
Automatic Data Migration for Reducing Energy
Consumption in Multi-Bank Memory Systems�

V. De La Luz
Microsystems Design Lab

Pennsylvania State University
University Park, PA 16802

delaluzp@cse.psu.edu

M. Kandemir
Microsystems Design Lab

Pennsylvania State University
University Park, PA 16802
kandemir@cse.psu.edu

I. Kolcu
Computation Department

UMIST
Manchester M60 1QD, UK

i.kolcu@co.umist.ac.uk

ABSTRACT
An architectural solution to reducing memory energy consumption
is to adopt a multi-bank memory system instead of a monolithic
(single-bank) memory system. Some recent multi-bank memory
architectures help reduce memory energy by allowing an unused
bank to be placed into a low-power operating mode. This paper
describes an automatic data migration strategy which dynamically
places the arrays with temporal affinity into the same set of banks.
This strategy increases the number of banks which can be put into
low-power modes and allows the use of more aggressive energy-
saving modes. Experiments using several array-dominated applica-
tions show the usefulness of data migration and indicate that large
energy savings can be achieved with low overhead.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures

General Terms
Design, Experimentation, Performance

Keywords
Energy Consumption, Multi-Bank Memories, Data Migration

1. INTRODUCTION
The high energy consumption of main memories make them tar-

get of many energy-conscious optimization techniques. On cur-
rent computer systems, main memory is one of the energy bottle-
necks of the architecture [2]. This is especially true for mobile ap-
plications which are typically memory-intensive (array-dominant
such as signal and video processing). In addition, embedded ap-
plications are gradually becoming more data-centric with stringent
memory requirements (both for storage and speed), causing ven-
dors to incorporate large storage capacities into their offerings. An

�This work is supported in part by NSF Career Award #0093082.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA
Copyright 2002 ACM 0-58113-461-4/02/0006 ...$5.00.

architectural solution to this problem is to adopt a multi-bank mem-
ory system instead of a monolithic (single-bank) memory architec-
ture. In a multi-bank memory architecture, unused memory banks
(idle banks) can be disabled, thereby saving energy. However, in
many circumstances, disabling a memory bank completely would
not be possible because banks usually hold some useful data (even
if they are not frequently accessed). Rather, some recent mem-
ory systems (e.g., [10]) provide low-power operating modes which
enable large energy savings without completely disabling memory
banks. More specifically, a bank that is not currently servicing a
memory request can be put in a low-power operating mode. A
major problem with these energy-saving modes is that they incur
additional delay (called resynchronization cost or resynchroniza-
tion penalty) when a bank in one of these modes needs to ser-
vice a memory request. The magnitude of this delay (performance
penalty) depends on the specific power mode; typically, a more
energy-saving mode also incurs more delay. Consequently, it is
advantageous to keep memory banks in idle conditions for long du-
rations of time so that the resynchronization penalties can be com-
pensated.

Our goal in this paper is to reduce the overall energy consump-
tion of a given application by reducing the contribution of the com-
ponent due to a multi-bank main memory with low-power operating
modes. One way of achieving this is to cluster data accesses in a
small number of memory banks and place the remaining banks (idle
banks) into a low-power operating mode. In many cases, the default
access pattern may not lead to clustered accesses and intrinsic de-
pendences between data accesses and those due to control flow pre-
vent the most suitable computation transformation from clustering
the accesses. An alternative approach is to modify the data layout
in memory such that the data elements that are accessed contempo-
raneously (i.e., those with temporal affinity) are stored in a small
set of banks. As in the computation transformation case, such data
transformations enable us to place a large number of (idle) memory
banks into a low-power operation mode.

Previous compiler-oriented work has focused on implementing
static data transformations [6] using which the array layouts in
memory are transformed and these transformed layouts remain in
effect throughout the execution of the code. Among the data trans-
formations investigated are array interleaving and array co-location.
In the operating system (OS) area, Lebeck et al. [7] has studied the
OS support for exploiting low-power operating modes. In many
applications, the data access patterns are not fixed during the en-
tire execution and vary dynamically as the program executes. In an
array-dominated embedded application, different arrays might be
used together in different parts of the code. So, there is a need for
a dynamic data co-location scheme taking into account temporal
affinity (proximity) between data structures.

In this paper, we present a dynamic data migration scheme which
co-locates the data elements automatically (as the program exe-
cutes) to take advantage of the variations in inter-array access pat-
terns. Our approach is based on a runtime library called Data Mi-

15.1

213

grator (DM) which samples the arrays that are accessed together
and keeps temporal access relations between arrays using a table.
From time to time, this table is scanned and the arrays with high
number of contemporaneous accesses are determined. These ar-
rays are then dynamically migrated across memory banks to ensure
that they reside in a small set of banks. The proposed runtime sys-
tem has been implemented and a simulation framework to evaluate
its effectiveness has been built. Our results obtained using applica-
tions that manipulate large datasets residing in multi-bank memory
configurations show that dynamic data migration improves energy
behavior by as much as 40%.

Next section gives a brief review of a multi-bank memory archi-
tecture and explains low-power operating modes. Section 3 presents
the important characteristics of our data migration scheme. Sec-
tion 4 gives a description of our implementation (Data Migrator)
and illustrates how it interacts with application execution. Section 5
describes our experimental platform, gives information about the
codes executed, and reports experimental data showing the useful-
ness of dynamic data migration. Section 6 presents a summary of
the paper.

2. MEMORY ARCHITECTURE
In this work, we assume a multi-bank/multi-module memory

system. Each bank can contain multiple modules and is assumed
to be a single word wide. Modules/banks can be placed into low-
power operating modes independently. One example of this type of
memory architecture is RDRAM [10] in which each bank contains
a single module and can work with four operating modes: active,
standby, nap, and power-down. A bank can service a read/write
request only in the active mode. If it is not servicing a memory
request, it can be placed into one of low-power operating modes
(standby, nap, or power-down). In this paper, we assume a single
module per bank; consequently, we use the terms module and bank
interchangeably.

Each low-power mode is implemented by disabling specific parts
of the DRAM chip and can be described using two metrics: energy
consumption and resynchronization cost. The first metric is the per
access (or per cycle) energy consumption when the module is in
a specific mode whereas the second metric is the time (in cycles)
it takes to bring a module back to the active mode (i.e., perfor-
mance penalty). Typically, lower the energy consumption, higher
the resynchronization cost. Figure 1 shows the energy consump-
tions (per access) and resynchronization costs for the operating
modes used in this study. Obviously, there is a tradeoff between en-
ergy saving and performance penalty when selecting a low-power
mode to use for a given idle bank. The time between successive
accesses to a given bank (called inter-access time) is the major de-
termining factor in selecting the most suitable low-power operating
mode. The inter-access time can be estimated either by an optimiz-
ing compiler and can be predicted by a hardware/runtime mecha-
nism. Both of these strategies have been investigated in a previ-
ous paper [6]. In this study, we adopt a hardware-based strategy
in which the bank inter-access times are predicted using a predic-
tion logic attached to memory controller. The rationale behind the
hardware-based predictor is that if a memory bank has not been ac-
cessed in a while, then it is not likely to be needed in the near future
(that is, inter-access times are predicted to be long). A threshold is
used to determine the idleness of a bank after which it is transi-
tioned to a low-power mode. More specifically, in our current im-
plementation, after 10 cycles of idleness, the corresponding bank
is put in standby mode. Subsequently, if the bank is not referenced
for another 100 cycles, it is transitioned into the nap mode. Fi-
nally, if the bank is not referenced for a further 1,000,000 cycles,
it is put into power-down mode. Whenever the bank is referenced,
it is brought back into the active mode incurring the corresponding
resynchronization costs (based on what mode it was in). Implemen-
tation details of this hardware-based scheme are beyond the scope
of this paper and can be found in [6].

Figure 1: Energy consumptions (per access) and resynchro-
nizations costs for our operating modes. During transitions
from a low-power mode to the active mode, a full active mode
energy is assumed to be spent.

3. DATA MIGRATION FOR LOW POWER
Automatic data migration is beneficial when a poor initial place-

ment of the data on memory banks is responsible for large en-
ergy consumption and the techniques based on computation re-
structuring are not able to improve the energy behavior of the ap-
plication. The idea behind data migration is to bring together the
datasets that have originally been placed into different banks but
have frequently been accessed together lately. Such datasets (e.g.,
arrays) are said to exhibit temporal affinity. The expectation is that
if two (or more) datasets have been accessed together in the past,
they will continue to be accessed together in the near future. By
bringing the arrays with temporal affinity together, we increase the
chances that fewer number of banks need to be active in a given pe-
riod of time. In this paper, we focus on array-dominated/loop nest
based codes which can be found in domains such as image/video
processing and scientific computing. This paper reports experimen-
tal results for a single program environment, and does not consider
the existence of a virtual memory system (i.e., the data migrator
deals directly with physical addresses). There are several impor-
tant issues that need to be addressed in a data migration scheme for
low power. Below we discuss these issues and explain the rationale
behind our design and implementation choices.

3.1 Granularity of Migration
The migration granularity might be an entire array or an array re-

gion (section). While a fine-granular migration scheme has the po-
tential of localizing the accessed data elements into smaller number
of banks better (that is, exploiting a finer-granular temporal affin-
ity), it also entails dividing a given array across banks in a noncon-
tiguous manner. That is, different portions of an array can be stored
in different memory banks and sections of different arrays can be
interleaved. This, in turn, makes addressing the array in question
more difficult (as we work with physical addresses). Consequently,
in this work, we chose to migrate entire arrays (when migration is
beneficial).

3.2 Detection of Temporal Affinity
To place data elements that are likely to be accessed contempo-

raneously in the same memory bank, we need to capture which data
elements have recently been accessed together. This can be done
by sampling the data accesses at runtime (dynamically). Obviously,
cycle-by-cycle sampling would affect performance negatively; so,
a strategy might be adopting a sampling threshold. More specif-
ically, at regular intervals (sampling threshold), the data accesses
are sampled, and the information collected is used to update a table
called affinity table. Each entry in the affinity table is a triplet of
the form (Ui,Uj,countij) which indicates that arrays Ui and Uj
have been accessed together countij times (up to the current point
in the execution). If the current sampling indicates that Ui and Uj
have been accessed together (since the last sampling), there are two
possibilities. If we do not have any entry (triplet) in the affinity ta-
ble for this relation between Ui and Uj , we create such an entry,
set its count value to 1, and insert it in the affinity table. If, on
the other hand, such an entry already exists in the table, we simply
increment the corresponding count value. In cases where the sam-

214

pling indicates that there are k > 2 arrays, U1, U2, U3,...,Uk, with
temporal affinity, we update all entries (Ui,Uj,countij) where
1 � i < j � k in the table (or create these entries if they are not
already there). The size of the affinity table is another issue that
needs to be considered. In many data-intensive image/video codes,
the number of arrays are limited; this also puts a limit to the table
size. Nevertheless, if the size of the table is expected to be large,
one might also consider using a small table and managing it as a
fully-associative cache. In this case, if, during sampling, we detect
a new temporal relation and the table is full, we need to discard a
table entry. Possible choices here are to select the entry with the
minimum count value or to select the least recently accessed entry.

3.3 Tracing Temporal Affinity
The count values in table entries should be decremented from

time to time to adapt the counts to the most recent locality. This is
mainly to prevent an old temporal affinity relation from dominating
the current (active) affinity relations. For example, imagine two ar-
rays Ui and Uj that have been used together in the past and led to
the accumulation of a large countij value. It might happen that if
this count value is never decreased it can still be considered as the
dominant count even after a long time this temporal affinity relation
has died. One approach would be adopting a threshold, a regular in-
terval, using which the count values are decremented periodically.
This, however, involves an extra overhead from the performance
viewpoint. A better scheme would be decrementing count values
at sampling points. That is, when we increase the count values of
the currently accessed arrays (or when we create new entries in the
table), we can also decrement the count values of all other (not up-
dated) entries in the table. Such a strategy obviously rewards the
most recent temporal affinity relations and punishes the relations
that have not been active most recently. In our current implementa-
tion, we adopt this strategy.

3.4 Initiating Migration
Another important issue is to decide when the migration should

start. Typically, we can select a migration period (migration thresh-
old), a regular interval, at which the affinity table is checked to
search for the potential arrays to be migrated. Selecting a suitable
migration threshold for a given application and its access pattern
is a critical issue. A very small threshold may incur a large over-
head, whereas a very large threshold may miss important opportu-
nities for bringing the arrays that have most recently been accessed
together. It is not easy to determine a suitable migration thresh-
old without extensive experimentation. Consequently, we experi-
mented with different migration threshold values for each bench-
mark code we considered. As explained above, the affinity table
maintains the temporal affinity relations between array pairs. Inde-
pendent of how frequently the entries in this table are checked, we
need to have a strategy for determining the arrays to be migrated.
This is explained next.

3.5 Determining the Arrays to be Migrated
Given an affinity table, we can use different strategies to select

the arrays to be migrated. Different strategies have different over-
head and performance tradeoffs. In this study, we mainly consider a
class of strategies called the first m triplet (mFT) strategies. A 1FT
strategy looks at (when the migration period arrives) only the triplet
with the highest count value and tries to bring the involved arrays
together as much as possible. Similarly, a 2FT strategy looks at the
two triplets with the two highest count values, and so on. As we in-
crease the number of triplets to consider, we can expect that it is go-
ing to take longer time to decide an appropriate migration scheme
(i.e., how the arrays should actually be migrated) as more triplets
will usually involve more arrays. A straightforward implementa-
tion of an mFT strategy just determines the entries with the highest
m count values, picks up the arrays names, and tries to implement
a migration strategy as explained below such that the arrays whose

Ui Uk

Ui Uk

Ui UkUj

Ui Uk

Ui Uj

Uj Um

Uk Um

(a)

(b)

(c)

(d)

(e)

(1)

(2)

(3)

(4)

(5)

(6)
(7)

Figure 2: Five different migration scenarios that involve two
arrays (Ui and Uk). For clarity, only three banks are explicitly
shown.

names appear in each selected triplet are brought together in a sin-
gle bank (or in the minimum number of banks). In case of conflicts
(i.e., different triplets demand different migrations for the same ar-
ray), we can give priority to the triplet with the higher count value.
An alternative class of strategy, which we call the limit-n (nLM)
strategy considers a triplet if and only if it’s count value is larger
than or equal to n. Note that it is also possible to adopt a hybrid
strategy by combining the mFT and nLM strategies. For example,
a conservative strategy can consider a triplet (that is, the arrays in
the triplet for migration) if and only if its count value is larger than
n and this value is among the highest m count values.

3.6 Scheduling Movements
Once the arrays to be migrated are selected, a strategy should be

decided upon using which the array transfers (migrations) between
memory banks are scheduled. The complexity of the schedule de-
pends on the number of arrays involved in the migration. Let us first
give a description of the scheduling algorithm when only a single
triplet (i.e., two arrays) is involved. Later, we explain how this al-
gorithm can be extended to work when more than two arrays are
involved. Figure 2 illustrates five different scenarios assuming that
we would like to honor the triplet (Ui,Uk,countik); that is, we want
to bring arrays Ui and Uk together. If these two arrays already re-
side in the same bank as shown in Figure 2(a), nothing needs to be
done. In Figure 2(b), on the other hand, these two arrays are in dif-
ferent banks and there is sufficient space in each bank for the other
array. In this case, we have two options. We can either migrate
Ui to the bank that holds Uk, or vice versa. These two actions are
marked using (1) and (2) in Figure 2(b). Figure 2(c) depicts a sce-
nario similar to that in Figure 2(b) except that the bank that holds Ui
does not have sufficient space for Uk. Consequently, we have only
one option: migrating Ui to the bank that holds Uk. This action is
marked (3) in the figure. In Figure 2(d), both the banks that hold
the arrays are full. In this case, we need to find an array (or arrays)
in the bank that holds Ui and interchange the locations (banks) of
this array and Uk; or alternately, we need to find an array (or ar-
rays) in the bank that holds Uk and interchange the locations of this
array and Ui. Figure 2(d) depicts the former case and the necessary
migration activities are marked using (4) and (5). In cases where
we may not be able to find a suitable array to interchange with Ui
or Uk (as, for example, such an interchange will distort another im-
portant temporal affinity relation), we might want to consider to
migrate Ui and Uk, together, to another memory bank as depicted
in Figure 2(e). In the figure, these migration activities are marked
using (6) and (7). Obviously, it is a good idea to select a bank that
already contains some arrays instead of a new bank which would

215

have otherwise been completely disabled (consuming no power).
Given two arrays that need to be brought together, our current im-
plementation checks the feasibility of the options in Figure 2 in the
order given, and selects the first option that applies to the case at
hand. Note that, in general, our strategy for migration tries to min-
imize the number of migrations. In cases where we have multiple
alternatives (to achieve the same result) as in Figure 2(b), we take
into account the sizes of the arrays as well; that is, everything else
being equal, it is preferable to migrate the smaller array to the bank
that holds the larger one.

When more than two arrays are involved in the migration (e.g., as
a result of taking into account more than one table entry), schedul-
ing migrations becomes a more challenging problem. Although
not shown here due to lack of space, it can be proved that opti-
mal migration problem that involves multiple table entries is NP-
hard. Therefore, a polynomial-time solution is unlikely to exist.
Instead, we propose here a heuristic solution that works well in
practice. In the first step of our heuristic, we (logically) cluster
all the involved arrays into groups. Each group contains the ar-
rays that are expected to be in the same (set of) bank(s) for the
best memory energy behavior. As an example, consider a scenario
where we consider three triplets simultaneously: (U1,U2,count12),
(U3,U4,count34), and (U2,U5,count25). Here, the first group con-
tains arrays U1, U2, and U5 whereas the second group contains ar-
rays U3 and U4. In the second step, we rank the groups according
to their relative importance. This ranking helps us later in resolving
the conflicts if different groups demand different (conflicting) mi-
grations. To rank the groups, we use the concept of group weight
(denoted gvk for a given group k) which is simply the sum of the
counts of the triplets that supply the arrays in the group. In our
current example, gv

1
is count12 + count25 and gv

2
is count34 . In

the third step, we start with the the group with the highest weight
and try to co-locate the arrays in this group as much as possible us-
ing minimum number of migrations. Our current implementation
achieves this starting with the pair (of arrays) with the highest tem-
poral affinity and tries to bring these arrays together. It then moves
to the second pair (of highest affinity) and tries to satisfy this rela-
tion, and so on. Note that a given array in a group can be involved
in multiple affinity relations. The approach then moves to the sec-
ond group (i.e., the one with the second highest group weight), and
in migrating it, it tries not to re-locate any of the arrays which have
been involved in the previous migration (i.e., the one that involves
the arrays belonging to the group with the highest weight). The
algorithm continues in this fashion until all the groups have been
processed.

3.7 Backup Policies
We need backup policies for at least two reasons. First, it might

happen that (as a result of our array selection strategy such as nLM)
we may not be able to find a triplet in the affinity table to use for
migration. In this case, a backup strategy could be just not per-
forming migration at this point (a low-overhead solution). Another
backup strategy could be relaxing the strategy that we use to select
the triplet and re-probing the affinity table. Although this latter al-
ternative will have a larger overhead (as compared to the former),
we can expect that it will perform better. Second, we need a backup
policy when the arrays that we want to co-locate already reside in
the same bank(s). As in the previous case, we can adopt here at
least two alternatives. We can either continue with the execution
and drop out migration at this point, or we can re-probe the affin-
ity table to select alternative arrays for migration. Note, however,
that in this last case, the migration decisions to be taken should not
cause the arrays that have been determined (during the first probe,
before re-probing) to be co-located but have been found to be re-
siding on the same bank(s) to be separated.

3.8 Data Freezing and Defrosting
Arrays that exhibit different access patterns in different parts of

the computation may be repeatedly migrated from one memory
bank to another. Such frequent data migrations can easily offset
potential energy gains from optimal data placements in banks. To
avoid these costly frequent migrations, it is possible to freeze these
arrays in specific banks (also called pinning in this paper) after a
certain number of migrations. These frozen arrays can be defrosted
after some time so that they become eligible again for migration.
To decide whether an array should be pinned or not, we associate
a migration counter with each array (initialized to zero). Each time
an array is migrated this counter is incremented by one. When it
reaches a certain value (migration limit), we can freeze the array
on the bank where it currently resides. The migration counters can
be decremented at regular intervals (defrosting threshold). To re-
duce overhead, this interval might be a multiple of the sampling
threshold.

3.9 Overheads
There are two major sources of overhead in our migration scheme.

The first is that the overall time spent by the program in the migration-
related activities. These activities include sampling for temporal
affinity, determining the arrays to be migrated, the migration over-
head (time) itself, and updating counters (e.g., those keep track of
the number of migrations, etc.). This cost is highly implementation
dependent and can be made a small proportion of overall execution
time in a careful implementation. Second, data migration consumes
some amount of energy during copying data from one bank to an-
other. Again, this cost can be decreased by reducing the number
of arrays to be migrated, by using fast memory-to-memory copies
(e.g., block copies), and by not migrating arrays unless it is really
beneficial to do so.

4. DATA MIGRATOR (DM)
The ideas presented in the previous section have been imple-

mented in a software package called Data Migrator (DM). The DM
is designed as a runtime library which contains a set of functions
and runs as a single thread of control when activated. The pro-
grammer initializes the DM by supplying the values for a set of
parameters (to a DM initialize routine). After that, the user acti-
vates the library by calling a special DM activate routine. From
this point on, the DM runs (as a separate thread) parallel with the
application. It interrupts the application at regular intervals which
are determined by the parameters supplied in the DM initialize rou-
tine (more specifically, by the sampling threshold).

For ease of implementation, all thresholds are set to multiples
of the sampling threshold which is used to interrupt the execution
of the application. At each interrupt, the DM code is executed. A
sketch of this code is given in Figure 3. Once activated, the DM
thread checks for the occurrence of three events (using the three
outermost ‘if’ statements shown in Figure 3). The first statement
is always true as the DM thread is invoked when sampling thresh-
old arrives. The thread then visits the affinity table and updates it
(i.e., increments the count values for the triplets whose arrays pairs
are accessed and decrements the count values for all other triplets).
After that, the DM thread checks whether the migration threshold
has arrived. If it has, the thread runs the migration policy (e.g.,
mFT, nLM, or a hybrid policy). As a result of this policy, we might
have arrays that need to be migrated. If such arrays exist, we mi-
grate them as explained in the previous section; and if not, we run
the backup policy (and migrate arrays if required). In any case, we
need to update the migration counter and freeze the array(s) if the
counter overflows. Finally, we need to check whether the defrost
threshold has arrived, and if so, make the frozen arrays migratable.

5. EXPERIMENTS
This section explores the overall energy improvement due to

array migration and quantifies its energy/performance overheads.
Figure 4 gives important characteristics of the array-dominated codes

216

Figure 3: The DM thread.

Figure 4: Benchmark codes used in the experiments and their
important characteristics.

that we used in our experiments. We measured the benefits of dy-
namic data migration using a set of seven array-dominated codes.
phods is a motion estimation code whereas other codes are from
array-based benchmarks. The third column gives the total input
size (in MBs), and the fourth column gives the memory system
energy consumption (in millijoules) for the base case (see below)
using four 16MB memory banks (i.e., a total of 64 MB off-chip
memory). The memory system energy includes the energy con-
sumed in DRAM banks as well as the energy spent in 16KB, 2-way
set-associative data cache with a line size of 32 bytes. The fifth col-
umn reports the percentage increase in the execution time of appli-
cations due to migration (i.e., performance overhead). We see that
except for one case, the performance overhead of array migration
is bounded by 8%. Finally, the last two columns give the sampling
thresholds (denoted ST) and migration thresholds (denoted MT),
respectively, used in majority of our experiments (in units of thou-
sand cycles). In all experiments, we set the back-up policy to do
nothing as we have found that this policy generated comparable
results to more aggressive second choice-based policies without in-
curring as much overhead. Also, all the energy figures reported
here include the energy overhead of data migration. We also used
a powerful back-end compiler which performs all major classical
low-level optimizations such as instruction scheduling and global
register allocation [9].

5.1 Energy Benefits
Figure 5 presents the normalized energy consumptions when dy-

namic data migration (the 1FT policy) is employed with respect to
a base case which does not use migration but tries to determine the
best possible static data layout (array mapping) using the technique
discussed in [6]. To evaluate the energy impact of array migra-
tion, we experimented with two initial data mappings. In the first
mapping, which we call sequential mapping, the arrays are stored
in memory banks according to their declaration order in the code,
the first array starting from the first location in the first bank, the
second array starting from the location next to the end of the first
array, and so on. In the second mapping, called random mapping,
the arrays are assigned to memory locations randomly, making sure
that they do not overlap and all elements of a given array are stored
consecutively. Experimenting with two initial mappings allows us

Figure 5: Energy consumptions with the mFT policy normal-
ized with respect to the base case.

Figure 6: Migration and sampling thresholds (in units of thou-
sand cycles).

to evaluate the robustness of our data migrator. The base case strat-
egy, on the other hand, statically (at compile time) determines the
best array mapping (which is valid throughout the execution of the
code); therefore, the initial data mapping does not matter (i.e., it is
not taken into account).

In our experiments, we used two memory bank configurations:
(i) 8 banks, each 8 MB (denoted 8 � 8MB), and (ii) 4 banks, each
16 MB (denoted 4 � 16MB). Note that in both the configurations
the total memory capacity is 64 MB. The results in Figure 5 show
that array migration reduces the energy consumption by approxi-
mately 19%, on the average, over the base case. In only one bench-
mark, dynamic migration increases the energy consumption (as it
increases the number of active banks as compared to the base case).
All of these results have been obtained using the sampling and mi-
gration thresholds given in Figure 4. We only report the results with
the 1FT policy as increasing the number of triplets considered did
not make a significant difference for our benchmark codes. More
specifically, only in two codes (eflux and vpenta), the 2FT pol-
icy brought a small benefit over the 1FT policy (less than 2.5%). It
should also be mentioned that the number of times that the affinity
table is probed for migration ranged (in our codes) between 226 (in
apsi) and 10,468 (in tomcatv).

5.2 Sensitivity to the Sampling and Migration
Thresholds

To measure the sensitivity of the energy benefits presented above
to the sampling and migration thresholds used, we performed an-
other set of experiments (with the 4 � 16MB configuration and
sequential initial layout), where we modified (increased) the sam-
pling and migration thresholds. The new sampling thresholds (ST1
and ST2) and migration thresholds (MT1 and MT2) used are given
in Figure 6 for each benchmark in our suite.

The second and third columns in Figure 7 report the (percent-
age) variation (increase) in energy benefits (with respect to our base
sampling thresholds) when the sampling threshold is ST1 and ST2,
respectively, while keeping the migration threshold constant at the
base value. The fourth and fifth columns give the variation in en-
ergy benefits (with respect to our default migration threshold) when
we set the migration threshold to MT1 and MT2, respectively (the
sampling threshold is kept at its base value). We observe from these
results that varying the sampling threshold does not make too much
difference whereas migration threshold variations generally gener-
ate larger variations. In other words, even larger sampling thresh-
olds allow DM to capture the temporal affinities between arrays.
And, working with a large migration thresholds seems to perform

217

Figure 7: Energy sensitivity due to sampling and migration
thresholds (4 � 16MB and sequential initial layout). A positive
value (negative value) indicates a reduction (increase) in energy
with respect to the original threshold.

Figure 8: Energy consumptions with the nLM policy normal-
ized with respect to the base case.

better except for one benchmark (eflux). This is because, in gen-
eral, a larger migration threshold better distinguishes between false
temporal affinities (i.e., affinities with short duration) and real, ben-
eficial temporal affinities.

5.3 Experiments with the nLM Policies
We also conducted experiments with the nLM migration pol-

icy. Out of the seven codes we experimented, only two codes
(phods and tomcatv) benefited from the nLM policy more than
the mFT policy for some ‘n’ values. The results are given in Fig-
ure 8 (the first column gives the ‘n’ values in ‘nLM’). We observe
from these results that there exist some ‘n’ values that generate
better results than those obtained through the 1FT policy. For the
phods benchmark, this value is 40,000 for both the memory con-
figurations (8� 8MB and 4� 16MB). For tomcatv, on the other
hand, this value is 80,000 for the 8� 8MB bank configuration and
20,000 for the 4 � 16MB bank configuration. Among the values
that we experimented with (shown in the first column), these are
the optimal ones and are better than the corresponding mFT value.
A larger ‘n’ value delays migration (and sometimes misses the mi-
gration opportunity) whereas a smaller ‘n’ value migrates data too
frequently and leads to data freeze (and the associated defrosting
cost).

5.4 Energy Overhead of Migration
The cost of energy overhead depends on whether the underlying

architecture supports block copy operations that can copy a number
of array elements from one portion of the memory to another (in a
single instruction). Figure 9 shows the energy overhead (as per-
centage of the overall memory energy consumption) incurred when
different block copy operations are used. Each block copy opera-
tion can be defined by the number of array elements that it can copy
in a single instruction execution; the larger this number is, the bet-
ter, as the time (hence, energy) spent during copy is reduced. The
x-axis in the figure gives nine alternate block copies (for a given K
parameter, the Kth alternative can copy (64 �K) bytes/10 cycles).
In the experiments above, we set K to 1. We see from Figure 9
that except for one case, the energy overhead is always below 5%,
even if we do not use a very aggressive copy operation. Therefore,
for our array-intensive benchmark codes, the runtime energy and

Figure 9: % energy overhead for data migration.

performance benefits due to data migration clearly overwhelms the
potential overheads.

6. SUMMARY AND FUTURE WORK
A key design methodology for low-power design is aggressive

hardware and software optimizations [2, 1]. Optimizing memory
system energy can be crucial in many embedded image and video
processing applications. This paper presented an automatic data
migration strategy which co-locates arrays with temporal affinity
in a small set of memory banks, thereby reducing the energy con-
sumption. Our initial experience with the Data Migrator tool that
implements data migration for low power is very promising. The
issue of how far the memory system energy can be reduced is in-
teresting to address. Along this direction, we would like to inves-
tigate different migration policies and combine these policies with
compiler [6] and operating system [7] based techniques to reach a
unified solution to the problem.

7. REFERENCES
[1] L. Benini and G. De Micheli. System-level power optimization:

techniques and tools. ACM Transactions on Design Automation of
Electronic Systems, 5(2), pp.115-192, April 2000.

[2] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle. Custom Memory Management Methodology –
Exploration of Memory Organization for Embedded Multimedia
System Design, Kluwer Academic Publishers, June, 1998.

[3] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum.
Scheduling and page migration for multiprocessor compute servers.
In Proc. the 6th International Conference on Architectural Support
for Programming Languages and Operating Systems, October 1994.

[4] A. Chandrakasan, W. J. Bowhill, and F. Fox. Design of
High-Performance Microprocessor Circuits. IEEE Press, 2001.

[5] T. M. Chilimbi and J. R. Larus. Using generational garbage
collection to implement cache-conscious data placement. In Proc. the
International Symposium on Memory Management, October 1998.

[6] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M. J. Irwin. DRAM energy management using software and
hardware directed power mode control. In Proc. the 7th International
Conference on High Performance Computer Architecture,
Monterrey, Mexico, January 2001.

[7] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page
allocation. In Proc. the 9th International Conference on
Architectural Support for Programming Languages and Operating
Systems, November 2000.

[8] J. R. Lorch and A. J. Smith. Software strategies for portable
computer energy management. IEEE Personal Communications,
pp. 60–73, June 1998.

[9] S. S. Muchnick. Advanced Compiler Design Implementation.
Morgan Kaufmann Publishers, San Francisco, California, 1997.

[10] 128/144-MBit Direct RDRAM Data Sheet, Rambus Inc., May 1999.

218

