in Equation 3.5

subject to the conditions f i (x) < 0, i — 1,2, • • •, h, a n d /z(x) = 0, i — h + 1, h+2, • • ■, m,

the necessary conditions for the existence of a relative minimum at a point x* are:

l w g q r k N

) i + a Ykdf;ik + p Yk - /?/) (3.4)distance = E E E E E ((« n “ a *
g— 1 w = | k= 1 j = 1 i = l

a i - a Ykc\Yk

and

Pi — Pvk + a yJ)\Yk ■

l w a q r k N
distance (3.5)

g— 1 w = l k= 1 j = 1 2=1

69

2. fi(x*) < 0 for i — 1,2, • • •, h

3. fi(x*) = 0 for i = h + 1, h + 2, • ■ •, m

4. Aifi(x*) = 0 for i - 1,2, • • •, h

5. Xi > 0 for i — 1,2, • • ■, h

6. Ai is unrestricted in sign for i = h + 1, h + 2, • • •, m

where n is the number of unknowns, h is the number of inequality constraints, m (n > m)

is the total number of constraints including equality constraints, and L is the Lagrangian

function formed by adding the constraints and their corresponding multipliers (A’s) to the

distance function [65]. Note that if we do not want to allow a variable to be negative we

can specify this by adding the appropriate constraint. For example, if we do not want to

allow reversal alignment we can constrain the values on the cFs to be positive.

The first condition sets the first partial derivatives of the Lagrangian function L with

respect to a;,, i = 1,2, • ■ •, n equal to zero to locate the Kuhn-Tucker point x*. Conditions

2 and 3 are the inequality and equality constraints, respectively, that must be met at the

minimum point found by solving the system of equations obtained from Condition 1. The

fourth condition comes from setting the partial derivatives of the Lagrangian with respect

to the slack variables equal to zero. Condition 5 arises from the fact that the rate of change

of the distance function with respect to the parameters on the rhs of the constraints is

equal to the negative of the corresponding Lagrange multiplier. By increasing the rhs of

a constraint the constraint region would be enlarged, which could not result in a larger

value for the distance function evaluated at x* but could result in a lower value. Thus

the Lagrange multiplier must be positive to satisfy the rate of change mentioned above

[6 5 , 7 0] . C o n d itio n 6 is d ue to a p ro o f that th e L agran ge m u ltip liers a sso c ia ted w ith the

eq u a lity con stra in ts are n ot restricted in s ig n [6 5], N o te that a n ew variab le is ad d ed for

each eq u a lity con stra in t and that tw o variab les are added for each in eq u a lity con stra in t.

T o illu stra te th e L agran ge M u ltip lier m eth od ap p lied to the stride a lig n m en t p rob lem

w e w ill u se the c o d e sh o w n b e lo w w h ich is the sa m e c o d e w e u sed in a p rev io u s ex a m p le .

DO i = 1,7V
X[2i - 1] = Y[3i - 1] + Y[3i] + Y[3i + 1]

ENDDO

T h e L agrangian fu n ction in th is ca se is g iv e n by

L — (N { (P x — c x x — P i) 2 + (P y — P i) 2 + (P y — c x y — P i) 2 + (P y + « v — P i) 2 ')') ~

+ Ai (l + s 2 — a i) + A2 (2 a x ~ o c i) + A3 (3o!y — ct/) (3 .6)

and the corresp on d in g sy stem o f eq u ation s is

1 • = A 1 + A2 + A3 = 0

2 d L _ __________________ %/Tv(— 1 (- a x ~ P l + P x)) _________________ _j_ — 0
d a X ((_ QX_ /3/ -|-/jx)2_|_(_0 /+ /gv,)2 + (_ o,y ^f j I + p Y y ^ olY - p I + p Y)2) J

g d L _ __________y7V(0.5(-2(-gy — +/3y)+2(ay-/3/+/3y)) _ Q
®a y ((- a x - P i + P x) 2+ (- P i + P Y) 2+ (- a Y - P i + P Y) 2+ (a Y - P i + P Y) 2)'1

4 9 L _ (0 .5(-2(-gx -/3J+/?x)-2(;3/ +/3y)-2(gy-/3/+/3y)) = q
((- a x - P i + P x)2+ (~ P i + P y)2+ (- < xy ~ P i + P y)2+ (ocy - P i + P y)2) 1

g d L —_______________________(- a x - P i + P x) _____________________ _ q
9 P x ((-a x -/3 /+ /3 x)2+ (-/3/+/9y)2+ (- a y - /3/+/3y)2+ (ay-/3/+/3y)2)2

g d L _ ______ (0.5(2(-/3/+/?y)+2(-ay —|3/+j3y)+2(gy-/?j+/?y)_______ __ q
®Py ({—a x —P i + P x) 2+ (—Pi + P y)2+ (—ocy — Pi + P y)2+ (a Y - P i + P y)2)5

The solutions that we obtain are A, = 0.47\/]V, X2 = 0, A3 = —O AT' /N , s = 0,

a i — 1, o t y = 1/3, a x = 1/2, P y — P h and P x = P i + 1/2. Note that these are

rational numbers. In order to convert these values to integer values we multiply by the

least common multiple of the denominators; note that an integer i can be written as

| . Since A] ^ 0, and s = 0 the equality holds. Note that for this example we had

added two equality constraints and one inequality constraint to the Euclidean distance

function in order to form the Lagrangian function. Two variables, the Lagrange multiplier

and the slack variable, are added for each inequality constraint and one variable, the

Lagrange multiplier, for each equality constraint. The total time that takes an IBM RISC

System/6000 to solve this system of equations is 3.6 seconds. We should point out that, for

this example, we obtained several sets of possible solutions which makes for the excess

time. This is the computer we used for all the examples given in this chapter.

Let a i = 6, a x = 3, a Y = 2, /?/ = 0, and px = 3. With this alignment, each

processor computing an iteration will need an element of Y which is held by the processor

to its left, assuming a linear array and a block distribution with block size equal to 3,

except of course for the processor at the leftmost position (see Figure 2.3). Note that the

communication is with only one processor and that only one element needs to be passed

from the sending processor to the receiving processor.

Using the owner-computes rule we obtain Px = 1 for the same values of a Y = 2,

a x = 3, and pY = 1. This would require each processor to send two elements to the

processor on its right, except for the last processor, assuming the same configuration and

distribution as before, see Figure 2.2. Again note that the communication is with only one

processor, but this time two messages must be communicated.

72

3 .2 O f f s e t A l ig n m e n t

Offset alignment can be viewed as a special case of stride alignment where the stride

coefficients are equal to one. Consider the following piece of code:

ALIGN X[i] WITH T[i + px \
ALIGN Y\i\ WITH T[i + pY\
ALIGN i WITH T[i + /?/]
DO i = I, N

X[i + = Y[i + d\\ 4- Y\ i + 6̂ 2] + • • • + Y[i + d,T]
ENDDO

where Px, Py , and /?/ are to be determined. Consider iteration i. We want to minimize the

distance from the processor(s) holding the elements of arrays X and Y that are needed to

perform the computation of the element on the left hand side to the processor which will

be performing the computation during iteration i. Using the alignment specified above

we find that the processor which holds the element on the Ihs is processor i + b\ + Px-

Similarly, the processor holding the first term of array Y is processor i + d \ + Py , the one

holding the second term is i + d2 + Py , and so on.

The distance function is

where I is the number of loops, w 9 is the number of statements in loop nest g, q is the total

number of arrays, and Y\ corresponds to the array on the Ihs of statement u in loop nest g.

To solve for the unknowns in Equation 3.7 we will use the Lagrange Multiplier method.

Though this method allows us to include in our system of equations a set of equality and

inequality constraints, we do not need to do it for the offset alignment case. To illustrate

this method let us consider the following code segment:

(3.7)
g= I u= 1 k= 1 j — I z = l

73

DO i — \ , N
X[i] = Y[i + 2]

ENDDO.

The first step is to form the function L,

i = ((A v - / ? /) 2 + (2 + /? y - /5 /)2)5.

Here we repeat the necessary conditions for the existence of a relative minimum at a

point x* for the Euclidean distance function shown in Equation 3.7 and subject to the

conditions f i (x) < 0 , i = 1,2, • • • ,h, and f i (x) — 0 , i = h + 1, h + 2, • • ■,m , where n

is the number of unknowns, h is the number of inequality constraints, and m (n > m)

is the total number of constraints including equality constraints [65]. These are the same

conditions introduced and explained in Section 3.1.

2. fi{x*) < 0 for « = 1,2, • • •, /i

3. fi(x*) = 0 for i = h + 1, h + 2, • ■ •, m,

4. Aifi(x*) = 0 for * = 1,2, • • •, h

5. Xi > 0 for i = 1,2, • • •, h

6. A, is unrestricted in sign for i = h + 1, h + 2, • • •, m

By solving the system of equations given by condition 1 above, the general solution

for our example would be given by Px = Pi, and Py — Pi — 2.

We now use the method developed in this section to find the alignment for several

benchmark programs, i.e. Jacobi, Alternating-Direction-Implicit (ADI), Disper, Liver

more 18, Livermore 23, Red Black SOR, and Shallow.

74

T ab le 3.1: C o n stan t O ffse ts (/?’s) F o u n d U sing L ag ran g e M e th o d on Jaco b i.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
A 0 0
B 0 0

S2 I 0 0
A 0 0
B 0 0

The code for Jacobi was presented in Figure 2.6. After applying our method to each

one of the statements we obtained the results shown in Table 3.1.

The results of applying this method to the ADI program segment shown in Figure 2.7

are shown in Table 3.2.

The code for Disper is shown in Figure 2.8 and the results after applying our method

are shown in Table 3.3

A program segment for Livermore 18 is shown in Figure 2.9. The results of applying

our methods are shown in Table 3.4. The program segment for Livermore 23 is shown in

Figure 2.10 and the results of applying our method are shown in Table 3.5.

The code for Red Black SOR (Successive Over Relaxation) is shown in Figure 2.11

and the results of applying our method on Table 3.6.

Shallow is a 200 line benchmark that uses stencil computation that applies finite-

difference methods to solve shallow-water equations and is a representative of a large

class of existing supercomputer applications. Table 3.7 shows the result of applying our

method to Shallow. The code for Shallow is shown in Figure 2.12.

With this we conclude the report on the benchmarks after applying the Lagrange

Multipliers method. Table 3.8 summarizes the time it took our computer to solve the

equations for the applications mentioned above.

75

Table 3.2: Constant Offsets (/5’s) Found Using Lagrange Method on ADI.

STATE ARRAY DIMENSION STATE ARRAY DIMENSION
MENT NAME 1ST 2ND MENT NAME 1ST 2ND

SI I 0 0 S5 I 0 0
A 0 0 A 0 0
B 0 1 B 1 0
X 0 1/3 X 1/3 0

S2 I 0 0 S6 I 0 0
A 0 0 A 0 0
B 0 1/3 B 1/3 0

S3 I 0 - S7 I - 0
B 0 - B - 0
X 0 - X - 0

S4 I 0 0 S8 I 0 0
A 0 -1 A -1 0
B 0 0 B 0 0
X 0 -1/3 X -1/3 0

Table 3.3: Constant Offsets (/3’s) Found Using Lagrange Method on Disper.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND 3RD 4TH 5TH

S3 I 0 0 0 0 0
GRADY 0 - - - -
PFMR 0 0 0 0 0
DDY 0 0 0 - -

76

Table 3.4: Constant Offsets (/?’s) Found Using Lagrange Method on Livermore 18.

STATE ARRAY DIMENSION STATE ARRAY DIMENSION
MENT ONE TWO MENT ONE TWO

SI I -1 0 S3 I 0 0
ZA -1/2 0 ZA 0 0
ZB 0 0 ZB 0 0
ZM 0 0 ZU 0 0
ZP 0 0 ZV 0 0
ZQ 0 0 ZZ 0 0
ZR 0 0 S4 I 0 0
ZU 0 0 ZA 0 0
ZV 0 0 ZB 0 0
zz 0 0 ZU 0 0

S2 I -1 0 ZV 0 0
ZA 0 0 ZR 0 0
ZB -1/2 0 S5 I 0 0
ZM 0 0 ZR 0 0
ZP 0 0 ZU 0 0
ZQ 0 0 S6 I 0 0
ZR 0 0 ZV 0 0
ZU 0 0 zz 0 0
ZV 0 0
zz 0 0

Table 3.5: Constant Offsets (/?’s) Found Using Lagrange Method on Livermore 23.

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
ZA 0 0

S2 I 0 0
ZA 0 0

77

T ab le 3 .6: C o n stan t O ffsets (/3’s) F o u n d U sing L ag ran g e M e th o d on R ed B lack SO R .

STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND

SI I 0 0
V 0 0

S2 I 0 0
V 0 0

S3 I 0 0
V 0 0

S4 I 0 0
V 0 0

Table 3.7: Constant Offsets (/?’s) Found Using Lagrange Method on Shallow.

STATE
MENT

ARRAY
NAME

DIMENSION STATE
MENT

ARRAY
NAME

DIMENSION
1ST 2ND 1ST 2ND

SI I 1 0 U -1/2 0
U 0 0 V 0 -1/2

PSI 0 -1/2 S7 I 1 0
S2 I 0 1 UNEW 0 0

V 0 0 UOLD 0 0
PSI -1/2 0 Z 0 -1/2

S3 I 1 0 CV 1/2 -1/2
cu 0 0 H 1/2 0
p 1/2 0 S8 I 0 1
u 0 0 VNEW 0 0

S4 I 0 1 VOLD 0 0
c v 0 0 Z -1/2 0
p 0 1/2 CU -1/2 1/2
V 0 0 H 0 1/2

S5 I 1 1 S9 I 0 0
z 0 0 PNEW 0 0
V 1/2 0 POLD 0 0
u 0 1/2 CU -1/2 0
p 1/2 1/2 CV 0 -1/2

S6 I 0 0
H 0 0
p 0 0

78

Table 3.8: Time (seconds) to Solve the System of Equations for the Different Applications.

PROGRAM TIME
Jacobi 0.18
ADI 1.67

Disper 0.23
Livermore 18 5.98
Livermore 23 0.12

Red Black SOR 0.24
Shallow 1.96

3 .3 Axis A l ig n m e n t

As explained earlier, axis alignment arises when we have a dimension permutation in the

alignment statement for multidimensional arrays. For example, in the statement

ALIGN X[i, j] WITH Tl[j , *]

we have that each row i of array X is aligned with column i of template T 1. Likewise, each

column j of X is aligned with row j of template T l . In other words, the first dimension of

array X is aligned with the second dimension of template T l , and the second dimension

of X is aligned with the first dimension of T 1 (see Figure 2.13).

In what follows assume that arrays X and Y are two-dimensional arrays which are

not replicated onto the available processors. Also assume that T is a two-dimensional

template. Consider the following code segment:

ALIGN X[i, j] WITH T[a'x i + /3[x , a \ j + /%]
ALIGN Y[i, j] WITH T [a lYi + a \ j + 0$]
ALIGN i , j WITH T[a)i + (3\, a) j + p}\
D O i = l , N

DO j = 1 , N
X [i , j } = Y[i,j] + Y\j, i]

ENDDO
ENDDO

79

Using the l2 metric the total distance from the processor performing iteration i , j to the

processors holding each of the operands would be given by

distance = [((o ^ - a \) i + p'x - p \) 2 + ([a2x - a j) j + (3\ - p j) 2

+ ((a j , - a \) i + pY - P i)2 + ((a y - a j) j + Py p f f
I

+ (a'yj - a \ i + Py - P i)2 + (a ^ i - a j j + P \ - p f) 2 • (3.8)

Note the last two terms of the equation above. There is not a non-trivial way of eliminating

the % and the j from the above equation when we consider all the possible values that i,

and j can take on.

Here the problem is not the metric but the actual mapping. We have a mapping from a

two-dimensional array space and a two-dimensional iteration space to a two-dimensional

template space, and because of the nature of the problem itself, this mapping approach

we have used so far is not very useful for this particular problem. However, consider the

same problem but with a different mapping. In particular, consider that arrays X and Y,

and iteration i, j will be aligned using

so that the two-dimensional array space and the two-dimensional iteration space are

mapped onto a one-dimensional template. The distance function will then be given by

ALIGN X[i, j } WITH T[u'x i + p'x + a \ j + p \ \

ALIGN Y [i , j] WITH T [a lYi + P'Y + ofyj + /?£]

ALIGN i , j WITH T[oe\i + Pi + a j j + 0}\

distance

+ ((<4 - 4) * + (4 - - 4) 3 + P y ~ Pi + Py - P i)2

+ (3 .9)

80

We require that

1 1 2 2 1 2a x = otj = a x = otj = a Y = oiy

and thus the distance function reduces to

{fix ~ Pi + Px ~ Pf) + {Py ~ Pi + Py ~ Pi) + [Py ~ Pi + Py ~ Pf) (3.10)

which is reduced to zero distance by allowing Px = P}+P] — Px ar,d Py = Pi + Ph ~ Py

which is the result we obtain when using our method. This means that each diagonal of

arrays X and Y , and each diagonal of the iteration space would be mapped to a point in

the one-dimensional template. The resulting alignment is illustrated in Figure 2.14. It

took the computer 0.11 seconds to solve the system of equations and arrive at the result

presented above.

3 .4 R e p l ic a t io n

As explained in a previous chapter, replication is a type of alignment which arises from

the need for every processor to store copies of some data. In this section we will use the

example from Bau et al. [14] that we have used previously in Section 2.4. Consider the

code shown below:

DO i = \ , N
DO j — I, N

S: X [i , j] = X [i , j] + Y [i *Z \ j]
ENDDO

ENDDO.

Note that Y and Z are one-dimensional arrays and that X is a two-dimensional array.

Also note that all the elements of Z that are accessed during an iteration of the outer loop

are also accessed during the next iteration of the outer loop and that the same element of

Y is accessed during all the iterations of the inner loop for a particular iteration of the

outer loop. In other words, Y[i) is used to compute all the elements in row i of X and

Z[j\ is used to compute all the elements in column j of X . Lastly, note that elements of

arrays Y and Z are referenced (read) but not modified (written) during each execution of

statement S above.

Since Y[i\ is used to compute all the elements in row i of X and Z[j\ is used to

compute all the elements in column j of X , we would like to align X , Y , and Z such that

communication is minimized. In this case we can reduce the communication to zero by

replicating arrays Y and Z along the columns and along

We find how to align the arrays using the Lagrange method developed in Section 3.2

for offset alignment. This is because the example does not include stride coefficients

greater than one nor does it include axis alignment. In this case arrays Y and Z can

be replicated so that communication is reduced to zero. Note that array Y is replicated

along the columns of X and array Z is replicated along the rows of X . These results are

illustrated in Figure 2.16 for arrays Y and Z. The resulting alignment is as shown in the

following directives (note the use of T[i, *] and of T[*, j] to indicate row i and column j ,

respectively):

ALIGN X[i, j] WITH T[i,j]

ALIGN Y[i] WITH T[i, *]

ALIGN Z[j] W ITHr[*,j]

ALIGN i , j WITH T[i,j],

3 .5 C o m p a r is o n W it h O t h e r W o r k

The component alignment problem has been proven to be NP-complete by Li and Chen

[55]. They introduced the Component Affinity Graph (CAG) and the idea of generating

communication primitives based on the reference patterns found in the array subscript

expressions. The CAG is an undirected, weighted graph whose nodes represent the

82

components to be aligned. The nodes are grouped in columns. An edge joins two nodes

if the nodes have affinity. The algorithm provided by Li and Chen is based on heuristics.

Gupta and Banerjee [33], present a method restricted to partitioning of arrays, i.e. no

computation partitioning. Their method selects important segments of code to determine

distribution of various arrays based on some constraints. Quality measures are used

to choose among contradicting constraints. These quality measures may require user

intervention. The compiler tries to combine constraints for each array in a consistent

manner to minimize overall execution time and the entire program is considered. Small

arrays are assumed to be replicated on all processors. The distribution of arrays is by

rows, columns, or blocks. This work uses heuristic algorithms to determine the alignment

of dimensions, i.e. component alignment, of various arrays since the problem has been

shown to be NP-complete. The owner-computes rule is assumed and issues concerning the

best way to communicate messages among processors, such as aggregate communication

introduced in the work by Tseng [80], are dealt with. Communication costs are determined

by Gupta and Banerjee [33] after identifying the pairs of dimensions that should be aligned.

Consideration is given to when it would be best to replicate a dimension rather that to

distribute it. The component affinity graph is used to determine alignment.

Bau et al. [14] use elementary matrix methods to determine communication-free

alignment of code and data. They also deal with the problem of replicating read-only data

to eliminate communication. Their work incorporates data dependences in their proposed

solution to the problem and the owner-computes rule is assumed. Replication of data is

also incorporated into their proposed solution. Their work treats all types of alignment as

equal, e.g. it does not incorporate the notion that axis alignment is more important than

stride, replication, or offset alignment. The Smith normal form of integers is used as part

83

of their method. Alignment of both data and computation is determined by finding a basis

for the null space of a known matrix.

Chatterjee et al. [23] and [24] provide an algorithm that obtains alignments which

are more general that the owner-computes rule by decomposing alignment functions into

several components. Chatterjee [23] et al. investigate the problem of evaluating Fortran 90

style array expressions on massively parallel distributed-memory machines. They present

algorithms based on dynamic programming.

Kim and Wolfe [50] show how to find and operate on the communication pattern

matrix from user-aligned references.

O’Boyle [61] proposed an automatic data partition algorithm based on the analysis of

four distinct factors. He does not consider partitioning of computation along with that of

data and he is not concerned with finding the alignment that will minimize communication.

Wakatani and Wolfe [81] address the problem of minimizing communication overhead

but from a different context than ours. They are concerned with the communication

arising from the redistribution of an array and proposed a technique called strip mining

redistribution. They are not concerned with automatically generating the alignments in

order.

Chatterjee et al. [20] and Sheffer et al. [76] deal with determining both static and

dynamic distributions. They use the Alignment-Distribution Graph (ADG) whose nodes

represent program operations, the ports in the nodes represent array object manipulated by

the program, and the edges connect array definitions to their respective uses. The ADG is

a directed edge-weighed graph although it is used as an undirected graph. Communication

occurs when the alignment or distribution at the end points of an edge is different. The

completion time of a program is modeled as the sum of the cost over all the nodes

(which accounts for computation and realignment) plus the sum over all the edges of the

84

redistribution time (which takes into account the cost per data item of all-to-all personalized

communication, the total data volume, and the discrete distance between distributions).

Kremer [52] proves the dynamic remapping problem NP-complete. Kremer et al. [53]

and Kremer [51] consider the profitability of dynamic remapping and use an interactive

tool for automatic data layout, respectively.

Kennedy and Kremer [48, 49] deal with dynamic remapping in Fortran D [80] and

HPF [41]. The work by Kennedy and Kremer propose a way to solve the NP-complete

inter-dimensional alignment problem [52] using a state-of-the-art general purpose integer

programming solver [49]. Thus Kennedy and Kremer [49] formulate the inter-dimensional

alignment problem as a 0-1 integer programming problem. The same is done by Bixby et

al. [17].

3 .6 C h a p t e r S u m m a r y

We have presented a method for solving the alignment problem by using the Lagrange

Multipliers method on a constrained optimization problem modeled using the Euclidean

metric. Both equality and inequality constraints can be added to our framework as needed

in which case the Lagrange multipliers will also be part of the function. The constraints

are on the values permitted for the stride coefficients (a 's) and are such that the problem

is independent of the loop index variable. The software Mathematica was used to solve

the system of equations obtained from our model. Solutions were provided for stride,

offset, axis, and replication alignment using the same constrained-based method. For

axis alignment we have required that an entire diagonal from the arrays be mapped to a

single template cell. If communication-free alignment is possible our method will find

it. Otherwise, our method will determine the alignment that minimizes communication in

case the communication is unavoidable.

This is the first time this method is used to solve the alignment problem. We have

provided the results for the Jacobi, ADI, Disper, Livermore 18, Livermore 23, Red Black

SOR, and Shallow benchmarks and the average time it took to find them is also included.

Our framework does not require user intervention.

C h a pt e r 4

R e l a x in g C o n st r a in t s in th e A l ig n m e n t
Pr o b l e m

In this chapter we deal with the problem of determining which constraint or constraints to

leave unsatisfied when we have an over-constrained system of equations from which we

want to determine the alignment for both computation and data. The system of equations is

obtained by using the framework by Bau et al. [14], which uses elementary linear algebra

methods to determine a non-trivial communication-free solution to the computation and

data alignment problem. This chapter is organized as follows: Section 4.1 is a review of

the method presented by Bau et al. [14]. Section 4.2 presents our method of determining

which constraint(s) to leave unsatisfied when the system is over-constrained. Section 4.3

reviews the work that other researchers have done and Section 4.4 is a summary of our

findings in this chapter.

4.1 R e v i e w o f B a u e t a l . ’s M e t h o d

To illustrate the method developed by Bau et al. [14] we will use the following example:

DO i = Ibi, ubi
DO j = Ibj, ubj

A[i, j] = f{A[i , j] ,B[i - \ , j } , B [i , j - 1])
ENDDO

ENDDO.

From the subscript expressions for arrays A, and B we obtain the following, where FA is

the access matrix for array A, FBl and FBl are the access matrices for the first and second

terms of array B, respectively, f A, / b p and f Bl their corresponding constant terms, and

C, D a , and D B are the mapping for the iterations (computations) and data elements of

86

87

the arrays onto a virtual template, and Fx is formed in order to account for the constant

offset term f x in the same equations where the access matrix Fx is used. Note that this is

done in order to account for the constant offset coefficients found in the array references.

The resulting functions are called affine functions.

r i 1 0 0

& II Fa f a

0 1
— 0 1 0

oo

1

B,

Fb2 —

7B\ /b ,

0 1

F b 2 f b 2

0 1

1 0 -1

0 1 0

0 0 1

1 0 0

0 1 -1

0 0 1

C — D a Fa , C — D b Fb i , C — D b Fb2,

and

V

U =

I

- F a

C D a D b

I

-Fa

I

0

I

0

0 0 — FBi —Fb2

88

i.e.

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

-1 0 0 -1 0 0 0 0 0 0 0 0

V = 0 -1 0 0 -1 0 0 0 0 0 0 0

0 0 -1 0 0 -1 0 0 0 0 0 0

0 0 0 0 0 0 -1 0 1 -1 0 0

0 0 0 0 0 0 0 -1 0 0 -1 1

0 0 0 0 0 0 0 0 -1 0 0 -1

It can be seen from the above that V TUT = 0 so that the problem is reduced to

finding a basis for the null space of V T. An algorithm is then applied to V so that it is

diagonalized into its Smith Normal Form, i.e. positive diagonal entries, to reveal its rank,

e.g. T = H V G , where H and G represent the elementary row and column operations,

respectively. In other words:

E 0

0 0

Since H and G represent elementary operations they are unimodular matrices. In this

dissertation a unimodular matrix is a matrix whose determinant is ± 1. This type of matrices

are used extensively in parallelizing compilers. The only matrix which is important for

the calculations is H since it is this matrix which we need to obtain the solution. This

matrix H is premultiplied by a matrix U' to yield the solution matrix, i.e. , U = U 'H

where matrix U' forms a basis for the range of the orthogonal complement of the first

T = H V G =

89

r = rank(V) columns of matrix T:

0 0 0 1 0 0

0 0 ••• 0 0 1 ••• 0
u =

0 0 ••• 0 0 0 1

Note that the first r columns of U are zero and that the last columns form an identity

matrix. Premultiplying H by U' will choose those rows of H for which the corresponding

rows of T are zero, i.e. the last M — r rows, where M is the number of rows of V, H, and

T. Continuing with our example

U =
1 1 - 1 1 1 - 1 1 1 0

0 0 1 0 0 1 0 0 1

for

H =

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 - 1 1 0 -1 1 0 -1 0

0 0 0 -1 0 0 0 0 0

0 0 0 0 -1 0 0 0 0

0 0 0 0 0 -1 0 0 0

0 1 0 0 1 0 0 1 0

1 1 -1 1 1 -1 1 1 0

0 0 1 0 0 1 0 0 1

90

It is worth mentioning that we only need H out of all the matrices found when computing

the Smith Normal Form since we find from U V = 0 that

U H ~ lH V G = 0

where U' = U H ~ l.

Now, following the procedure by Bau et al. [14], in order to eliminate the extra

dimension introduced when the constant (offset) terms were added, we need to find some

(3i / 0 for which

1 0 0

1 0 0

- 1 1 1

1 0 r n 0
P\

1 0 = 0
J 2 .- 1 1 1

1 0 0

1 0 0

0 1 1

U
E o

0 0
= 0

u
E

0
= 0

from which we obtain that (3\ = 0 and /?2 — 1- Since the second component of (3 is

nonzero, we can eliminate the second row of U. Thus

and

or

c =
1 1 - I

, D a =
1 1 - 1 II

,
03

1 1 0

0 0 1 0 0 1 0 0 1

C = 1 1 -1 , D a — , D b 0

C l 1 1 -1 — i + j

D a Fa I — 1 1 -1

1 0 0 i

0 1 0 j = i + j -

0 0 1 1

D b Fb . I 1 1 0

d b f b ,i = 1 1 0

1 0 -1 i

0 1 0 j = i + j - 1

0 0 1 1

1 0 0 i

0 1 - 1 3

1■'-i+• sII

0 0 1 1

This means that for a communication-free solution the iteration space and the data

space for arrays A and B should be partitioned into diagonals as shown above.

92

4 .2 D e c id in g o n W h ic h C o n s t r a in t (s) t o L e a v e

U n s a t is f ie d

When the system is over-constrained the only communication-free solution is the trivial

solution, e.g. map each iteration and each data item to one processor [6, 14, 33, 45, 68].

Assume that we are using Bau et al.’s framework [14] which use elementary matrix

methods to determine communication-free alignment of code and data. If we have an

assignment statement such as

X [i , j] = F (X [i , j] , Y [i , j })

then, using Bau et al.’s method, we obtain

and

u = C D x D y

I I

V = - F x 0

0 - F y

In this case we obtain C — D X F X = 0 and C —

D y F y ^ 0. Otherwise, the only communication-free solution is to map both the

computation and data to one processor so that C = D x F x = D y F y = 0. We could

rewrite the equations from Bau et al. [14] in the following way where I represents the

iteration vector

(C - D X F X) I — D x f x = T x and { C - D Y F Y) I — D y f y = F 2.

93

We can think of the vectors T\ and F 2 as estimates of the type of communication that will

be incurred due to misalignment. In Bau et al.’s context for both a trivial and a non-trivial

communication-free solution these functions are zero. If we look at them from another

perspective, i.e. without fully applying Bau et al.’s [14] method, these functions could be

thought of as including as part of their components, constant values, values that vary with

some index variable, or values that change with more than one index variable depending

on whether the misalignment is due to offset, stride, or axis misalignment, respectively.

If no non-trivial communication-free solution can be found we would then like the

elements of vectors T \, and F 2 to be constants and as many of them as possible to have

a constant value of zero. In other words, if we can not obtain a non-trivial zero commu

nication solution, we would then prefer to only have communication arising due to offset

misalignment. This is the cheapest form of communication since it is usually between

nearest neighbor processors. We should, in the other hand, avoid communication aris

ing from axis misalignment because this type of communication indicates interprocessor

communication among several processors along different dimensions, similar in some

respect to a ManyToMany type of communication if we use Gupta and Banerjee’s [33],

and Garcia et al.’s [30] terminology.

With this in mind, when no non-trivial communication-free solution exists we would

like to have the following T\ = constant, F 2 — constant. For this to be possible we need

C — D x F x = D YFy to hold true so that the communication will be due solely to the

constant offset terms used in the subscript expressions of the array references.

Thus, if it is not possible to find a solution that yields zero communication when using

more than one processor, we should then attempt to find a solution that does not incur any

interprocessor communication due to axis and stride misalignments, if at all possible, even

if it means that we should have some communication due to offset misalignment. We need

94

a structure that will have enough information to aid us in recognizing, among other things,

which type of misalignment we could get if we do not satisfy a particular constraint.

This structure should also give us information about the constant offset coefficients and

possibly the distance vectors involved. The structure that we propose to use is what we

call the Reference Information Table or RIT.

For example, assume that we have the following assignment statement

A [hj] = F{A[i, j \ ,B [i , j] ,B [i - 1, j - 1 },B[i - 2 , j - 2 },B[i - 2 , j + 2]).

In this case we obtain the matrices

1 0 0 1 0 0 1 0 - 1 1 0 - 2

F a = 0 1 0 to II 0 1 0 > Fb2 — 0 1 - 1) Fb2 — 0 1 - 2

0 0 1 0 0 1 0 0 1 0 0 1

and

ba

1 0 - 2

0 1 2 ,U = c D a D b

0 0 1

I I I I I

- F a 0 0 0 0

0 -- F Bl — FB 2 - F B3 --FBa

V =

Using Bau et al.’s [14] framework we determine that the only communication-free

solution is the trivial solution. Since there is no possibility of axis and stride misalignment

for this example we concentrate on the offset misalignment case. Our structure should help

us decide that it would be better to leave the constraint arising from the term B[i — 2, j + 2]

95

Table4.1: R ITfor^['i, j] = F (A [i , j] , B [i , j] , B [i - l , j - l] , B [i - 2 , j - 2] , B [i - 2 , j + 2])

ARRAY
N A M E

C O N S
TRAINT

NU M BER

DIM ENSION USES OFFSET
VECTOR

AX IS
lS T (i) 2N D (j)

STRIDE STRIDE
A 1 0 0 2 (0 ,0) 0
B 2 0 0 1 (0 ,0) 0

3 0 0 1 (- 1 , - 0 0
4 0 0 1 (- 2 , - 2) 0
5 0 0 1 (- 2 , 2) 0

without enforcing in which case we can obtain a communication-free non-trivial solution

1 - 1 0 i.e. mapfor the rest of the terms. This solution is C = D a = D b -

iteration (i , j , 1) and element (i, j, 1) from both arrays A and B to processor (i — j) , and

it can be obtained using Bau et al.’s [14] method by not satisfying the constraint arising

from the term B[i — 2, j + 2], i.e. using

I I I I

V = o1 0 0

o - F B] —Fb2 - F Bi

Thus we would incur offset misalignment communication due to only one term.

We notice that for the example above we have the nonzero offset vectors (- 1 , - 1) ,

(—2, —2), and (—2,2). We also notice that offset vectors (—1, —1) and (—2, —2) are

linearly dependent,i.e. they lie on the same plane (and in this case on the same line),

and that offset vector (-2 ,2) is orthogonal (perpendicular) or has no projection onto the

plane where the other two nonzero offset vectors lie. The RIT for the example above

is as shown in Table 4.1. The first column in the RIT is the array name. The second

column is the constraint number which comes from how the constraint appears in the

V matrix. Constraint 1 affects array A only, whereas constraints 2, 3, 4, and 5 affect

array B. These constraints are constructed following Bau et al.’s method. Constraint 1

tells us that iteration (i , j) must be performed at the processor holding element

Constraints 2, 3, 4, and 5 tell us that the same processor must also hold elements B[i,j],

B [i— 1, j — \ \,B[i — 2, j — 2} ,B[i — 2, j+2]. The third and fourth columns indicate whether

there is a coefficient in any of the dimensions which is larger than one. In other words

they are used to indicate the presence of stride in the subscript expression corresponding

to the array and the constraint specified in the previous two columns. The fifth column

indicates how many references are made to each term at the deepest loop level common

to all the terms in the assignment statement. The use for this column will become more

evident in a future example. Then the sixth column shows the constant offset vectors for

the array references. The last column indicates the presence of axis misalignment in the

constraint.

Using the information in this table we determine that there is no axis or stride mis

alignment. If it were otherwise, we would then try to satisfy the corresponding constraints

giving priority to axis, then stride, and finally offset. Because there is no possibility for

either axis or stride misalignment we then check the nonzero offset vectors and determine

that we can group them into two linearly independent groups. Since one of the groups

has two elements, i.e. (- 1 , - 1) and (—2, —2) and the other one has only element (—2,2)

we determine to leave the constraint affecting the element B[i — 2, j + 2] unsatisfied,

i.e. constraint 5 rather than risking not satisfying the constraints on B[i — \ , j — 1] and

B[i — 2 , j — 2], i.e. constraints 3 and 4. Note that if we had chosen to leave either constraint

3 or constraint 4 without satisfying, we would have found out that we would still be unable

to find a non-trivial communication-free solution.

97

The algorithm for deciding which constraints to relax is shown in Figure 4.1. To

explain the algoritm we will apply it to the matrix multiplication example shown below.

In this case we have a loop nest with depth of three, i.e. the number of loops is three.

DO i — 1,7ii
DO j — 1, rij

DO k = 1,7ik
Z[i,j] = Z [i , j] + X [i , k] * Y [k , j }

ENDDO
ENDDO

ENDDO

Using Bau et al.’s [14] method we obtain

Fx =
1 0 0 0 0 1 1 0 0

,F y = ,F Z =
0 0 1 0 1 0 0 1 0

U C D x D y D z , V =

I I

-Fx 0

0 - F y

I

0

0

0 0 - F y .

Note that r — rank(U) = 9, i.e. V is a full rank matrix, M = 9, and that q = M — r = 0.

Thus, we can not use Bau et al.’s [14] method for this particular example as is. This is

because the null space of V is empty and thus no basis for the right null space of V T can

be found.

Steps 1-3 Bau et al.’s method can not be applied.

Step 4 RIT is as shown in Table 4.2.

98

Step 1: If there exists a non-trivial solution, then terminate.

Step 2: Ignore offset vectors and check if there exists a non-trivial solution.

Step 3: If there exists a non-trivial solution to Step 2 above and if it is not desired to reduce
interprocessor communication due to offset misalignment, then terminate. If it is
desired to do otherwise then go to Step 8.

Step 4: If there does not exist a non-trivial solution to Step 2 above, then form RIT.

Step 5: Determine which constraints may result in axis misalignment and which may result
in offset misalignment if they are not satisfied.

Step 6: If there exist constraints which could result in axis misalignment if they are not
satisfied, then perform Bau et al.’s [14] method considering only these constraints.
If no non-trivial solution can be found, then rank the constraints according to an
estimate of the amount of communication that could result from each and apply Bau
et al.’s [14] method considering only the one that would result in the largest amount
of communication. Then add the next constraint in terms of cost of communication
and check if there is a non-trivial solution. If a trivial solution is found, then make
the last non-trivial solution the current solution.

Step 7: If there are no constraints which could result in axis misalignment and if there are
constraints that could result in stride misalignment when not satisfied, then perform
the Step 6 above but for the stride constraints.

Step 8: If at this time it is not desired to try to reduce the interprocessor communication
arising from the constant offset vectors, then terminate. Otherwise, classify offset
vectors of the constraints which are being satisfied in sets of linearly dependent
vectors.

Step 9: If a non-trivial solution can be found that takes into account the largest of the offset
vector sets, then attempt to find a non-trivial solution that includes the next set and
continue until no non-trivial solution can be found. Make last non-trivial solution
the current solution.

Figure 4.1: Algorithm for Choosing which Constraint(s) to Leave Unsatisfied When the
Problem is Over-constrained.

99

Step 5 As shown in RIT constraint 2 will , result in axis misalignment if not satisfied.

Constraints 1 and 3 will result in offset misalignment if not satisfied, but constraint

3 would result in the least communication.

Step 6 Apply Bau et al.’s method without considering constraint 3.

U C D x Dy , V =

I I

-Fx 0

0 - F y

That is,

V =

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 0 0 0

0 0 -1 0 0 0

0 0 0 0 0 -1

0 0 0 0 -1 0

In this case r = rank(F) = 6. Note that the number of rows of V is M = 7 and thus

q = M — r = 1. Thus the right (column) null space (orthogonal complement) of

V T is non-empty. This means that we should be able to find a basis for column null

space of V T and therefore we should be able to find a solution to the problem. This

basis will have a dimensionality of q — 1, i.e. the number of rows of the solution

will be one. To do this we perform row operations on V to bring it to its Smith

normal form. Note that we do not show the effect of the column operations nor are

we concerned with them. The resulting V matrix after performing the necessary

100

row operations on it and the corresponding H matrix are as shown below:

V =

Thus

and

1 0 0 1 0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 , H = 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 -1 0 -1 -1 0

0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 1 1 0

C = 0 0 1

C l

, D X , D y =

0 0 1 J
k

— k,

D XFXI
1 0 0

0 0 1

i

j

k

0

k,

d y f y i =
0 0 1

0 1 0
= k.

Step 7 There are no constraints resulting in stride misalignment if not satisfied.

Step 8 D one.

101

T ab le 4 .2 : R IT fo r M atrix M u ltip lica tio n

ARRAY CONS DIMENSION USES OFFSET AXIS
NAME TRAINT lST(i) 2ND(j) VECTOR

NUMBER STRIDE STRIDE
X 1 0 0 nu (0,0) 0
Y 2 0 0 nk (0,0) 1
Z 3 0 0 2 (0,0) 0

Keeping in mind that the mapping of the array elements is given by D F the results

above indicate that the computation of iteration (i, j , k) and elements X[i, k], and Y[k, j]

should be assigned to processor k. Intuitively we see that this is correct since arrays X

and Y can be aligned so that the processor that has column k of X also has row k of Y

and executes iteration k.

4 .3 C o m p a r is o n W it h O t h e r W o r k

Amarasinghe et al. [5] and Anderson and Lam [6], show how to find partitions for cloall

and doacross parallelism and, in order to minimize communication across loop nests, they

use a greedy algorithm that tries to avoid the largest amounts of potential communication.

In order to find data and computation decompositions they express the problem using

constraints in matrix notation and find the basis of the null space of known matrices.

Their algorithm trades off extra degrees of parallelism to eliminate communication. For

example, it may convert a parallel loop into a sequential loop. If communication is

needed the algorithm tries to reduce the most expensive communication to inexpensive

communication by pipelining using tiling. To find dynamic decompositions they use the

communication graph whose nodes correspond to the loops in the program and edges

represent where data reorganization can occur.

102

Bau et al. [14] use elementary matrix methods to determine communication-free

alignment of code and data. They also deal with the problem of replicating read-only data

to eliminate communication. Their work incorporates data dependences in their proposed

solution to the problem and the owner-computes rule is assumed. Replication of data is

also incorporated into their proposed solution. Their work treats all types of alignment as

equal, e.g. it does not incorporate the notion that axis alignment is more important than

stride, replication, or offset alignment. The Smith normal form of integers is used as part

of their method. Alignment of both data and computation is determined by finding a basis

for the null space of a known matrix.

4 .4 C h a p t e r S u m m a r y

In this chapter we have presented a heuristics-based algorithm to deal with the problem

of determining which constraints to leave unsatisfied when we have an over-constrained

system of equations from which we want to determine the alignment for both computation

and data. The framework we have used is based on the work developed by Bau et al. [14]

which uses elementary linear algebra to determine both computation and data alignment

for a program. Our method is used when their approach finds that the only communication-

free solution is to map all iterations and all the arrays to a single processor, i.e. the trivial

solution. Our method aligns the non-conflicting constraints and finds a communication-

free solution based on them. Communication will only arise due to the constraints left

unsatisfied.

The decision on which constraints to eliminate is based on the amount of communi

cation which would result if the constraint is left unsatisfied. Constraints which result in

higher communication are given preference and are kept over those which would result in

less communication when left unsatisfied. This is as opposed to the Bau et al. framework

103

which treats all the constraints, whether arising from axis, stride, replication, or offset

alignment as equal.

Ch a pt e r 5

A M atr ix-B a s e d A ppr o a c h to F in d in g
D ist r ib u t io n s

This chapter presents a technique for finding good distributions of arrays and suitable

loop restructuring transformations so that communication is minimized in the execution

of nested loops on message passing machines. For each possible distribution (by one

or more dimensions), we derive the best unimodular loop transformation that results in

block transfers of data. As defined earlier in this dissertation, unimodular matrices have a

determinant with a value of ± 1 and they are used extensively in parallelizing compilers.

Unlike other work which focus on either data layout or on program transformations,

this chapter combines both array distributions and loop transformations resulting in good

performance. The techniques described here are suitable for dense linear algebra codes.

On a distributed memory machine, local memory accesses are much faster than ac

cesses to non-local data. Inter-processor communication— resulting accesses to non-local

data— is a major determinant of the performance of a parallel machine. When a number

of non-local accesses are to be made between processors, it is preferable to send fewer

but larger messages rather than several smaller messages more frequently (called message

vectorization [80]). This is because the message setup cost is usually large. Even in

shared memory machines, it is preferable to use block transfers.

We should point out that the interprocessor communication time can be modeled as

t = a + P* 7 , where a and P are machine dependent and 7 is the length of the message.

Usually a » P and thus it is desirable to communicate longer messages rather than short

ones whenever possible.

104

105

Given a program segment, our aim is to determine the computation and data mapping

onto processors. Parallelism can be exploited by transforming the loop nest suitably and

then distributing the iterations of the transformed outermost loop onto the processors. The

distribution of data onto processors may then result in communication and synchronization

which counters the advantages obtained by parallelism. This chapter presents an algorithm

which results in the optimal performance while simultaneously considering the conflicting

goals of parallelism and data locality.

While a programmer can manually write code to enhance data locality by specifying

data distribution among processors, we present a technique where we can automatically

derive data distribution given the program structure. We present a method by which the

program is restructured such that when the outer loop iterations are mapped onto the pro

cessors, it results in the least communication. Wherever communication is unavoidable,

we restructure the inner loop(s) so that data can be transferred using block transfers; such

an approach is referred to as message vectorization. Our approach relieves the program

mer from having to specify the distribution of the arrays and from having to optimize the

communication among processors in case this communication is unavoidable.

This chapter is organized as follows: Section 5.1 talks about the need for automatic

distribution; Section 5.2 introduces our first algorithm for automatic distribution and

vectorization of messages; Section 5.3 is a step by step application of the algorithm to

several examples; Section 5.4 shows the advantage of relaxing the owner-computes rule

when our algorithm does not find a solution; Section 5.5 presents our algorithm and applies

it to an example in a step by step fashion; Section 5.6 applies tiling after the algorithm

to obtain higher granularity in the communication; Section 5.7 is a brief presentation of

what others have done; and Section 5.8 is our chapter summary.

106

5.1 A u t o m a t i c D i s t r i b u t i o n

In this chapter, we consider the cases where we allocate outer iterations to processors so

that each outer loop iteration is done by a single processor. The data is then allocated

so that there is minimum communication and all communication is done through block

transfers. This chapter deals with an algorithm to restructure the program to enhance

data locality while still enabling parallelism. We construct the entries of a legal invertible

transformation matrix so that there is a one-to-one mapping from the original iteration

space to the transformed iteration space. This transformation when applied to the original

loop structure will do the following:

• Allow the outermost loop iteration to be distributed over the processors i.e., an

entire outermost iteration is mapped on to a single processor.

• Determine the data distribution (block or cyclic distribution of a single array dimen

sion).

® Allow blocks transfers to be moved out of the innermost loop so that all the necessary

data are transferred to the respective local memories before the execution of the

innermost loop.

5.1.1 B ACKGROUND AND TERMINOLOGY

The transformation matrix is derived from the data reference matrix of the array references.

Given a loop nest with indices - ■ , in which is represented by a column vector I , we

define a data reference matrix, A n , for each array reference A (distinct or non-distinct)

in a loop nest such that the array reference can be written in the form A n l + b where b

is the offset vector. In what follows we assume that the arrays are not replicated onto the

available processors.

107

Example 5.1 C o n sid e r the fo llo w in g loop nest.

DO * = 1, iV,
DO j = 1 , N 2

DO k — l , N 3
B [i , j - i\ = B [i , j - i] + A[i, j + k]

ENDDO
ENDDO

ENDDO

In the example above , the data reference matrix for array B is

B n
1 0 0

1 1 0

and the data reference matrix for array A is

A n
1 0 0

0 1 1

Note that there are two data reference matrices for array B though they are identical. For

each array, we use only the distinct data reference matrices.

5 .1 .2 E f f e c t o f a T r a n s f o r m a t io n

On applying a transformation T to a loop with index I , the transformed loop index

becomes I ' = T I and the transformed data reference matrix becomes A'n = A n T ~ 1. The

columns of T ~ l determine the array subscripts of the references in the transformed loop.

The key aspect of the algorithm presented in this chapter is that the entries of the inverse

of the transformation matrix are derived using the data reference matrices.

108

5 . 1 . 3 M o t iv a t io n

Consider Example 5.1 above which is similar to the one given by Li and Pingali [57]. There

are two references to array B (though not distinct) and one reference to array A. Li and

Pingali [57] assume that all arrays are distributed by columns and derive a transformation

matrix that matches column distribution. In this case, the loop can be distributed in such a

way that there is no communication incurred. Both the arrays can be distributed by rows,

i.e., each processor can be assigned an entire row of array A and an entire row of array

B. This makes the loop run without any communication. We notice that the first row in

1 0 0 . This allowsthe data reference matrix for arrays A and B are the same i.e.,

the first dimension of both the Ihs and rhs arrays to be distributed {i.e., by rows) over the

processors so that there is no communication. In the next section, we derive an algorithm

to construct a transformation matrix, which determines the distribution of data.

5 .1 .4 A l g o r it h m

We restrict our analysis to affine array references in loop nests whose upper and lower

bounds are affine. We assume that the iterations of the outermost loop are distributed

among processors. To exploit data locality and reduce communication among processors,

we further look at transformations that facilitate block transfers so that the data elements

which are referenced are brought to local memory in large chunks; this allows to amortize

the high message start-up costs over large messages. We assume that the data can be

distributed along any one dimension of the array (wrapped or blocked) and that the loop

index variable appearing in the subscript expression of the distributed dimension of our

base array and any array which is identically distributed is that corresponding to the

outermost loop. The results can be generalized where data is distributed along multiple

dimensions and block transfers set up in outer iterations. Again we assume that the arrays

109

which are used iri the iterations of the loop nest are not replicated onto the available

processors.

5 .1 .5 C r it e r ia f o r C h o o s in g t h e E n t r ie s in t h e T r a n s f o r m a t io n

M a t r ix

Let the array indices of the original loop be . . . , i n. Let the array indices of the

transformed loop be j \ , j'2, . . . , j n. We look for transformations such that the Ihs array

has the outermost loop index as the only element in any one of the dimensions of the

array, e.g. C[*, j \ , . . . , *] where j \ is in the r th dimension and indicates a term

independent of j \ . The Ihs array can then be distributed along dimension r. This means

that the data reference matrix C'n of the transformed array reference C, has at least one

row in which the first entry is non-zero and the rest are zero, i.e., there is a row r in

C ^T -1 = [a, 0 , 0 , . . . , 0]. For all arrays that appear on the right hand side:

• If a row in all the data reference matrices of an array is identical to a row in the

reference matrix in the Ihs array, then that array can be distributed in the same way

as the Ihs array. There is no communication due to that array, since they are always

mapped onto the same processor. If all the references of all the arrays have a row in

the data reference matrix identical to that of the Ihs array, then the entire loop can

be distributed along that dimension and there is no communication.

• If the condition above does not hold, choose the entries in T ~1 such that the following

conditions hold:

1. some dimension of the rhs reference consists only of the transformed innermost

loop index, e.g. A [*, . . . , j n, . . . , *]; and

2. all the other dimensions are independent of the innermost loop index (that is,

indicates a term independent of j n).

110

This means the transformed reference matrix must have only one non-zero in some

row r , and that non-zero must occur in column n. If this condition is satisfied,

then dimension r of the rhs array is not a distributed dimension; thus, we can move

communication arising from that rhs reference outside the innermost loop. This

allows a block transfer to the local memory before the execution of the innermost

loop. This means that a row in the transformed data reference matrix X n has a row

with all entries zero except in the last column, which is non-zero. Also, the last

column of the A'n has all remaining entries as zero.

• If communication could be moved out of the innermost loop, the previous step

can be applied repeatedly starting with the deepest loop outside the innermost and

working outward; this process can either stop at some level of the outside which

communication can not be moved or when there are no more loops in the loop nest

to be considered.

The transformation should also satisfy the condition that the determinant is ± 1 and must

preserve the dependences in the program.

5 .2 T h e A l g o r it h m

Consider the following loop where n is the loop nesting level and d, the dimension of the

arrays.

DO i\ = 1, TV,

DO in - 1, N n
L[C]I + B l = R[A]I + B r

ENDDO

ENDDO

I l l

where

C j i . . . C[7 a n . . . a l r

C and A =

ddl ■ ■ ■ ddn

are the access or reference matrices for the Ihs array L and rhs array R, respectively,

I =

is the iteration vector, and

b\ b\

B l = and B r =

ii

------1i

are the constant offset vectors for the Ihs and rhs arrays, respectively. Let the inverse of

the transformation matrix be

< 7 1 1 • • • Q\r

Q = T-

The algorithm is shown in Figure 5.1. We use the notation A[i , :] to refer to the zth row of

a matrix A, and A[. ,j\ to refer to the jth column of a matrix A.

112

Step 0: If a row in the reference matrix of all the arrays are the same, then
there is no communication involved. The data can be distributed along
the respective dimension and all the data for the computation will be in
local memory. (Initialized <— 1).

Step 1 : Distribute Ihs array along dimension i, i.e. set c).[T '] =
[1 0 ■ • • 0], where c) represents row i of the Ihs array C.

Step 2: Choose a rhs array which does not have a row in the reference
matrix the same as that of Ihs array. For each row j in turn, set:
a?’.[T~l] = [0 0 • ■ • 0 1] for a reference to that array and aFk^ ■ qn = 0,
where a? represents row j in the data reference matrix for the pth rhs
array A, and qn is the n th column of T ~ l.
If a valid T ~ l is found, check the determinant of T ~ l. If non-zero block
transfers are possible for that rhs array, (break) go to Step 3.
If there are no valid T ~1 or the determinant of T ~1 is zero, block transfers
are not possible for dimension j on that array with the given distribution
of the Ihs array; therefore, increment j and go to Step 2.

Step 3: Repeat Step 2 for all the reference matrices of a particular array to
check the results for that particular value of j .

Step 4: Repeat Step 2 for all distinct arrays on rhs. (Increment p)

Step 5: Check the number of arrays where block transfers are possible.

Step 6: Repeat Step 1 to Step 4 for Ihs array distributed along each of the
other dimensions in turn (Increment i).

Step 7: Compare the number of arrays that can have block transfers and
distribute Ihs array along the dimension which yields maximum number
of block transfers for the arrays on the right hand side.

F ig u re 5 .1: A lg o rith m fo r D a ta D istrib u tio n and L o o p T ran sfo rm atio n s

113

5 .3 E x a m p l e s

We illustrate the use of the algorithm through several examples in this section. The reader

is referred to the work by Ramanujam and Narayan [67] for a detailed discussion of the

algorithm. In the following discussion, we refer to the matrix T ~ l as the matrix Q.

Example 5.2 Matrix Multiplication

DO i = 1,7V
DO j — \, N

DO k = 1 , N
C [i , j } = C[i,j] + A[i ,k]*B[k , j]

ENDDO
ENDDO

ENDDO

The reference matrices of the arrays are:

1 0 0 1 0 0 0 0 1
) A n , and B n =

0 1 0 0 0 1 0 1 0

Step 1: C distributed along first dimension. Set

CTC[1,:] • Q [:,l] = l

Cn { 1,:] • Q[:,2] = 0

C *[l,:] • Q[:, 3] = 0

Therefore we have, qu = 1, gi2 = 0, and q\j = 0.

Step la : Derive distribution of array A. Since row 1 of A is the same as that of C, i.e.,

<5k[1, :] = Ak[1,:]. distribute A and C identically.

114

Step 2.1: Derive distribution for array B. Check if you can find a matrix, B r Q of the

form

B n Q —

0 0 1

? ? 0

where ? denotes entries we do not care about. Set

B n [1,:] • Q[:, 1] = 0

B n [1,:] ■ Q[:,2] = 0

B n [1,:] ■ g[:,3] = l

Therefore we have, g3! = 0, q22 = 0, and </33 = 1. In addition, set B r [2,:] ■ Q[:

, 3] = 0. This implies q23 = 0- Therefore, the first dimension of B is not distributed.

Finally we have,

1 0 0

r = Q ~ q2\ q22 0

0 0 1

For a unimodular transformation, g22 = ± 1. Note that the dependence vector is

[0 0 1], and therefore, there are no constraints on q2i. This results in the identity

matrix as the transformation matrix, and thus nothing need be done. Distribute A and

C by rows, and B by columns. The code shown next gives the best performance we

can get in terms of parallelism and locality. Note that the communication is carried

out outside of the innermost loop. In this way a coarser grain in the communication

pattern is achieved by vectorizing the messages.

DO u = I, N
DO v = I, N

send B[*, 21]

115

receive B[*,v]
DO w = 1, N

C[u, v] — C[u, w] + A[u, w] * B[w, w]
ENDDO

ENDDO
ENDDO

We go ahead and complete the algorithm by looking at distributing the Ihs array in

the next dimension.

Step 1.1 : C distributed along second dimension. Set

Cn[2,:] • <?[:,1] = 1

Cn [2,:] • Q{:, 2] = 0

Cn [2,:] • Q[:,3] = 0

Therefore we have, ry2i = 1, Qn = 0, and q23 = 0.

Step 1.1a: Derive distribution for array B. Since second row of B n is the same as the

second row of Cn distribute B same as C.

Step 2.2: Derive distribution for array A. Check if you can find a matrix, A n Q of the

form

0 0 1
A n Q =

? ? 0

where ? denotes entries we do not care about. Set

A k [1,:] • Q[:, 1] = 0

A n [1,:] • Q[:, 2] = 0

A ^ l,:] • Q[:,3] = l

116

Therefore we have, qn = 0, qi2 — 0 and g!3 = 1; and An[2,:] • Q[:, 3] = 0

(733 = 0.

Finally we have,

0 0 1

t ~1 = i o o

531 532 0

For a unimodular transformation, g32 = ± 1. Therefore,

j > - \ =

0 0 1 0 1 0

1 0 0 and T — 0 0 1

0 1 0 1 0 0

Distribute arrays A, B, and C by columns. The transformed loop is given below:

DO u = l , N
DO v = I, N

send A[*, u\
receive A[*, v\
DO w — \, N

C[w ,'«] = C[w, m] + A[w, n] * B[v, u]
ENDDO

ENDDO
ENDDO

We see that the performance of the loop is similar in both cases. Therefore array C

can either be distributed by columns with the above transformation, or by rows with no

transformation for the same performance with respect to communication. Again notice

that the communication is carried outside of the innermost loop.

Consider the Symmetric Rank 2K (SYR2K) code, from the Basic Linear Algebra

Subroutines (BLAS) [56]), example shown below.

*

117

Example 5.3 SYR2K

DO i = I, N
DO j = i, m in (i + 2b — 2, N)

DO k = ma,x(i — b + 1, j — b + 1, 1), m in(i + b — 1 , j + b — 1, T V)
C[i, j — i + 1] = C[i, j — i + 1] + A[k, i — k + b] * B[k, j — k + b]

+ A[k, j — k + b] * B[k, i — k + 6]
ENDDO

ENDDO
ENDDO

The reference matrices for the arrays are:

C7? —

1 0 0 0 0 1 0 0 1
4 1 — f}2 —

» tz ~ — , and A \ = B'n =
- 1 1 0 1 0 -1 0 1 -1

Step 1: C row distributed. Set

Cn [1,:] • Q[:, 1] = 1

Cn [1,:] • Q[:, 2] = 0

Cn [1,:] • <?[:, 3] = 0.

Therefore we have, qw — 1, gt2 = 0, and q13 = 0. None of the other references

matrices have any row common with Cn-

Step 1.1: Derive distribution of A for the first reference; check if first dimension of A

can be not distributed. Check if you can find a matrix, A xn Q of the form

—

0 0 1

? ? 0

118

where ? denotes entries we do not care about. Set

A jj[l , :]

:]

A)e[l>:]

Q[:,1] = 0

Q[:, 2] = 0

Q[, 3]= 1.

Therefore, g31 = 0, 532 = 0, and g33 = 1. In addition, Ah[2 , :] • Q[;> 3] = 0 implies

Qn ~ (?33 = 0, which is impossible. Therefore, the first dimension of A has to be

distributed.

Step 1.2: Derive distribution of A using first reference; check if second dimension of A

can be not distributed. Check if you can find a matrix, A ln Q of the form

A xn Q —

? ? 0

0 0 1

where ? denotes entries we do not care about. Set

A'n [2,:] • Q[:, 1] = 0

A [n [2,:] • Q[:, 2] = 0

^ [2 , :] ■ Q[:, 3] = 1

and v4jj[l,:] • Q[\, 3] = 0. Therefore, q n - q3l = 0 =$> q l3 = 1; q n - g32 = 0 = »

g32 = 0; and (/)3 - q33 = 1 ==> g33 = — 1, which is impossible since g33 = 1. Thus

the second dimension of A also has to be distributed. Based on an analysis of the

first reference of A, every dimension of A must be distributed. A similar result

119

follows from an analysis of the second reference to A as well. Since the reference

matrix for array A and B are the same, there can be no block transfers for B as well.

Step 2.0 : C column distributed. Set

Therefore,

and

Cn [2,:] • Q [:,l] = l

Cn [2,:] • Q [:,2] = 0

Cn [2 ,:] • Q[:, 3] = 0 .

“̂ 11 +521 — 1 = > 5n = <721 — 1,

— 512 + 522 = 0 =>■ 512 = 522)

—5i3 + 523 = 0 = + > 5i3 = 523-

Step 2.1a: Derive distribution of A; check if the first dimension of A can be not dis

tributed. Set

0

0

1.

Therefore, = 0, 532 = 0 and 533 = 1, and

^[1,:] • Q[, 1] =

^ [1 , :] • Q[:,2] =

A U 1,:] ■ Q[:,3] =

:] ' <21+ 3] = 0 = » 513 - 533 = 0 7 , 3 = 1 and 523 = 1 -

120

This means that under a column distribution of array C, the first reference to array

A, i.e. A {n allows A to be not distributed along its first dimension. We now check

if the same result can be obtained with the second reference to array A, i.e. A \ .

Step 2.1b: Second reference of A, check if the second reference allows the first dimension

of A to be not distributed: Set

1^1,:] • Q[:,1] = 0

i ^ l , :] ■ Q[:,2] = 0

^ [1 , :] • Q[:, 3] = 1.

Therefore, q3i = 0, q32 = 0 and qn = 1,

A?k[2,:] ' <9[h 3] = 0 = 4- q23 — qn — 0

and (/23 = 1.

Thus both references to A allow A to be not distributed by its first dimension. Thus, A can

be column distributed (by its second dimension). Since B has identical array reference

matrices as those of A, array B can also be distributed by columns. Recall, that we started

out with a column distribution of C. Thus, we have the inverse of the transformation

matrix as

qw q\i 1
f/21 qn 1

0 0 1

- . - 1

The only constraint on the unknown elements is that the resulting matrix be legal and

unimodular.

121

Thus we choose the unknown values such that T is a legal unimodular transformation.

A possible T ~ l is as shown below.

0 1 1 -1 1 0

1 1 1 =>T = 1 0 -1
1 o o 1 0 0 1

The transformed reference matrices are as follows:

0 1 1
A ' 1 -

0 0 1 / ^ 0 0 1
, and A £ =

1 0 0 0 1 0 1 1 0

Using the algorithm above we distribute arrays A, B, and C by columns. In this way we

will have communication arising from A and B. Since we are using the owner-computes

rule, the accesses to C are all local. We can thus move the communication outside the

innermost loop. The transformed code with block transfers is as shown below:

DO u -- m ax(0,2 — 2b) ,m in (N — 1, 2ft — 2)
DO v = max(1 — N, 1 — b),m:in(N — 1,6 — 1 — u)

send A[*,u], B[*, v]
receive A[*, v + 6], A[*, u + v + ft], B[*, u + v + ft], B[*, v + ft]
DO w — max(1, 1 — v), m i n (N — u — v, N)

C[v + w , u + 1] = C[v + w, u + 1] + A\w, v + b]* B[w, u + v + ft]
+ A[w, u + v + ft] * B[w, v + ft]

ENDDO
ENDDO

ENDDO.

5 .4 R e l a x in g t h e O w n e r -C o m p u t e s R u l e

So far we have relied on the use of the owner-computes rule and have thus assumed that the

processor who owns the Ihs element of the assignment statement is the one that performs

the computation. There are cases, though, in which using the owner-computes rule will

122

not allow block transfers. When this happens we can try the algorithm by relaxing the

owner-computes rule.

If we apply the method presented earlier to the code shown in Example 5.4, we find

that whether array C is distributed by rows or by columns both arrays A and B must be

distributed in all of their dimensions and thus no block transfers are possible. The code

shown in Example 5.4 is a variation of the code we have already seen in Example 5.3.

Example 5.4 Consider the following code:

DO? = 1,7V
DO j = \ , N

DO k = 1,JV
C[i,j] = C [i , j] + A[k, i — k + b* B [k , j - k: + b]

+ A[k, j — k + 6] * B[k, i — k + b\
ENDDO

ENDDO
ENDDO

By relaxing the owner-computes rule and modifying the algorithm accordingly we

find that block transfers are indeed possible. We could distribute arrays A and B by rows

and array C by columns and obtain the following code

D O u = 1,JV
DO v = \ , N

DO w = 1 , N
tmp[w\ = tmp[w\ + A[u, v — u + b] * B[u, w — u + b]

4- A[u, w — u + b] * B[u, v — u + 6]
ENDDO
send tmp[*\
receive C[*, u]

ENDDO
ENDDO

where tmp is a temporary column vector used to store the column of C which is computed

locally. This same column storage is used each time the processor needs to compute a

123

column of C. Another alternative is to distribute arrays A, B, and C by rows instead and

use the code shown below

DO u = l , N
D O v - 1 , N

D O w = 1, N
tmp[w] = tmp[w\ + A[u, w — u + b]* B[u, v — u + b]

+ A[u, v — u + b\ * B[u, w — u +
ENDDO
send tmp[*\
receive C[u,*}

ENDDO
ENDDO

where tm p is a temporary row vector used to store the row of C which is computed locally.

This same row storage is used each time the processor needs to compute a row of C.

We notice that when the algorithm presented previously could not find a solution that

would allow block transfers we could then, by relaxing the owner-computes rule, allow

block transfers by allowing some other processor to perform the computation.

5 .5 T h e E x t e n d e d A l g o r it h m

In order to explain the algorithm in Figure 5.2 we will use it to obtain the solution for

the problem shown below. This is the code from Example 5.4.

DO % = 1, iV
DO j = 1,7V

DO A; = 1, iV
C[i, j } = C[i, j } + A[k, i - k + b] * B[k, j - k + b]

+ A[k, j — k + b] * B[k, i — k + b\
ENDDO

ENDDO
ENDDO

Notice that the accesses to the two-dimensional arrays A, B, and C are such that while

C is being accessed along its second dimension it is the first dimension of arrays A and

124

Step 0 thru Step 7: These steps are the same as in Figure 5.1.

Step 8: If no block transfers are possible, then initialize i to 1.

Step 9: Choose a rhs array and distribute it along dimension i. This array is
now the base array.

Step 10: Choose an array which does not have a row in the reference matrix
the same as that of the base array. For each row j in turn, set: Vj. [T~ '] =
[0 0 ■ • ■ 0 1] for a reference to that array and b1̂ • qn = 0.
If a valid T ~ 1 is found, check the determinant of T ~ 1. If non-zero block
transfers are possible for that array, (break) go to Step 11.
If there are no valid T ~ 1 or the determinant of T ~ 1 is zero, block transfers
are not possible for dimension j on that array with the given distribution
of the base array; therefore, increment j and go to Step 10.

Step 11: Repeat Step 10 for all the reference matrices of a particular array to
check the results for that particular value of j .

Step 12: Repeat Step 10 for all distinct arrays if necessary. (Increment p)

Step 13: If no block transfers are possible, then increment i and repeat
Step 10.

Step 14: If block transfers are possible, then stop. Otherwise, initialize i to
1, repeat Step 10 for a new rhs base array and stop when a solution is
found or there are no more rhs arrays to be chosen as base arrays.

F ig u re 5 .2: E x p an d ed A lg o rith m fo r D a ta D istrib u tio n and L o o p T ran sfo rm a tio n s

125

B which is being accessed. In other words this is an example of communication along

distinct axes. Note that the alignment phase will not be able to eliminate the interprocessor

communication in this case because the index variables that are used for the accesses along

the dimensions are different. In other words, the first dimension of A and B are indexed

with a variable distinct to the variable used for the accesses along the second dimension

of array C.

We identify the reference matrices as shown below

1 0 0 0 0 1 0 0 1
A 1 — R2 — A2 — R 1 —) n ~ n n ~

0 1 0 1 0 -1 0 1 -1

The steps resulting from applying the algorithm to the problem above are presented in

what follows.

1. C distributed along its first dimension. Set

Cn{ 1,:] ■ Q [: , l] = 1

Cn\ 1):] • <?[:, 2] = 0

Cn\ 1,:] II o

from which we obtain, qn = 1, qn — 0, qn — 0. Note that there are no rows in

any of the other reference matrices which are the same as any of the rows of Cn .

Otherwise, we could determine at this point which of the remaining arrays could be

distributed using the same distribution that we have for C.

(a) Derive distribution for the first dimension of array A using the first reference

matrix of A, i.e. A ln by checking if the first dimension of A can be not

126

distributed. In other words, check if we can find a matrix of the form

Set

A ^ Q
0 0 1

? ? 0

A i m

^ [1,:]

A }j[l,:]

<3[:,1] = 0

Q[:, 2] = 0

Q[:, 3] = 1

to obtain q \̂ = 0, g32 = 0, and q33 = 1. To satisfy the requirement that

the innermost loop index variable must not appear in the second dimension,

also set A ^ [l , :] • Q[:, 3] = 0 from which we obtain <713 = <733 = 0 which is

a contradiction to the above finding which said that = 1. Therefore, the

first dimension of A must be distributed and thus we can not perform block

transfers for A along its first dimension. Since B \ = A xn this means that we

can not perform block transfers for B along its first dimension either. This is

all assuming that C is distributed along its first dimension.

(b) Derive distribution for the second dimension of array A using the first reference

matrix of A, i.e. A {n by checking if the second dimension of A can be not

distributed. In other words, check if we can find a matrix of the form

A-jiQ
? ? 0

0 0 1

127

Set

A'n [2,:] • Q [: ,1]= 0

A'n [2,:\ • Q[:, 2] = 0

A'n [2,:] • Q[:,3] = l.

Therefore q\\ = g3i = 0, ql2 = g32 = 0, and gj3 = g33 = 1. Now set

A xn { 1,:] • Q[:, 3] = 0 that is, g33 = 0 which is again a contradiction to the

above finding which said that g33 = 1. Thus, the second dimension of A

must be distributed and thus we can not perform block transfer for A along

its second dimension. Since B \ = A xn this means that we can not perform

block transfers for B along its second dimension either. Remember that this

analysis has been made assuming that the Ihs array C is distributed along its

first dimension.

2. C distributed along its second dimension. Set

Cn { 2,:] • <3[;> 1] = 1

Cn [2,:] • Q [: ,2]= 0

Cn { 2,:] • Q[:,3] = 0

Therefore q2\ = 1, q22 — 0, and q23 = 0. Again there are no rows in any of the other

reference matrices that are the same to any of the rows of C-r .

(a) Derive distribution for the first dimension of array A using the first reference

matrix of A, i.e. A ln by checking if the first dimension of A can be not

128

distributed. In other words, check if we can find a matrix of the form

Set

A\iQ
0 0 1

? ? 0

A [l > :]

A mi

A i m

<?[:,!] = 0

Q[:,2] = 0

Q [:,3]= 1

to obtain q3l = 0, q32 = 0, and q33 = 1. Also set A [l > :] ' Q[:> 3] = 0 which

yields qi3 = q33 = 0 which is a contradiction. Therefore the first dimension

of A must be distributed. This means that we can not perform block transfers

along the first dimension of A. Note that B \ = A {n and thus we can not

perform block transfers along the first dimension of B if C is distributed along

its second dimension.

(b) Derive distribution for the second dimension of array A using the first reference

matrix of A, i.e. A ln by checking if the second dimension of A can be not

distributed. In other words, check if we can find a matrix of the form

A\iQ —

? ? 0

0 0 1

Set

A[2,:] • <?[:,!] =0

129

A ln [2,:] • Q [: ,2]= 0

< [2 , :] • Q[:, 3] = 1.

Therefore </n = g31 = 0, qi2 = qn = 0, and ql2 = q33 + 1. Now set

A j j l , :] • Q[\, 3] = 0 which yields g33 = 0. Thus q\2 = 1. This results in

Q =

0 0 1

1 0 0

0 0 0

which is not unimodular. Therefore the second dimension of A must also be

distributed. This means that we can not perform block transfers along the

second dimension of A and, as before, since B \ = A xn we can not perform

block transfers along the second dimension of B either. Therefore, using the

owner-computes rule does not allow block transfers for either array A or array

B.

3. At this time we relax the owner-computes rule and allow the owner of a rhs array to

be the one performing the computation. A distributed along its first dimension. Set

:]

:]

g [:, l] = 1

Q[:, 2] = 0

Q [: , 3] = 0

from which we obtain, qn = 1, qi2 = 0, g33 = 0. Note that the first row of A ^ ,

B ^ , and B \ is identical to the first row of A xn . Therefore, both arrays A and B can

be distributed by rows.

130

(a) Derive distribution for the first dimension of array C to check if it can be not

distributed. Check if we can find a matrix of the form

Cn Q
0 0 1

? ? 0

Set

Cn [1,:] • Q[:,1] = 0

Cn [1,:] • Q[:, 2] = 0

Cn [1,:] • Q[:,3] = l

which results in q\\ — 0, 912 = 0 , and gi3 = 1. Now set

Cn [2, :]•$[:, 3] = 0

which yields q23 = 0 . This means that

Q =

0 0 1

<721 <122 0

1 0 0

which is unimodular if we choose q22 = ±1, i.e.

Q =

0 0 1

0 1 0

1 0 0

131

Therefore, by distributing A, B by rows and C by columns and using the transformation

shown above we can transform the code to

DO u = 1 , N
D O d - 1 , N

DO w — \ , N
tmp[w\ = tmp[w\ + A[u, w — u + b]* B[u , v — u + b]

+ A[u, v — u + b] * B[u, w — u + b]
ENDDO
send tmp[*\
receive C[*,u]

ENDDO
ENDDO.

5 .6 U s in g T il in g t o O b t a in H ig h e r G r a n u l a r it y in t h e

C o m m u n ic a t io n Pa t t e r n

It would be advantageous to continue to increase the granularity of the communication

between processors. One way to accomplish this is by tiling one or more dimensions of

the iteration space. Tiling is a well known technique used to assign blocks of iterations,

instead of just one at a time, to the available processors [5, 6, 69, 86]. In what follows we

provide several ways in which the above code could be tiled. Note that the loops have

been interchanged.

5 .6 .1 T il in g O n e D im e n s io n O n l y

We can tile one or more dimensions of the iteration space. For every loop that we tile

a new loop, the one that schedules the tiles, will be added. The old loop is modified to

schedule the iterations along the tiled dimension. We will now show several examples of

how to tile the loop nest that resulted from applying the algorithm in Figure 5.2 (relaxing

the owner-computes rule) to the code shown in Example 5.4.

If the loops are interchanged so that the order of the loops is (w, u, v), by tiling loop

u, which results in an outer loop uT and an inner loop u followed by the innermost loop v,

132

we could now either read a block of columns as shown in Figure 5.3(a) for the following

code

DO w = 1, N
DO uT = 1 , N , S

DO u = 1, min(uT + S — l , N)
DO v — \ , N

tmp[v, u] = tmp[u, v] + A[w, u — w + b* B[w, v — w + b]
+ A[w, v — w + b* B[w, u — w + 6]

ENDDO
ENDDO
send tmp[*, ur],tmp[*, uT + 1], ■ • •, tmp[*, u t + S — 1]
receive updated block of columns o f C owned locally

ENDDO
ENDDO

or a block of rows as shown in Figure 5.3(b) for the code shown below, where tm p is

a temporary array with S columns. The storage allocated to the temporary array tm p is

reused each time a new block of columns of C need to be computed by the processor. The

uT loop schedules the tiles and loops u, and v schedule iterations within the tile.

DO w = \ , N
DO u t = 1, N, S

DO u — \ ,m in (uT + S — 1, N)
DO v = I, N

tmp[u, v\ = tmp[u, v] + A[w, u — w + b] * B[w, v — w + b\
+ A[w, v — w + b] * B[w, u — w + b]

ENDDO
ENDDO
send tmp[uT, *], tmp[uT + 1, *],•■•, tmp[uT + S — 1, *]
receive updated block o f rows o f C owned locally

ENDDO
ENDDO

Now, if in the other hand the loops are interchanged so that the order of the loops is

(w, v, u), by tiling loop v to obtain a tiled loop vt and an inner loop v, which encloses

loop u, we could either read a block of rows as shown in Figure 5.4(a) for the code below

133

DO w = 1, N
DO vT = 1 , N , S

DO v = 1 , m,in(vT + S — 1 , T V)
DO u = \ , N

tmp[v, u) = tmp[v, u\ + A[w, u — w + b}* B[w, v — iv + b]
+ A[w, v — w + b* B[w, u — w + 6]

ENDDO
ENDDO
send tmp[vT, *], tmp[vT + 1, *],••■, tmp[vT + S — 1, *]
receive updated block o f rows o f C owned locally

ENDDO
ENDDO

or a block of columns in Figure 5.4(b) for the following code. In either case the vt loop

schedules the tiles and loops v, and u iterate within the tile.

DO w = \ , N
D O v t = 1 , N , S

D O « = l , m i n { v T + S — 1, N)
D O u = \ , N

tmp[u, v\ — tmp[u, v\ + A[iv, u — w + b* B[w , v — w + fr]
+ A[w, v — w + b* B[w, u — w + /;]

ENDDO
ENDDO
send tmp[*, vt], tmp[*, vT + 1], • • •, tmp[*, vT + S — 1]
receive updated block o f columns o f C owned locally

ENDDO
ENDDO

5 .6 .2 T il in g T w o D im e n s io n s

In the previous section we showed how to tile the transformed code at the end of Section 5.5

along one dimension of the iteration space. In this section we show how to tile two

dimensions of the iteration space of our running example. This could be done in several

ways one of which is shown below. Notice that both loops u, and v are tiled resulting in

134

V

A
u
A

(a)

C[v,u] = ••
(b)

C[u,v] =

Figure 5.3: Tiling of Loop u to Result in Messages Consisting of (a) Columns or (b)
Rows.

V

A
U

A

U -5»*V

(a) (b)

C[v,u] = - C[u,v] = -.

Figure 5.4: Tiling of Loop v to Result in Messages Consisting of (a) Rows or (b) Columns.

135

two new loops vt and ut along with the modified v and u loops. The tile loops vT and

ut will schedule the tiles and loops v and u will schedule iterations within the tiles.

We are only tiling a maximum of 2 dimensions of the iteration space. In general, if

the original loop nest consists of n loops the tiled loop nest will consist of 2n loops n

of which will schedule the n — dimensional tiles and the other n will schedule iterations

within the tiles. Though both tile block sizes are shown using the same symbol, i.e. S,

this does not have to be the case in general and we could have a tile size S\ for one of the

loops and S 2 for the other.

DO w — 1, iV
DO ut = 1 , N , S

DO vT = 1 , N , S
DO u = 1, min(uT + S — 1, N)

DO v = I , m in(vT + S — \ , N)
tmp[v, u] = tm,p[u, v] + A[w, u — w + b]* B[w, v — w + b\

+ A[w, v — w + b] * B[w, u — w + b]
ENDDO

ENDDO
send tmp[vT : vt + S — 1 , ut '■ ut + S — 1]
receive updated block o f columns o f C owned locally

ENDDO
ENDDO

ENDDO

5 .7 C o m p a r is o n W it h O t h e r W o r k

Li and Pingali [56] used user specified data distributions and developed a systematic loop

transformation strategy identified by them as access normalization which restructures

loop nests to exploit locality and block transfers whenever possible.

Li and Pingali [57] discuss the completion of partial transformations derived from the

data access matrix of a loop nest; the rows of the data access matrix are subscript functions

for various array accesses (excluding constant offsets). Their work assumes that all arrays

are distributed by columns.

136

Kremer [52] proves the dynamic remapping problem NP-complete. Kremer et al. [53]

and Kremer [51] consider the profitability of dynamic remapping and use an interactive

tool for automatic data layout, respectively.

5 .8 C h a p t e r S u m m a r y

In this chapter a (unimodular) matrix-based approach for finding array distributions was

presented. This approach finds a unimodular transformation which is derived from the

array references. In this way the volume of the iteration space is not affected when

going from the original iteration space to the transformed iteration space. In addition,

the method also moves communication out of the innermost loop so that messages could

be vectorized reducing the amount of communication by an order of magnitude. An

algorithm was provided and several detail examples were used to show the effectiveness

of this systematic approach. This algorithm begins by assuming the owner-computes rule

and relaxes it if no block transfers solution is achieve.

This is the only method that we know of which makes use of matrices in order to

determine the best distribution. In this way loop transformations and communication

improvements are performed at the same time. The result is a transformed code which

performs communication at an outer level so that the data is local to the memories before

the execution of the innermost loop. Furthermore, we have presented how to use tiling to

increase the granularity of the resulting communication.

C h a pt e r 6

D is t r ib u t io n : A G r a ph -b a s e d A ppr o a c h

The distribution phase of the data mapping problem can be defined as the phase where the

abstract template, and thus all the arrays aligned to it, are mapped onto the physical pro

cessors. This phase comes after the data structures have been aligned to the template. As

with the alignment phase, the distribution phase can be subdivided into static distribution

and dynamic distribution.

The rest of this chapter is organized as follows: Section 6.1 introduces the distribution

preference graph (DPG), Section 6.2 presents how the DPG can be used to determine the

distribution of arrays, and Section 6.3 shows the results of applying the DPG method of

determining the distribution of arrays to the code for Jacobi, ADI, Disper, Livermore, and

Shallow. Section 6.4 is a review of the related work and Section 6.5 the chapter summary.

6 .1 T h e D is t r ib u t io n P r e f e r e n c e G r a p h

Assume that we are using the owner-computes rule where the processor which owns the

Ihs array element of an assignment statement is the one that performs the computation.

Then, for a parallel loop, what we need is for the dimension of the Ihs array subscripted

by the loop variable of the parallel loop to be the one to be distributed [30]. In this chapter

we will be using the distribution preference graph (DPG). The DPG is a bipartite graph

whose nodes represent loop index variables and array dimensions. Undirected edges are

used to connect each loop index variable node to the array dimension nodes that use it

in the subscripted expression and to connect array dimensions which use the same index

variable. Labels are used for the loop node edges and these correspond to the constant

137

138

coefficient which multiply the index variable in the subscripted expression. We will also

use zero weight directed edges connecting a loop node with an array node that does not

have the loop index variable as part of its label, though we will not be showing them most

of the time. In other words, a zero weight directed edge will be used when the coefficient

of the loop index variable for a particular array dimension is zero.

We are looking for disjoint cycles that will include one loop node and exactly one

array node from each column. If this is the case we can then distribute an array along the

dimension included in the cycle and have the loop corresponding to the loop node variable

as the outermost loop by performing loop interchange if necessary.

6.2 How t o U s e t h e DPG t o D i s t r i b u t e t h e A r r a y s

w i t h i n a L o o p N e s t

Example 6.1 shows a piece of code where an array A is assigned the transpose of array B.

The distance vector for this loop nest is d = (0 ,0)r , i.e. either loop can be parallelized.

Example 6.1 Row and column

DO i — \ , N
DO j — \, N

A['i, j] = B[j,i]
ENDDO

ENDDO

The DPG for the example above is shown in Figure 6.1(a) and the available disjoint

cycles (1 and 2) in Figure 6.1(b). In Figure 6.2(a) we show cycle 1. If the code above is

distributed as suggested by cycle 1, then array A will be distributed by rows and array B by

columns to result in no inter-processor communication. Loop i will be the outermost loop.

If in the other hand the distribution is determined by cycle 2 in Figure 6.2(b) then array

A will be distributed by columns and array B by rows also resulting in no inter-processor

communication. In this case loop j would be the outermost loop.

139

A B

(a)

A B

cycle 1

Cycle 2
F ig u re 6.1: D P G fo r A[i , j] = B[j , i\ in E x am p le 6.1 .

140

cycle 1

A B

cycle 2

F ig u re 6 .2: D P G fo r A[i , j \ = B[j , i] in E x am p le 6.1 S h o w in g th e In d iv id u a l C ycles.

141

Our next example is the code for matrix multiplication shown in Example 6.2. The

DPG is shown in Figure 6.3(a) and the existing cycles in Figure 6.3(b). Note that there are

three disjoint cycles (1,2, and 3) in the DPG shown in Figure 6.3(b) but none of the cycles

visits exactly one node from each array. In this case we have that each of the cycles visits

exactly one node from two of the three arrays. This is an indication that, unless the array

which is not visited by a cycle is replicated, there is no communication-free solution.

Example 6.2 Matrix Multiplication

DO i = I, N
DO j — I, N

DO k — N
' c [i,j\ = C[i,j] + A[i, k] * B[k, j]

ENDDO
ENDDO

ENDDO

In this case our options are: distribute arrays C and A by rows and then choose between

a row or a column distribution for B, or distribute C and B by columns and choose between

a row or a column distribution for A. Consider cycles 1 and 2 in Figure 6.4(a). If C and A

are distributed by rows as indicated by cycle 1 and B by columns as indicated by cycle 2,

then the communication arising due to the B term can be moved outside of loop k and an

entire block (column) of B (B[*, j \) can be read. We can make the i loop the outermost

loop, followed by loop j , and then loop k. Since cycle 2 includes index variable j then

the j loop will carry the communication which could be moved outside of loop k. Note

that there will be no communication arising from the accesses to C and A. The only way

to avoid the communication due to B is by replicating array B.

Now consider Figure 6.4(b). In this case we are considering only cycles 1 and 3. If

C and A are distributed by rows (cycle 1) and B is distributed by rows (cycle 3) then

there will be no communication from the accesses to arrays C and A, but there will be

142

A B

(a)

cycle 1

cycle 2

B

k*

,'j-0 ©
J

o

1 ' r e

cycle 3

k*

(b)

F ig u re 6 .3: D P G fo r M atrix M u ltip lica tio n E x am p le 6 .2 S h o w in g (a) N o C y c les an d (b)
C y c les 1, 2 , an d 3.

143

C A B
cycle 1

cycle 2

(a)

C A B
cycle 1

cycle 3

F ig u re 6 .4: D P G fo r M atrix M u ltip lica tio n E x am p le 6 .2 S h o w in g (a) C y c les 1 an d 2 and
(b) C y c les 1 and 3.

144

communication due to B. Since the communication will be carried by loop k, we can make

i the outermost loop, followed by loop k, and then loop j and move the communication

outside of loop j .

There are other options which can also be determined from the DPG. For example we

could choose to distribute C by columns and B by rows (cycle 2) and A by either rows

(cycle 1) or columns (cycle 3). If A is distributed by rows we could make j the outermost

loop, followed by loop i since it carries the communication due to A, and then loop k as

the innermost loop. In this way communication is outside of loop i. If A is distributed

by columns then the communication due to A will be carried by loop k. We could then

make j the outermost loop, followed by k, and then loop i. The last two options involve

making k the outermost loop. We could distribute A by columns and B by rows (cycle

3) and have the choice of distributing C by either rows (cycle 1) or columns (cycle 2).

Therefore, the total number of options for the matrix multiplication example is six.

6.3 T h e DPG M e t h o d A p p lie d t o J a c o b i , ADI, D is p e r ,

L iv e r m o r e , a n d S h a l l o w

We now apply the Distribution Preference Graph (DPG) method to several programs we

have been using throughout this work, e.g. Jacobi, ADI, Disper, Livermore 18, and a

section of Shallow. The code segments for these programs were presented in Chapter 2.

We will only be showing distinct nodes and in some cases we build the DPG for only

part of the code. This is because otherwise the DPG would be too big to follow and also

because the rest of the code does not provide any other useful information. Whenever

necessary we will label the loop node corresponding to the loop that should be made the

outermost loop, i.e. when the loop node is not the first loop in the DPG. In this way we

avoid any unnecessary confusion.

A

145

B

• •

J J

Figure 6.5: DPG for the Jacobi algorithm in Figure 2.6.

Figure 6.5 shows the DPG for the Jacobi algorithm which was presented previously

in Figure 2.6. The result of using the DPG method is that we have two cycles and can

either distribute arrays A and B by rows or by columns. Note that we are representing the

entire code and that we are showing only the array nodes which are distinct.

For statements S 1 and S 2 in the ADI code in Figure 2.7 the resulting DPG is shown

in Figure 6.6. We are only showing the DPG for the above two statements because it

is essentially the same as for the rest of the statements in Figure 2.7. Since the path

corresponding to the second dimension in Figure 6.6 is a sequential path, our best choice

is to distribute the first dimension of arrays x, a, and b. This choice corresponds to the

cycle connecting the first node of all the arrays in Figure 6.6. Note that we have drawn

146

x a b

i i i

outermost
Figure 6.6: DPG for Statements S 1 and S2 in the ADI Algorithm in Figure 2.7.

only one of the two possible cycles. The other cycle corresponds to a sequential loop and

this is why we do not consider it.

The code for Disper is shown in Figure 2.8 and its corresponding DPG in Figure 6.7.

From Figure 6.7 the choice for the distribution of arrays grady, p f m r , and ddy is made

based on the only cycle including a node from each of the arrays, i.e. distribute the arrays

along their first dimension. The other cycles were not drawn for the sake of clarity.

The choice of distributing the arrays in the code for Livermore 18 presented in Fig

ure 2.9 along their second dimension is based on the DPG shown in Figure 6.8. This

figure shows only cycle along the second dimension of all the arrays. The other cycle in

Figure 6.8 corresponds to a sequential loop. This is because loop j carries a dependence.

Again note that we have only shown one of the two cycles.

147

grady pfmr ddy

il il il

make
outermost

k

-0
Figure 6.7: DPG for the Disper Algorithm in Figure 2.8.

Z A ZP ZQ ZM ZR ZZ Z U ZV ZB

F ig u re 6.8: D P G fo r the L iv e rm o re 18 A lg o rith m in F ig u re 2.9.

148

unew uold z cv h vnew void cu pnew pold

Figure 6.9: DPG for the Shallow Algorithm in Figure 2.12.

As opposed to the code for Livermore 18, Shallow, shown in Figure 2.12, does not have

any dependences and thus either one of the two cycles (only one is shown) in Figure 6.9 is

a good candidate for choosing the distribution of the arrays. The arrays can be distributed

either along their first dimension or along their second dimension. We have drawn only

the one corresponding to the outermost loop and the second dimension of the arrays.

6 .4 C o m p a r is o n W it h O t h e r W o r k

Chatterjee et al. [20] and Sheffer et al. [76] deal with determining both static and dynamic

distributions. They use the Alignment-Distribution Graph (ADG) whose nodes represent

program operations, the ports in the nodes represent array object manipulated by the

program, and the edges connect array definitions to their respective uses. The ADG is a

directed edge-weighed graph although it is used as an undirected graph. Communication

occurs when the alignment or distribution at the end points of an edge is different. The

completion time of a program is modeled as the sum of the cost over all the nodes

(which accounts for computation and realignment) plus the sum over all the edges of the

redistribution time (which takes into account the cost per data item of all-to-all personalized

communication, the total data volume, and the discrete distance between distributions).

Ayguade et al.’s [8] main effort is directed toward intra-procedural data mappings.

Candidate distributions are used to build a search space from which to determine, based

149

on profitability analyses, the points at which to realign or redistribute the arrays in order to

improve the performance by reducing the total data movement. The Component Affinity

Graph (CAG) of Li and Chen [55] is used to determine the best local distribution for

a particular phase of the code. All the arrays in a phase are distributed identically.

Control flow information is used for phase sequencing identification. An intra-procedural

remapping algorithm is provided.

Garcia et al. [30] present an approach to automatically perform static distribution us

ing a constraint based model on the Communication-Parallelism Graph (CPG). The CPG

contains edges representing both communication and parallelization constraints. The

constraints are formulated and solved using a linear 0-1 integer programming model and

solver. They obtain solutions for one-dimensional array distributions, i.e. only one dimen

sion of the arrays is distributed, and use an iterative approach for the multi-dimensional

problem.

Kremer [52] proves the dynamic remapping problem NP-complete. Kremer et al. [53]

and Kremer [51] consider the profitability of dynamic remapping and use an interactive

tool for automatic data layout, respectively.

Palermo and Banerjee [63] deal with dynamic partitioning by building the Commu

nication Graph. In this graph the nodes correspond to statements in the program and the

edges are flow dependences between the statements. The weight on these edges reflect

communication. Maximal cuts are used to remove largest communication constraints

and recursively divide the graph or subgraphs until chunks of code (phases) that should

share the same partitioning schemes are grouped together. Thus remapping may be in

serted between phases and not within a particular phase to reduce communication between

phases.

150

6 .5 C h a p t e r S u m m a r y

The subject of this chapter has been how to determine the distribution of arrays in a

loop-nest by making use of a graph-based model. We have presented the distribution

preference graph which encodes information about the arrays, the order of the loops in

the loop-nest, the communication between nodes in the graph, the subscript variables,

and whether the paths in the graph carry any dependences or not. The DPG is flexible

enough to allow loop transformations such as loop interchange. An extension to this work

is in progress to allow and record the effect of loop skewing. Results were presented for

several problems including some benchmarks.

Ch a pt e r 7

C o n c l u sio n

In this work we have dealt with the data partitioning problem by dividing it into an

alignment phase followed by a distribution phase, following Fortran D and HPF. We

have presented several approaches to finding alignment and distribution for a particular

piece of code. Our work focuses on loops with assignments to arrays, i.e. the Ihs of the

assignment statement within a loop is an array element. We have chosen to focus on loops

and on assignment to arrays because most of the execution of scientific programs is spent

in loops and arrays are the predominant data structure used in scientific programming,

respectively. As opposed to most researchers we have relaxed the owner-computes rule

during our work.

7 .1 C o n t r i b u t i o n s

For the alignment phase we presented three constraint-based methods. One which rep

resents the problem as a general linear programming problem and makes use of a linear

programming solver to find the optimal solution. In this case the problem is expressed as

a set of inequality constraints based on the first norm or l\ distance between the virtual

processors to which the elements of the template are assigned. At this point the assignment

is considered to be one element per virtual processor and the number of virtual processors

is assumed to be large enough. We used this method for the offset alignment problem

assuming that the values for the parameters (a 's) multiplying the index variables are

always one (1) and that only the offset coefficients (/?'s) needed to be found. We proved

our method to compute both the computation and data alignment using several real life

151

152

programs that are used in the scientific community. The method was also used to solve

both axis and stride alignment sample problems. Linear Programming tools are readily

available for a large variety of computer systems.

The second method uses the Lagrange Multiplier method and the software Mathemat-

ica [90]. For this method we used the Euclidean or U metric and were able to model the

offset alignment problem for the same programs we used during the Linear Programming

validation phase. We were also able to model the sample problems we used for the axis

and stride alignment cases. As in the case of the LP implementation, we were able to

include additional constraints using this method. We have included in Appendix 7.2 an

overview of the Lagrange Multiplier method for ease of reference.

The third method uses heuristics to decide which constraints to leave unsatisfied

when the system of equations is over-constrained according to the penalty of increased

communication incurred in doing so. Our decisions are based on the information stored

in the Resource Information Table (RIT). We remind our readers that the component

alignment problem has been proven NP-complete by Li and Chen [55].

For the distribution phase we have developed two methods to integrate the placement

of computation with data mapping. Our scope have been one dimensional distribution

of arrays. In the first method we find the best combination of data and computation

mapping resulting in low communication overhead by allowing message vectorization.

Our techniques are based on unimodular transformations. We have also made use of tiling

to distribute iterations in chunks to further vectorize the messages. This is the first time

that this approach to distribution is taken.

Our second approach to distribution is based on the distribution preference graph.

This graph is a variation of the component affinity graph and it allows us to integrate loop

restructuring transformations and data mappings. Both methods are very useful and could

153

be improved further to allow multidimensional distributions. Note that communication

will be unavoidable in the vast majority of the programs and this is the reason we did not

restrict ourselves to communication-free problems.

7 .2 S u m m a r y a n d F u t u r e W o r k

Our work fits very nicely with the most recent work of some of the researchers in this area

where the main effort is directed towards dynamic remapping [8, 48, 49, 63]. Candidate

alignments and/or distributions for the different loop nests are assumed and the best

mapping (the one that minimizes execution time) is obtained using methods such as

graph methods and 0-1 integer programming. In terms of the work performed by these

researchers our work provides these candidates for alignment and distribution but it goes

further in that we also deal with the problem of reducing communication when this is

unavoidable by vectorizing the messages whenever possible.

In terms of future work the following would complement our research.

• Expanding our distribution algorithms to include multidimensional distributions.

• Heuristics for distribution.

• Extending the distribution algorithms for a sequence of loops and imperfectly nested

loops, with or without partial replication.

• Including in our framework the use of dependence vectors to guide our algorithms

for both alignment and distribution.

• Representing the computation and data alignment problems in such a way that an

integer programming tool could be used to find the optimal solution including the

optimal solution for axis and stride alignment.

154

» Accurate modeling of communication costs and communication primitives available

on each machine, and matching derived communication to the primitives.

• Dealing with issues such as control and data flow along with interprocedural anal

ysis.

B ib l io g r a ph y

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, Reading, MA, 1986.

[2] J. Allen and K. Kennedy. Automatic loop interchange. In Proc. 1984 SIGPLAN
Symp. Compiler Construction, pages 233-246, June 1984. vol. 19.

[3] J. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific
programs for parallel execution. In Proceedings o f the Fourteenth Annual ACM Sym
posium on the Principles o f Programming Languages, Munich, Germany, January
1987.

[4] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector
form. ACM Transactions on Programming Languages and Systems, 9(4):491-542,
October 1987.

[5] S.P. Amarasinghe, J. M. Anderson, M.S. Lam, and A.W. Lim. An overview of a
compiler for scalable parallel machines. In Proceedings o f the Sixth Annual Workshop
on Languages and Compilers fo r Parallel Computing, Portland, OR, August 1993.

[6] J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality on
scalable parallel machines. In Proceedings o f the ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation, pages 112-125, Albuquerque,
NM, June 1993.

[7] M. Avriel. Nonlinear Programming, Analyisis and Methods. Prentice-Hall, Inc,
Englewood Cliffs, N.J., 1976.

[8] E. Ayguade, J. Garcia, M. Girones, M.L. Grande, and J. Labarta. Data redistribution
in an automatic data distribution tool. In Proceedings o f the Eighth Annual Workshop
on Languages and Compilers fo r Parallel Computing, Lecture Notes in Computer
Science, Columbus, OH, aug 1995. Springer-Verlag.

[9] H.E. Bal, J.G. Steiner, and A.S. Tanenbaum. Programming languages for distributed
computing systems. ACM Computing Surveys, 21(3), September 1989.

[10] U. Banerjee. An introduction to a formal theory of dependence analysis. The Journal
o f Supercomputing, 2(2): 133-149, October 1988.

[11] U. Banerjee. A theory of loop permutations. In D. Gelernter, A. Nicolau, and
D. Padua, editors, Languages and Compilers fo r Parallel Processing, Research
Monographs in Parallel and Distributed Computing, pages 54—74. Pitman, London,
1990.

155

156

[12] U. Banerjee. Unimodular transformation of double loops. In A. Nicolau, D. Gel-
ernter, T. Gross, and D. Padua, editors, Advances in Languages and Compilers fo r
Parallel Processing, pages 192-219. Pitman, London, 1991.

[13] U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua. Automatic program paral-
lelization. Proceedings o f the IEEE, 81 (2):211-243, February 1993.

[14] D. Bau, I. Kodukula, V. Kotlyar, K. Pingali, and P. Stodghill. Solving alignment
using elementary linear algebra. In K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau,
and D. Padua, editors, Languages and Compilers fo r Parallel Computing: Seventh
International Workshop. Springer-Verlag, 1994.

[15] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming: Theory and
Algorithms. John Wiley & Sons, Inc., New York, 1993.

[16] D.P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Aca
demic Press, Inc., New York, 1982.

[17] R. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer pro
gramming. In Proceedings o f the International Conference on Parallel Architectures
and Compilation Techniques, pages 111-122, Montreal, Canada, August 1994.

[18] W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers on
the perfect benchmarks programs. IEEE Transactions on Parallel and Distributed
Systems, 3(6):643-656, November 1992.

[19] D. Callahan, A. Carle, M.W. Hall, and K. Kennedy. Constructing the procedure
call multigraph. IEEE Transactions on Software Engineering, 16(4):483-487, April
1990.

[20] S. Chatterjee, J. R. Gilbert, R. Schreiber, and T J. Sheffler. Array distribution in data-
parallel programs. In Proceedings o f the Seventh Annual Workshop on Languages
and Compilers fo r Parallel Computing, August 1994.

[21] S. Chatterjee, John R. Gilbert, Fred J. E. Long, Robert Schreiber, and Shang-Hua
Teng. Generating local addresses and communication sets for data-parallel programs.
In Proceedings o f the Fourth ACM SIGPLAN Symposium on Principles and Practice
o f Parallel Programming, pages 149-158, San Diego, CA, May 1993. Also available
as RIACS Technical Report 93.03.

[22] S. Chatterjee, John R. Gilbert, and Robert Schreiber. Mobile and replicated alignment
of arrays in data-parallel programs. In Proceedings o f Supercomputing ’93, Portland,
OR, November 1993. To appear.

[23] S. Chatterjee, John R. Gilbert, Robert Schreiber, and Shang-Hua Teng. Optimal
evaluation of array expressions on massively parallel machines. Technical Report TR

157

92.17, Research Institute for Advanced Computer Science, NASA Ames Research
Center, Moffett Field, CA, September 1992. Also available as Xerox PARC Technical
Report CSL-92-11. Submitted to ACM Transactions on Programming Languages
and Systems.

[24] S. Chatterjee, John R. Gilbert, Robert Schreiber, and Shang-Hua Teng. Automatic
array alignment in data-parallel programs. In Proceedings o f the Twentieth Annual
ACM SIGACT/SIGPLAN Symposium on Principles o f Programming Languages,
pages 16-28, Charleston, SC, January 1993. Also available as RIACS Technical
Report 92.18 and Xerox PARC Technical Report CSL-92-13.

[25] K.D. Cooper, M.W. Hall, and K. Kennedy. A methodology for procedure cloning.
Computer Languages, 9(2), apr 1993.

[26] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Proceedings o f
the 1986 International Conference on Parallel Processing, pages 836-844, August
1986.

[27] J.Z. Fang and M. Lu. An iteration partition approach for cache or local memory
thrashing on parallel processing. IEEE Transactions on Computers, 42(5), May
1993.

[28] K. Gallivan, W. Jalby, and D. Gannon. On the problem of optimizing data transfers
for complex memory systems. In Proc. 1988 ACM International Conference on
Supercomputing, pages 238-253, St. Malo, France, June 1988.

[29] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory
management by global program transformations. Journal o f Parallel and Distributed
Computing, 5(5):587-616, October 1988.

■ *

[30] J. Garcia, E. Ayguade, and J. Labarta. A novel approach towards automatic data
distribution. In Proceedings o f Supercomuting ’95, San Diego, CA, December 1995.

[31] J. R. Gilbert and R. Schreiber. Optimal expression evaluation for data parallel archi
tectures. Journal o f Parallel and Distributed Computing, 13(1):58—64, September
1991.

[32] G. Goff, K. Kennedy, and C. Tseng. Practical dependence testing. In Proceedings o f
the S1GPLAN ’91 Conference on Program Language Design and Implementation,
Toronto, Canada, June 1991. 1991.

[33] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques
for parallelizing compilers on multicomputers. IEEE Transactions on Parallel and
Distributed Systems, 3(2): 179-193, March 1992.

158

[34] S. K. S. Gupta, S. D. Kaushik, S. Mufti, S. Sharma, C.-H. Huang, and P. Sadayap-
pan. On compiling array exprressions for efficient execution on distributed-memory
machines. In Alok N. Choudhary and P. Bruce Berra, editors, Proceedings o f the
1993 International Conference on Parallel Processing, volume II, pages 301-305.
CRC Press, Inc., August 1993.

[35] Mary W. Hall, John M. Mellor-Crummey, Alan Carle, and Rene G. Rodriguez. FIAT:
A framework for interprocedural analysis and transformation. In 1993 Workshop on
Languages and Compilers fo r Parallel Computing, number 768 in Lecture Notes in
Computer Science, pages 522-545, Portland, Ore., August 1993. Berlin: Springer
Verlag.

[36] M.W. Hall. Managing Interprocedural Optimization. PhD thesis, Rice University,
April 1991.

[37] M.W. Hall, S. Hiranandani, K. Kennedy, and C. Tseng. Interprocedural compi
lation of Fortran D for MIMD distributed-memory machines. In Proceedings o f
Supercomputing ’92, Minneapolis, MN, November 1992.

[38] M.W. Hall and K. Kennedy. Efficient call graph analysis. ACM Letters on Program
ming Languages and Systems, 1(3), September 1992.

[39] M.W. Hall, K. Kennedy, and K.S. McKinley. Interprocedural transformations for
parallel code generation. In Proceedings o f Supercomputing ’91, Albuquerque, NM,
November 1991.

[40] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular
section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350-
360, July 1991.

[41] High Performance Fortran Forum. High Performance Fortran language specification
version 1.0. Draft, December 1993. Center for Research on Parallel Computation,
Rice University.

[42] S. Hiranandani, K. Kennedy, J. Mellor-Crummey, and A. Sethi. Advanced compila
tion techniques for fortran d. Technical Report Rice CRPC-TR-93-338, Center for
Research on Parallel Computation, Rice University, Houston, TX, October 1993.

[43] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations for Fortran D
on MIMD distributed-memory machines. In Proceedings o f Supercomputing ’91,
Albuquerque, NM, November 1991.

[44] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-
independent parallel programming in Fortran D. In J. Saltz and P. Mehrotra, editors,
Languages, Compilers, and Run-Time Environments fo r Distributed Memory Ma
chines. Noth-Holland, Amsterdam, The Netherlands, 1992.

159

[45] C.-H. Huang and P. Sadayappan. Communication-free hyperplane partitioning of
nested loops. Journal o f Parallel and Distributed Computing, 19(2):90-102, October
1993.

[46] F. Irigoin and R. Triolet. Supernode partitioning. In Proc. 15th Annual ACM Symp.
Principles o f Programming Languages, pages 319-329, San Diego, CA, January
1988.

[47] Joseph JaJa. An Introduction to Parallel Algorithms. Addison Wesley, New York,
1992.

[48] K. Kennedy and U. Kremer. Initial framework for automatic data layout in fortran
d: Ashort update on a case study. Technical Report Rice CRPC-TR93324-S, Center
for Research on Parallel Computation, Rice University, Houston, TX, July 1993.

[49] K. Kennedy and U. Kremer. Automatic data layout for high performance fortran.
Technical Report Rice CRPC-TR94498-S, Center for Research on Parallel Compu
tation, Rice University, Houston, TX, December 1994.

[50] I. Kim and M. Wolfe. Communication analysis for multicomputer compilers. In
Proceedings o f Parallel Architectures and Compilation Techniques (PACT 94), aug
1994.

[51] U. Kremer. Automatic data layout for distributed-memory machines. Technical
Report Rice CRPC-TR93299-S, Center for Research on Parallel Computation, Rice
University, Houston, TX, February 1993.

[52] U. Kremer. Np-completeness of dynamic remapping. Technical Report Rice CRPC-
TR93330-S, Center for Research on Parallel Computation, Rice University, Houston,
TX, August 1993.

[53] U. Kremer, J. Mellor-Crummey, K. Kennedy, and A. Carle. Automatic data layout
for distributed-memory machines in the d programming environment. Technical
Report Rice CRPC-TR93298-S, Center for Research on Parallel Computation, Rice
University, Houston, TX, February 1993.

[54] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In Proceedings o f the Second
Berkeley Symposium on Mathematical Statistics and Probability, pages 481-492,
1951.

[55] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing
between distributed arrays. In Frontiers ’90: The 3rd Symposium on the Frontiers
o f Massively Parallel Computation, College Park, MD, October 1990.

[56] W. Li and K. Pingali. Access normalization: Loop restructuring for numa compilers.
In Proceedings Fifth International Conf on Architectural Support fo r Programming
Languages and Operating Systems, pages 285-295, Boston, MA, October 1992.

160

[57] W. Li and K. Pingali. A singular loop transformation framework based on non
singular matrices. In Proc. 5th Workshop on Languages and Compilers for Parallel
Computing. Springer-Verlag, August 1992.

[58] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array data flow analysis and its
use in array privatization. In Proc. 20th Annual ACM Symposium on Principles o f
Programming Languages, January 1993.

[59] D. E. Maydan, J.L. Hennessy, and M.S. Lam. Efficient and exact data dependence
analysis. In Proceedings o f the ACM SIGPLAN’91 Conference on Programming
Language Design and Implementation, pages 1-14, June 1991.

[60] D.I. Moldovan and J.A.B. Fortes. Partitioning and mapping algorithms into fixed
size systolic arrays. IEEE Transactions on Computers, C -35(l):l-12, January 1986.

[61] M. O ’Boyle. A data algorithm for distributed memory compilation. In Proceedings
o f the Sixth International PARLE Conference, Athens, Greece, July 1994. Springer-
Verlag.

[62] D. A. Padua and M. Wolfe. Advanced compiler optimizations for supercomputers.
Communications o f the ACM, 29(12): 1184-1201, December 1986.

[63] D.J. Palermo and P. Banerjee. Automatic selection of dynamic data partitioning
schemes for distributed-memory multicomputers. In Proceedings o f the Eighth
Workshop on Languages and Compilers fo r Parallel Computing, Lecture Notes in
Computer Science, Columbus, OH, aug 1995. Springer-Verlag.

[64] T.W. Parsons. Introduction to Compiler Construction. W.H. Freeman and Company,
New York, 1992.

[65] R.W. Pike. Optimization fo r Engineering Systems. Van Nostrand Reinhold Company,
New York, 1986.

[66] M.J. Quinn. Designing Efficient Algorithms fo r Parallel Computers. McGraw Hill,
New York, 1987.

[67] J. Ramanujam and A. Narayan. Automatic distribution for HPF-like languages.
Technical Report TR-94-07, Department of Electrical and Computer Engineering
Louisiana State University, Baton Rouge, LA, January 1994.

[68] J. Ramanujam and P. Sadayappan. Compile-time techniques for data distribution
in distributed memory machines. IEEE Transactions on Parallel and Distributed
Systems, 2(4):472-482, October 1991.

[69] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for
nonshared memory machines. In Proceedings o f Supercomputing ’91, Albuquerque,
NM, November 1991.

161

[70] G.V. Reklaitis, A. Ravindran, and K.M. Ragsdell. Engineering Optimization: Meth
ods and Applications. John Wiley & Sons, Inc., New York, 1983.

[71] S. Richardson and M. Ganapathi. Interprocedural analysis vs. procedure integration.
Information Processing Letters, 21, August 1989.

[72] S. Richardson and M. Ganapathi. Interprocedural optimization: Experimental re
sults. Software Practice and Experience, 19(2), February 1989.

[73] K.H. Rosen. Elementary Number Theory and Its Applications. Addison-Wesley,
New York, 1985.

[74] R.W. Sebesta. Concepts o f Programming Languages. Benjamin Cummings, 2nd
edition, 1992.

[75] C. Shah. Interprocedural analysis and optimization. Master’s thesis, Louisiana State
University, Baton Rouge, Louisiana, May 1994.

[76] T.J. Sheffer, R. Schreiber, J.R. Gilbert, and B. Pugh. Efficient distribution analysis
via graph contraction. In Proceedings o f the Eighth Workshop on Languages and
Compilers fo r Parallel Computing, Lecture Notes in Computer Science, Columbus,
OH, August 1995. Springer-Verlag.

[77] Z. Shen, Z. Li, and P.-C. Yew. An empirical study of fortran programs for parallelizing
compilers. IEEE Trans. Parallel Distributed Syst., 1 (3):356—364, July 1990.

[78] J. M. Stichnoth. Efficient compilation of array statements for private memory
multicomputers. Technical Report CMU-CS-93-109, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, February 1993.

[79] H.S. Stone. High Performance Computer Architecture. Addison Wesley, New York,
2 nd edition, 1990.

[80] C.-W. Tseng. An Optimizing Fortran D Compiler fo r MIMD Distributed-Memory
Machines. PhD thesis, Department of Computer Science, Rice University, Houston,
TX, January 1993. Available as technical report CRPC-TR93291.

[81] A. Wakatani and M. Wolfe. A new approach to array redistribution: Strip mining
redistribution. In Proceedings o f the Sixth International PARLE Conference, Athens,
Greece, July 1994. Springer-Verlag.

[82] M.E. Wolf and M.S. Lam. An algorithmic approach to compound loop transforma
tions. In A. Nicolau, D. Gelernter, T. Gross, and D. Padua, editors, Proceedings
o f the Third Workshop on Languages and Compilers fo r Parallel Computing, pages
243-259. MIT Press, Irvine, California, 1990. available as Advances in Languages
and Compilers for Parallel Computing.

162

[83] M. Wolfe. Advanced loop interchange. In Proc. 1986 International Conference on
Parallel Processing, pages 536-543, St. Charles, IL, August 1986.

[84] M. Wolfe. Loop skewing: The wavefront method revisited. International Journal
o f Parallel Programming, 15(4):279-294, 1986.

[85] M. Wolfe. Multiprocessor synchronization for concurrent loops. IEEE Software,
pages 34-42, January 1988.

[86] M. Wolfe. More iteration space tiling. In Proc. Supercomputing 89, pages 655-664,
Reno, NV, November 1989.

[87] M. Wolfe. High Performance Compilers fo r Parallel Computing. Addison-Wesley
Publishing Company, Redwood City, CA, 1996.

[88] M. Wolfe and U. Banerjee. Data dependence and its application to parallel processing.
International Journal o f Parallel Programming, 16(2): 137-178, 1987.

[89] M. J. Wolfe and C. Tseng. The power test for data dependence. IEEE Transactions
on Parallel and Distributed Systems, 3(5):591-601, September 1992.

[90] S. Wolfram. Mathematica: A System fo r Doing Mathematics by Computer. Addison-
Wesley Publishing Company, 1988.

[91] H. Zima and B. Chapman. Supercompilers fo r Parallel and Vector Computers.
Frontier Series. Addison-Wesley, 1990.

[92] H. Zima and B. Chapman. Compiling for distributed-memory systems. Proceedings
o f the IEEE, 81(2):264-287, February 1993.

A p p e n d ix : L a g r a n g e M ultipliers M eth o d

The Lagrange Multipliers method is frequently used for constraint optimization problems.

The following derivation is taken from [65]. Assume that we want to optimize a function

of two variables y{x \)x 2) which is subject to constraint f (x i , x 2) = 0. Both functions

y (x i, £2) and f (x i , x 2) = 0 are expanded into a Taylor series. Using only the first order

terms yields:

, dy , dy
dy = T— dx\ + — dx2

u X \ O x 2

n d f , a. d-f A0 = — dxi + -K—dx 2 .
O X 1 U X 2

From the second equation above we obtain the following equation by solving for dx2

d,x2
MLdx\
M l
d 'X n

dx\.

This last equation is then substituted into the equation for dy above to obtain the equation

below

a d y a d y dy = ^ — ax 1 - —
O X 1 O X 2

ML
dx\
MLdxo

dx 1

from which we obtain the following equation after rearranging the terms

dy d y d f

d x > £ d x '
dx 1

163

164

Let A be defined at the stationary point of the constrained function in the following

manner

dy
\ _ dx2

A ~ d f ■
0x2

Thus A is a constant at the stationary point. We then have

dy =
dy d f = a t v p j)

dx i

= 0.

But dy = 0 at the stationary point, thus

d{y + A/)
dx i

Define the Lagrangian function L = y + A /, then

which is a necessary condition to locate the stationary points of an unconstrained function

L constructed from the function y (x u x 2) and the constraint equation f (x u x 2) = 0.

Similarly, the other necessary condition is found to be

A third equation is given by the constraint equation / . Note that f — | | = 0.

Let z be a vector of n components, i.e. x = (x \ , x 2, ■ ■ ■, x n). Now let y be a function

of n variables, i.e. y(x), subject to f i (x) = 0, for 1 < i < m, where n > m. The

165

Lagrangian function is then defined as follows

m
L (x , A) = y(x) + Aif i(x).

i= 1

The stationary points of this problem are located by setting the first partial derivatives of

the Lagrangian function with respect to the Xj’s and A,’s to zero.

So far we have only dealt with the case when we have equality constraints. If we

need to deal with inequality constraints, then we add a slack variable to each inequality to

convert it into an equality. We find from Avriel [7], Bazaraa et al. [15], Bertsekas [16],

Kuhn and Tucker [54], Pike [65], and Reklaitis et al. [70] that to minimize a function

h m

L (x , A) = y(x) + + x l+i\ + Y Xi M x)
i= 1 1

subject to the conditions f i (x) < 0, * = 1,2, • • •, h, and f i (x) = 0, i = h + 1, h+2, ■ ■ ■, m,

where n > m, and the ^n+i’s are the slack variables used to convert the inequality

constraints to equalities, the necessary conditions for the existence of a relative minimum

at a point x* are:

2. fi(x*) < 0 for i = 1,2, — , Ai

3. fi(x*) — 0 for i = h + 1, h + 2, • • •, m

4. Xifi(x*) = 0 for i = 1,2,

5. Xi > 0 for i = 1,2, • ■ •, h

6. A{ is unrestricted in sign for i — h + 1, h + 2, • • •, m

where n is the number of unknowns, h is the number of inequality constraints, and m

(n > m) is the total number of constraints including equality constraints [65]. The

first condition sets the first partial derivatives of the Lagrangian function with respect to

Xi, i = 1,2, • • •, n, equal to zero to locate the Kuhn-Tucker point x*. Conditions 2 and 3

are the inequality and equality constraints, respectively, that must be met at the minimum

point found by solving the system of equations obtained from condition 1. The fourth

condition comes from setting the partial derivatives of the Lagrangian with respect to the

surplus variables equal to zero. Condition 5 arises from the fact that the rate of change

of the distance function with respect to the parameters on the rhs of the constraints is

equal to the negative of the corresponding Lagrange multiplier. By increasing the rhs of

a constraint the constraint region would be enlarged, which could not result in a larger

value for the distance function evaluated at x* but could result in a lower value. Thus

the Lagrange multiplier must be positive to satisfy the rate of change mentioned above

[65, 70]. Condition 6 is due to a proof that the Lagrange multipliers associated with the

equality constraints are not restricted in sign [65],

V ita

Isidoro Couvertier-Reyes is the son of Isidoro Couvertier and Carmen Reyes. He was

born October 8,1957, in Humacao, Puerto Rico. He attended Julio Vizcarrondo-Coronado

High School in Carolina, Puerto Rico, graduating in 1975. He obtained a Bachelor of

Science Degree in Electrical Engineering from the University of Puerto Rico-Mayagtiez

in 1981, and the Master of Science Degree from the University of Wisconsin-Madison

in 1983. He has worked as an engineer for Hewlett Packard Puerto Rico from 1983 to

1985 and as an instructor for the University of Puerto Rico the rest of the time. He is on

a leave of study to pursue the Doctor of Philosophy Degree at Louisiana State University

after which he returns to be part of the Engineering faculty at the University of Puerto

Rico-Mayagtiez.

On August 22, 1981, he married Jeannette Santos. They are the parents of three

children, Daniel Joel, David Jonathan, and Gabriela Jeannette.

167

DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate:

Major Field:

Title of Dissertation:

Date of Examination:

Isidoro Couvertier - Reyes

Electrical Engineering

Automatic Data and Computation Mapping for
Distributed Memory Machines

Approved:

UT/Z^
Major Professor Mid Chairman

Dean17 of the Graduate School

EXAMINING COMMITTEE:

Ia

i k .

March 21 , 1996

	Automatic Data and Computation Mapping for Distributed-Memory Machines.
	Recommended Citation

	00001.tif

