

2015 IEEE/ACM International Symposium on Code Generation and Optimization
978-1-4799-8161-8/15/$31.00 ©2015 IEEE

Automatic Data Placement into GPU On-Chip
Memory Resources

Chao Li# Yi Yang* Zhen Lin# Huiyang Zhou#
Department of Electrical and Computer Engineering, North Carolina State University

*Department of Computer Systems Architecture, NEC Labs
#{cli17, zlin4, hzhou}@ncsu.edu; *yyang@nec-labs.com

Abstract
Although graphics processing units (GPUs) rely on thread-
level parallelism to hide long off-chip memory access
latency, judicious utilization of on-chip memory resources,
including register files, shared memory, and data caches, is
critical to application performance. However, explicitly
managing GPU on-chip memory resources is a non-trivial
task for application developers. More importantly, as on-
chip memory resources vary among different GPU
generations, performance portability has become a daunting
challenge.

In this paper, we tackle this problem with compiler-
driven automatic data placement. We focus on programs
that have already been reasonably optimized either
manually by programmers or automatically by compiler
tools. Our proposed compiler algorithms refine these
programs by revising data placement across different types
of GPU on-chip resources to achieve both performance
enhancement and performance portability. Among 12
benchmarks in our study, our proposed compiler algorithm
improves the performance by 1.76x on average on Nvidia
GTX480, and by 1.61x on average on GTX680.

1. Introduction
Throughput-oriented architecture, such as graphic
processing units (GPUs), has been widely used to
accelerate many general-purpose computation workloads.
Although general purpose computation on GPUs (GPGPU)
achieves high throughput mainly by employing a large
bundle of threads to overlap computations with long-
latency memory accesses, off-chip memory bandwidth and
latency remain a performance as well as energy-efficiency
bottleneck. Furthermore, the current trend of GPGPU
evolution scales the computational throughput much faster
than off-chip memory access bandwidth. For example,
Nvidia GTX480 GPUs based on the FERMI architecture
[17] have an arithmetic throughput of 1.35 TFLOPSs with
the memory bandwidth of 178 GB/s. In comparison,
GTX680 GPUs based on the KEPLER architecture [18]
have an arithmetic throughput 3.09 TFLOPS (2.3X increase
over GTX480) with the memory bandwidth of 192 GB/s
(7.8% increase over GTX480). To alleviate the off-chip

bandwidth bottleneck and reduce memory access latency,
GPUs are equipped with a multiple-level on-chip memory
hierarchy including register files, L1 data caches (D-cache),
shared memory, and L2 caches. As expected, how to
effectively utilize such on-chip memory resources has a
significant impact on application performance. However, it
is non-trivial for application developers to explicitly
manage these on-chip memory resources as the trade-offs
among these resources are complex and sometimes non-
intuitive [14]. More importantly, as on-chip resources have
been changing significantly for different generations of
GPUs, an optimized kernel upon one generation becomes
suboptimal on another one. Thus performance portability is
a daunting challenge for application developers.

In this paper, we propose compiler-driven automatic
data placement as our solution. We focus on GPGPU
programs that have already been reasonably optimized
either manually by programmers or automatically by some
compiler tools. In other words, our input programs already
employ classical loop optimizations such as tiling and
allocate important data, either for communication among
threads or for data reuses, in shared memory. Our proposed
compiler algorithm refines these programs by revising data
placement across different types of GPU on-chip memory
resources.

Our compiler algorithm places data into different types
of on-chip memory resources using the following
systematic way. First, it analyzes the usage patterns of all
shared memory variables in an input kernel program and
tries to promote those shared memory variables into
registers if they are not used for communication among
threads. Second, if the shared memory usage becomes the
bottleneck for thread-level parallelism (TLP), it checks
whether it is profitable to move some shared memory
variables into either global or local memory so as to
implicitly exploit the L1 D-cache. Third, it detects
redundant accesses to both global memory and shared
memory across different threads. Then, it aims to reduce
such redundant accesses by compacting multiple threads
into one, thus converting redundant shared/global memory
accesses among threads into data sharing/reuse of registers.
To find the most profitable data (re)placements, an auto-

tuning process is used to select the optimal parameters in
the optimization process. The first two steps of our
compiler algorithm focus on replacing shared memory
variables with registers or global/local memory variables.
The key reason is due to the evolution trend of GPU on-
chip memory resources. In early generations such as the
Nvidia G80 and GT200 architecture, the ratio of the
register file size to the shared memory size is 2 and 4,
respectively. In comparison, in the FERMI and KEPLER
architecture, the ratio becomes 2.7 and 5.3, respectively. As
a result, the code optimized for G80 or FERMI tends to
over-utilize shared memory while underutilizing the
register file when it runs on GT200 or KEPLER GPUs. As
a result of such underutilization, it is proposed in prior
works [1] to turn off significant portions of the register file
to reduce static power consumption.

We evaluate our proposed automatic data replacement
algorithm using a diverse set of applications from different
GPGPU benchmark suites that have been manually
optimized. Our results show that our compiler algorithm
improves the performance by up to 4.14X and an average
1.76X on the FERMI architecture, and by up to 3.30X and
an average of 1.61X on the KEPLER architecture.

The remainder of the paper is organized as follows.
Section 2 presents a brief background on GPU architecture
with an emphasis on on-chip memory resources. Section 3
presents in detail our proposed automatic data placement
algorithm. Section 4 and 5 discuss our experimental
methodology and the experimental results. Section 6
addresses the related work. Section 7 concludes our paper.

2. Background and Motivation
2.1 GPGPU Architecture and Programming Model

State-of-art GPUs employs many-core architecture, on
which the cores are organized in a two-level hierarchy.
Each GPU contains a cluster of streaming multiprocessors
(SM) in Nvidia GPUs, or computing units in AMD GPUs.
Each SM in turn consists of multiple streaming processors
(SPs). To amortize the overhead of instruction fetch and
decode, an array of SPs executes one scalar program in the
single-instruction multiple-data (SIMD) manner. A group
of threads running on such an array of SPs and sharing the
same program counter (PC) is referred to as a warp of
threads. Multiple warps of threads are grouped into a
thread block (TB) and a number of thread blocks are
organized into a thread grid.

2.2 GPU Memory Resources

The GPU off-chip memory space consists of texture
memory, constant memory, local memory, and global
memory. Texture memory and constant memory are for
read-only data which can be accessed by all threads. Global
memory can be read or written by all threads in a kernel. In
contrast, local memory is private to each thread.

In order to reduce the latency and improve the
bandwidth of off-chip memory accesses, three types of on-
chip memory including shared memory, data caches, and a
register file, are introduced in each SM. Texture caches and
constant caches are also on-chip memory but they are used
for read-only data and not our focus in this study.

Among three types of on-chip memory, the register file
has the shortest access latency and highest throughput.
Furthermore, the register file is larger than the L1 D-cache
and shared memory as shown in Table 1. The register file is
private to each thread, which means data in registers can
only be accessed by a single thread, except for the latest
Nvidia KEPLER architecture, which introduces a new
instruction “__shfl” [18] to enable a thread to access the
registers in other threads within the same warp. The
maximum number of registers per thread is ISA-dependent
and varies in different architectures. Exceedingly heavy
usage of registers per thread will result in register spills into
its local memory, which may be captured in L1 D-cache.

Compared to register files, shared memory has lower
throughput and smaller capacity. As shown in Table 1, a
GTX 680 GPU has a 256KB register file and 48KB shared
memory. As shared memory is accessible to all threads in a
TB and has low access latency, prior works have been
focused on using shared memory to achieve memory
coalescing, to provide data communication, and to store
data for temporal reuses. L1 D-cache shares the same
hardware resource as shared memory on FERMI or
KEPLER architecture, In contrast to shared memory, which
is explicitly managed by kernel code, L1 D-caches are
hidden from developers and are implicitly managed by
hardware to keep the most recently accessed data.
Furthermore, while the intensive usage of shard memory or
registers can limit the number of threads running on each
SM, the usage of L1 D-cache does not. However, too many
threads in a SM would compete with each other for the
limited L1 D-cache capacity, which may result in poor
performance due to cache contention [10].

2.3 Architecture Evolutions

GPUs evolve at a fast pace. Taking Nvidia GPUs as an
example, from the first generations of unified shader G80
to the state-of-art KEPLER architecture. A comparison of
them is shown in Table 1. Several observations can be
made from the table. First, there is a higher increase in
computational throughput than off-chip memory
bandwidth. For example, from the FERMI architecture to
the KEPLER architecture, the computation throughput
increases by up to 229% while the memory bandwidth
increases by only 8.3%. As a result, we need to more
carefully manage on-chip resource to effectively utilize the
computational resources. Second, among GPU on-chip
memory resources, the register file size and D-cache/shared
memory have been changing across different generations.

For example, From G80 to GT200, the register file size is
doubled while the shared memory capacity remains the
same. The same trend is present when comparing the
FERMI architecture and the KEPLER architecture.
Consequently, the code optimized for early GPU
generations tend to use shared memory more heavily. This
leads to a serious challenge for performance portability for
such optimized code running on different GPUs.

Table 1. A comparison of hardware characteristics across
different GPU generations.

G80

(GTX
8800)

GT200
(GTX
280)

FERMI
(GTX
480)

KEPLER
(GTX
680)

KEPLER
 (K20c)

Arithmetic throughput
(Gflops/S) 504 933 1345 3090 3950

Memory Bandwidth
(GB/S) 57 141 177 192 250

Shared memory
size(KB) 16 16 48 48 48

Register file size(KB) 32 64 128 256 256

In summary, the main challenges for application
developers to manually manage the on-chip memory
resources include: 1) GPUs have three types on-chip
memory and, although critical to performance, it is difficult
to decide the proper on-chip resource for a particular data
element in an application, and 2) the resource evolution is
not linear across different GPU generations, and optimal
on-chip resource usage varies for different GPU
generations.

3. Automatic Data Placement into
On-chip Memory Resources
To automatically manage on-chip memory resources and
achieve performance portability, in this section, we
describe in detail our proposed compiler algorithm for
automatic data placement. We first present our analysis of
possible data placement patterns among different types of
on-chip memory resources. Then, we construct our
compiler algorithm using the profitable patterns.

3.1 Data Placement Patterns

As discussed in Section 2, we focus on three types of on-
chip memory: register files, shared memory, and L1 D-
caches. We propose to move data from one type of on-chip
memory to another to achieve optimal resource utilization.
As shown in Figure 1, there are six possible directions of
moving data variables or six ways of data (re)placement.
Data placement between register variables and local
memory variables, i.e., direction 3 and 6, is determined by
the compiler of the GPU vendors. With the Nvidia GPU
compiler NVCC [3], we determine that the array variables
accessed with non-constant indices, e.g., A[k] where k is a
run-time variable, are allocated in local memory. Both
scalars and array variables with constant indices are
candidates for register allocation. Moving data from
register files and D-caches (i.e., local/global variables) into

shared memory, i.e., direction 4 and 5, requires significant
code changes besides synchronization. Also, the current
trend of GPU evolution is that the register files are much
larger than shared memory and the existing compiler tools
already can make use of shared memory for data reuse and
communication. Therefore, we focus on placement 1, 2,
and 3, and leave further investigation on placement 4 and 5
as future work.

3.1.1 Pattern 1: Promote variables from shared
memory to registers

Shared memory can be used to exchange data among
threads in a TB. Also, as a low-latency on-chip resource,
many applications use shared memory as software-
managed cache to hold important (private) data for each
thread. There are three reasons why it may be profitable to
promote a shared memory variable into registers. First, the
shared memory usage may limit the number of concurrent
TBs on an SM, i.e., TLP, and promoting shared memory
variables into registers can alleviate the pressure on this
critical resource. Second, shared memory has longer access
latency and lower bandwidth than register files. Third,
accessing shared memory variables is associated with
instruction overhead for address computations. Therefore,
higher performance may be expected when promoting

Register
variables

Shared memory
variables

Local/global
variables in L1 D-
caches

1

2

3

4

5

6

Figure 1. Data placements among three types of on-chip
memory.

1
2
3
4
5
6
7
8
9
10

__global__ void dynproc_kernel(…){
__shared__ float prev[256];
__shared__ float result [256];
int tx=threadIdx.x ;
for (int i=0; i<iteration ; i++){

…. shortest = minum(prev[tx-1], prev[tx],prev[tx+1]);
 result[tx] = shortest + gpuWall[index]; __syncthreads();

prev[tx]= result[tx]; __syncthreads();}
 gpuResults[xidx]=result[tx];

} a) Baseline

1
2
3
4
5
6
7
8
9
10
11

__global__ void dynproc_kernel(…){
__shared__ float prev[256];
float result;
int tx=threadIdx.x ;
for (int i=0; i<iteration ; i++){

… shortest = minum(prev[tx-1], prev[tx],prev[tx+1]);
 result = shortest + gpuWall[index]; syncthreads();

prev[tx]= result; __syncthreads();}
gpuResults[xidx]=result;

} b) Optimized Code

Figure 2. A code example of PathFinder.

shared memory variables into registers.
We show a benchmark, PathFinder, as an example, in

Figure 2. Path-Finder makes use of two shared memory
arrays, ‘prev’ and ‘result’, as shown in Figure 2. Its TB
dimension is 256x1 and its thread grid size is 19x1. As a
result, the sizes of these two shared-memory arrays are
small (256x4=1kB) and such shared memory usage is
actually not a bottleneck for the number of concurrent TBs
on each SM. For the shared-memory array ‘prev’, its
accesses in the kernel code, ‘prev[tx-1]’ and
‘prev[tx+1]’indicate that the data in this array are indeed
shared among different threads. As shown in line 7 in
Figure 2a, the ‘result’ array is accessed by each thread
multiple times in a loop. As each thread only accesses the
array result using its own thread id as shown in line 8 and
line 9 in the figure, there is no communication using the
‘result’ array across threads. Since each thread only
accesses its individual part of the array, it is safe to simply
replace ‘result[tx]’ with a register. Further, as the variable
is only defined and used in the same thread, we can safely
remove the synchronization instruction ‘__syncthread()’
after the statement updating the variable ‘result’ (line 7).
The resulting code is shown in Figure 2b.

In our study, we found that shared memory is used very
often in many benchmarks. Therefore, there are usually
multiple shared memory arrays that can be replaced with
registers. In this case, we may not have enough registers to
promote all the shared memory arrays, and need to decide
which shared memory array should be replaced with
registers to maximize the performance benefits. Our
framework handles this problem by counting the references
of each shared memory array, and gives higher priority to
the one with larger reference counts (Section 3.3).

3.1.2 Pattern 2: Promote variables from shared
memory into L1 D-caches

As discussed above, the register file cannot be used for an
array variable with a dynamically determined index (e.g.,
A[x]) and intensive usage of registers for shared memory
promotion can also limit TLP. The local memory or global
memory, which implicitly utilizes the L1 D-cache to
achieve the high performance, does not have such
drawbacks. Therefore, promoting variables from shared
memory into local memory / global memory (L1 D-cache)
is a better choice when (1) replacing shared memory arrays
with dynamic indices or (2) the shared memory array to be
promoted has a large size (e.g., an array of structures).
Furthermore, if a shared memory variable is used for
communication among threads, a global memory variable
can be used to replace it since global memory is visible for
all threads.

Figure 3a, using the benchmark, Marching-Cube (MC),
from CUDA SDK [19] as an example, shows that two
shared memory arrays ‘vertlist’ and ‘normlist’ are used in

the kernel. Each thread only accesses part of these two
arrays, and the total size of these two arrays is 9216 bytes
for each TB. As a result, each SM can run 5 TBs
concurrently even when the shared memory is configured
to be 48KB. As we can see from the figure, the value of
variable ‘edge’ in line 11 of Figure 3a can only be
determined in the runtime, and therefore the array ‘vertlist’
cannot be allocated in the registers. We choose to promote
these two arrays into local memory instead of global
memory to minimize the code change since for global
memory, we have to modify the CPU code to allocate a
global memory array and insert it as a parameter of the
kernel invocation. The resulting code is shown in Figure
3b. Since the code in Figure 3b does not use shared
memory any more, each SM can run up to 16 TBs in the
KEPLER GPUs and 8 TBs in the FERMI GPUs. Such
improved TLP leads to higher performance for MC. In
many cases, an application may intensively use shared
memory to communicate among threads. Then, the global
memory has to be used to replace the shared memory
variables to maintain such communication so that we can
both overcome the TLP bottleneck imposed by shared
memory usage and keep inter-thread data communication.
Note that although promoting variables from shared
memory into L1 D-cache can significantly improve the
TLP (or occupancy) otherwise limited by shared memory
capacity, it doesn’t mean that more TLP will always lead to
higher performance. In some scenarios, more concurrent
TBs may increase cache and/or network contentions and
adversely affect the performance [10]. Thus, our compiler

__global__ void generateTriangles(…) {
__shared__ float3 vertlist[12*NTHREADS]; //NTHREADS = 32
__shared__ float3 normlist[12*NTHREADS];
 //defines to the shared memory array
 vertexInterp2(..., vertlist[threadIdx.x], normlist[threadIdx.x]));
 vertexInterp2(…,vertlist[threadIdx.x+NTHREADS],

 normlist[threadIdx.x+NTHREADS]);
 …edge = tech1Dfetch(triTex,..);
 //uses of the shared memory array
 pos[index] =
 make_float4(vertlist[(edge*NTHREADS)+threadIdx.x], 1.0f);
 …
}

__global__ void generateTriangles(…) {
 float3 vertlist[12];
 float3 normlist[12];
 //defines to the local memory array
 vertexInterp2(.., vertlist[0], normlist[0]);
 vertexInterp2(…,vertlist[1], normlist[1]);
 … edge = tech1Dfetch(triTex,..);
 //uses of the local memory array
 pos[index] =
 make_float4 (vertlist[edge], 1.0f);
 …
}

(a)

(b)

1
2
3
4
5
6
7
8
9
10
11
12
13

1
2
3
4
5
6
7
8
9
10
11
12

Figure 3. A code segment of the benchmark Matching
Cube (MC). (a) The shared-memory version, (b) the L1
D-cache version.

uses an auto-tuning process to determine (1) how many
variables should be promoted and (2) whether they are
promoted into local memory or global memory, so as to
achieve optimal data placement in balancing trade-offs
between TLP and network/memory pressure.

3.1.3 Pattern 3: Promote variables from shared
memory / global memory into registers to achieve
register tiling

A common side effect of single-program multiple-data
(SPMD) parallelization is redundant computations and
memory accesses. In GPU kernels, there often exist
redundant accesses to either shared memory data or global
memory data across different threads. This redundant
shared/global memory reference can be promoted into
register usage to further save bandwidth.

We use the benchmark SRAD as an example to illustrate
this behaviour. Figure 4a shows a code segment from the
SRAD kernel code. The TB dimension of the SRAD kernel
is configured as <16,16>, i.e., 256 threads per TB.
Therefore, tx (i.e., threadIdx.x) ranges from 0 to 15 for all
the warps in a TB; and ty (i.e., threadIdx.y) will be 0~1 for
the first warp, 2~3 for the second warp, and so on. Before
computation, a tile of data will be loaded from the global
memory array ‘c_cuda’ into the shared memory array
‘south_c’ as shown in line 8 of Figure 4a. We can see that
the index variable ‘index_s’ is dependent on tx, bx (i.e.,

blockIdx.x) and by (i.e., blockIdx.y) but not on ty. It means
that when the 8 warps of a TB actually load the same block
of global memory data, there are 7 redundant global
memory accesses in each TB since all the warps share the
same tx, bx, and by, i.e., the same memory reference index.

All three types of on-chip memory can be potentially
used to reduce the overhead of such redundant global
memory accesses across warps. First, the L1 D-cache is
utilized implicitly when redundant global memory accesses
hit in the L1 D-cache but such data reuse cannot be assured
as the data may be evicted by other data requests. Second,
we can choose to let only the first warp load the data into
shared memory, and other warps then access the data from
shared memory. However, this way incurs overhead due to
operations moving data from/into register into/from shared
memory [14]. Additional control flow is also needed to
ensure that the global memory data are loaded only once
and a synchronization is necessary to eliminate potential
data races. Third, although the register file has a large size
and the lowest latency, it cannot be shared among warps. In
order to take advantage of the register file, we need to first
compact multiple warps/threads into a single warp/thread,
and then promote shared/global memory variables into
registers. This way, the register variables after thread
compaction can be shared among different threads before
compaction. Such thread compaction is also referred to as
thread merge [26] and thread coarsening [11]. Compared to
the prior works on thread merge/coarsening/fusion
[26][15][22], our approach specifically leverages this
optimization technique for register tiling, i.e., use register
reuse to eliminate redundant shared/global memory
accesses. A key question for such register tiling is how
many threads to be compacted so as to maximize register
reuse while restricting the register pressure on TLP. We
introduce the compaction factor C_Factor in our compiler
algorithm to determine the most profitable version of data
placement using automatic tuning.

The optimized code after compaction is shown in Figure
4b. The number of original threads/warps to be compacted
is defined as a run-time constant, C_Factor. First, the
thread block dimension is adjusted from <16,16> to
<16,16/C_Factor>. Second, the global memory read
accesses on line 6 of Figure 4a are replaced with a single
global memory access on line 6 of Figure 4b, which loads
the data from global memory to the register variable
‘tmp_1’. Third, since multiple threads/warps of Figure 4a
are compacted into a single thread/warp in Figure 4b, we
can reuse the register ‘tmp_1’ as shown in line 11.
Similarly, the memory access of ‘c_cuda’ under the
conditional statement (line 8 of Figure 4a) can be processed
in the same way by introducing another register ‘tmp_2’ as
shown in Figure 4b. The if statement in line 7 of Figure 4a
sometimes may also need to be replicated to guard this
‘c_cuda’ access to avoid potential out-of bound accesses.

__global__ void srad_kernel(int [] c_cuda…){
int index_s = cols * BLOCK_SIZE * by + BLOCK_SIZE * bx
 + cols * BLOCK_SIZE + tx; //BLOCK_SIZE = 16;
__shared__ float south_c[BLOCK_SIZE][BLOCK_SIZE];
….
south_c[ty][tx] = c_cuda[index_s]
if (by == gridDim.y - 1){
 south_c[ty][tx] = c_cuda[cols * BLOCK_SIZE *
 (gridDim.y - 1) + BLOCK_SIZE * bx +
 cols * (BLOCK_SIZE - 1) + tx];
}
__syncthreads();
…}

__global__ void srad_kernel(int [] c_cuda…){
 int index_s = cols * BLOCK_SIZE * by + BLOCK_SIZE * bx
 + cols * BLOCK_SIZE + tx; //BLOCK_SIZE = 16;
 __shared__ float south_c[BLOCK_SIZE][BLOCK_SIZE];
 ….
 int tmp_1= c_cuda[index_s];
 //if(by == gridDim.y – 1)
 tmp_2= c_cuda[cols * BLOCK_SIZE * (gridDim.y - 1)
 + BLOCK_SIZE * bx + cols * (BLOCK_SIZE - 1) + tx];
 #pragma unroll
 for(int m=0;m<C_Factor; m++)
 south_c[ty+ m*blockDim.y/C_Factor][tx] = tmp_1;

if (by == gridDim.y - 1){
 for(int m=0;m<C_Factor; m++)
 south_c[ty+m*blockDim.y/C_Factor][tx] =tmp_2;

 }
 __syncthreads();
…}

(a)

(b)

1
2
3
4
5
6
7
8
9
10
11
12
13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Figure 4. A code segment of the benchmark SRAD. (a)
The global memory version, (b) The register version.

3.2 Compiler Algorithms and Implementation

Although the data placement patterns discussed in Section
3.1 can be used to guide programmers to manually optimize
their GPU programs, it will quickly become un-manageable
if a non-trivial number of data variables are to be analyzed.
In this section, we present our source-to-source compiler
framework which implements these three data placement
patterns using an automatic compiler optimization
algorithm. The goal of the compiler algorithm is to generate
the code which utilizes on-chip resource efficiently without
effort from application developers. The key feature is that
the compiler framework can intelligently re-assign the
memory types of variables of a GPU program to maximize
the benefit of on-chip resources. Our compiler algorithm
has two passes: one for data placement pattern 1 and
pattern 2 and the other one for data placement pattern 3.

 Either compiler pass has three stages: the identifying
stage, the processing stage, and the auto-tuning stage, as
detailed in Figures 5 and 6. The identifying stage will scan
all the memory variables, and generate a list of candidate
variables which can be promoted by collecting the
architecture features and analyzing the memory accesses of
the target kernel. The processing stage implements the data
placement patterns by revising the data types and their
access indices of these candidate variables. The auto-tuning
stage constructs the search spaces, decides which variables
to be processed and selects the optimal code versions.

3.2.1 Compiler pass 1

The algorithm of the compiler pass for promoting shared
memory variables to register files/local memory/global
memory is shown in Figure 5. The identifying stage (line
5~15) collects all shared memory variables through their
‘__shared__’ keyword. For shared memory variables, we
mark an access as a combination of the array name and the
access index. The compiler checks access indices to
determine (a) whether an access is across different threads
or private to a single thread, and (b) whether an index has
to be determined at the runtime. Meanwhile, the reference
count of the variable is also recorded. If an access is inside
a loop, we weight this access number by timing a loop
count in line 10. In some cases, the loop count in a one-
level loop or multiple loop counts in nested loops may
associate with a run-time value, leading to some unknown
reference counts. In such cases, we resort to either profiling
or simple heuristics (Section 3.2.4). The output of the
identifying stage is arrays, a list of candidate variables.

For all the candidate variables in arrays, the processing
stage (line 18 ~24) applies data placement patterns by first
selecting the shared memory variable with the largest
reference counts. Then, if a shared memory variable is not
shared across threads and is not accessed with run-time
determined indices, it is promoted to the register file.
Otherwise, it is replaced with a global memory variable if

is used for inter-thread communication in line 23~24; or it
will be replaced with a local memory variable if it is
accessed through indices at line 21~22. Each replacement
will result in substituting both the variable definition and
reference indices throughout the kernel code from original
one to the promoted type.

3.2.2 Compiler pass 2

The second compiler pass implements the third data
placement pattern, i.e. promoting redundant shared/global
memory accesses into register accesses, as shown in Figure
6. In the identifying stage (line 5~13), the compiler
analyzes each shared or global memory array. It checks
whether an array index is independent upon the thread id in
either the X or Y dimension. If it is independent upon both
dimensions, it sets the flag is_redundant_2d. Otherwise, if
it is independent upon one direction, it sets the flag
is_redundant_1d. During each index check, the compiler
also inserts the expressions associated with the index into
the exprs list, which will be used in the processing stage.
After the identification stage, it outputs exprs, the list of
candidate expressions that exhibit data access redundancy,
and the corresponding flags that indicates the type of
redundancy type, i.e., one-dimension or two-dimension.

In the processing stage (line 16~27), the compiler first
adjusts the thread block dimension for each different

Kernel shared_to_register_or_local_or_global (Kernel kernel) {
Kernel best_kernel = kernel;
float exe_time = eval(kernel); //collect the execution time of kernel;

 /**Identification Stage**/
 List arrays;

for (each shared memory array sma in kernel) {
 sma.is_overlap = false; sma.is_index = false;

 sma.access_count = 0; sma.size = allocation_size;
 for (each access acc of array sma) {
 sma.access_count += (acc in loop)?loop_count::1;
 if (acc is overlapped across threads)
 sam.is_overlap = true;
 else if (the address of acc is calculated in the runtime)
 sma.is_index = true ;}
 if (sma.access_count >0) {arrays.add(sma);} } //end for

 while (arrays is not usage empty) {
 /**Processing Stage**/
 sma = array with largest access_count in arrays, pop it out;

 if (!sma.is_index and !sma.is_overlap)
 replace sma with register file;
 else if (sma.is_index and !sma.is_overlap)
 replace sma with local memory;
 else

 replace sma with global memory;
 /**Auto-tuning Stage**/

 generate a new kernel nkernel
 exe_time1=eval(nkernel) //the execution time of nkernel
 if (exe_time1< exe_time) { // the new kernel is better
 best_kernel = nkernel;
 exe_time = exe_time ;}
 else

 return best_kernel; // found the best kernel } //end while
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Figure 5. The compiler algorithm to promote variables
from shared memory to the register file/D-cache.

compact factor (C_Factor) in line 16. Then, it constructs an
unroll-able loop to perform the workloads of the threads to
be compacted. The loop body contains all the expressions
including the associated computational operations and
memory accesses in the thread index dependence chain, as
shown in line 18~19 and line 23~25. The exception is the
expressions in the expr lists collected in the identification
stage. These global/shared memory accesses in the expr list
are performed only once by loading data into a destination
register as shown in line 20~21 and 26~27 and the
destination register will be reused in the newly constructed
loop, as illustrated in Figure 4. This C_Factor is a tunable
parameter to indicate how many threads/warps will be
compacted into one. The C_Factor can be a scalar or a two-
dimension vector depending on the redundancy type
generated from the identifying stage.

3.2.3 Auto-tuning

In the auto-tuning stage, the compiler first generates a
search space based on all the tunable parameters, then
measures the execution time, compares them, and finally
selects the best performing version. Totally, three search
spaces will be generated associated with each data

placement policy. The first search space is to decide how
many and which shared memory variables to be promoted
into the register file; the second search space is which
shared memory variables to be promoted into global/local
memory; the third search space is to determine the
compaction factor.

To manage the cost of auto-tuning, we prune the first
search space by promoting shared memory variables
incrementally, starting from the one with the highest
reference counts, assuming that this one will benefit most
when being promoted into registers. If one version has
lower performance than the previous one, it means that
promoting one more shared memory variable may lead to
too much register usage and hurt the performance.
Therefore, it stops further promotions. For the second
search space, we prune it by using a greedy strategy to
promote shared memory variables that occupy the largest
space, so that it will release the resource pressure on TLP in
a fast and incremental way. For the compaction factor, we
observe that, the thread block in GPU computing
workloads is typically a multiple of 32. Therefore, we
constrain the compaction factor as a number of 2’s power.
Compared to the previous sophisticated methods for
pruning the search space such as generic algorithm [5] and
machine learning techniques [20], our heuristics are simple
and practical on GPU kernels. In Section 5, our results also
show that for our workloads, our iterative space pruning
approach is effective in reducing search space and finding
the optimal/near optimal version.

The auto-tuning part for compiler pass 1 is listed as line
27 to line 32 in Figure 5. During auto-tuning, if a newly
generated kernel has worse performance than the previous
version, the compiler will consider further optimization is
not helpful and the previous version is chosen as the best
one as shown in line 32. In Figure 6, the code lines from 29
to 35 show the auto-tuning part for compiler pass 2. The
compiler evaluates the new kernel generated by previous
steps in line 30. If the new kernel has better performance,
then the compiler increases the C_Factor and continues
with more aggressive thread compaction. Otherwise, the
compiler stops at line 35.

3.2.4 Preprocessor

In our implementation, our compiler framework takes a
pre-processing step on the program and regulates
expression representation for successive analysis and
optimization. First, the index for an array access is
interpreted as an affine function of the thread index. The
scaling factor in the affine function may involve a subset of
the kernel launch parameters, macro/constant values, run-
time parameters, and loop iterators if the memory
expression is inside a loop. Second, an array access may
reside inside a condition or loop statement. The reference
count of such an array depends on the loop bound and the

Kernel shared_or_global_access_to_register (Kernel kernel) {
 Kernel best_kernel = kernel;
 float exe_time = eval(kernel);
/**Identification Stage**/
List exprs;
bool is_redundant_1d = false, is_redundant_2d = false;
for (each shared/global memory array sma in kernel) {

for (each access acc of array sma in expression expr) {
 if (acc is independent of one thread dimension)

 { is_redundant_1d = true; exprs.add (expr);}
 if (is_redundant_1d && acc is independent of the other
 thread dimension in expression expr)
 {is_redundant_2d = true; exprs.add (expr);} } }//end for

for (each C_Factor in search spaces){
 /**Processing Stage**/
 Adjust Thread Block Dimension.
 if(is_redundant_1d) {

 construct a one-loop with loop bound C_Factor to
perform the workload for compacted threads

convert expr in exprs to from inter-thread memory usage
 into register array.
 } else if(is_redundant_2d){
 construct an 2-level loop with loop bound C_Factor .x,
 and C_Factor . y to perform the workload
 for compacted threads
 convert expr in exprs to from inter-thread memory
 usage into register array usage; }
 /**Auto-tuning Stage**/
 generate a new kernel nkernel from best_kernel;
 exe_time1=eval(nkernel) //the execution time of nkernel
 if (exe_time1< exe_time) { // the new kernel is better
 best_kernel = nkernel;
 exe_time = exe_time; }
 else

 return best_kernel; } // end for
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Figure 6. The compiler algorithm to promote shared or
global memory to registers to be shared among threads.

condition. If the loop bound and the condition can only be
determined at run-time, we choose to either let the user to
provide such information through profiling or use the
following simple heuristics. We assume that for a nested
loop in a kernel, each level has a loop count of 4 and the
condition is true half of the times. The reason for such a
default loop count is that our observation from the
benchmarks shows that when a nested loop is parallelized
into GPU threads, the levels with large loops counts are
used to generate thread grids and the thread body typically
contains loops with smaller counts. Lastly, the preprocessor
collects the data structure declaration and annotate array
accesses with the data type. For the vector data type such as
int2, float4, the memory access index is processed the same
as the scalar data type. For the struct type, the array index
and the addresses of its elements are identified separately.

4. Experimental Methodology
We implemented our compiler algorithms using Cetus [13],
a source-to-source compiler infrastructure for C programs.
The CUDA syntax support is ported from MCUDA [21].

Table 2. Parameters used in experiments.
Parameter GTX480 GTX680 K20c

<Shared memory
size, L1 D-cache

size>

<16kB,
48kB>,
<48kB,
16kB>

<16kB, 48kB>,
<32kB, 32kB>,
<48kB, 16kB>

<16kB,
48kB>,
<32kB,
32kB>,

<48kB, 16kB>
Register file size 128kB 256kB 256kB
Max number of
threads per SM 512 1024 1536

Max number of
registers per thread 64 64 256

Compaction Factor 2,4,8,16 2,4,8,16 2,4,8,16

To evaluate our proposed compiler optimizations, we
perform our experiments on Nvidia GTX480 (FERMI)
GPUs, GTX680 (KEPLER) GPUs, and Telsa K20C GPUs.
The parameters are presented in Table 2.

Most of the benchmark kernels used in our experiments
are from Rodinia [4] and CUDA SDK [19] since they have
already been manually optimized. Among them, HotSpot,
Back Propagation, SRAD, Pathfinder, B+tree, LU
Decomposition are from the latest Rodinia suite. Matrix
Multiplication and MarchingCubes are from CUDA SDK.
NQU is from GPGPUsim benchmark suite [2]. As Back
Propagation, SRAD and B+tree, contain two GPU kernels,
we use BackPropagation1, BackPropagation2, SRAD1,
SRAD2, B+tree1, B+tree2 to differentiate them. In Table 3,
from left to right, we show the benchmark name, the input,
as well as the resource usage including the number of
registers per thread and the size of shared memory (bytes)
per SM on GTX 480, GTX 680, and Telsa K20c,
respectively. We use the default input released with the
code. For each benchmark, the shared memory usage is the
same for different GPUs because it is determined by
programmer’s explicit definition. The register usage is

statically allocated and the maximum available registers per
thread vary on different GPUs.

5. Experimental Results
In our first experiment, we measure the execution time of
both the original kernel and the optimized kernel generated
from our compiler algorithm on GTX480, GTX680 and
Telsa K20c separately. On each GPU, we tried all different
shared memory/L1 D-cache configurations and selected the
one with the best performance for the original kernels.
Also, for each optimized kernel, the compiler will generate
the best data placement to accommodate the specific
architecture so as to achieve optimization portability. Each
benchmark has been run one-hundred times to obtain the
stable execution times. Figure 7 shows performance
comparisons between original kernels and our optimized
ones across different GPUs.

Figure 7. Performance speedups achieved by automatic
data placement for all benchmarks on three different GPUs.

From Figure 7, we can see that across all the
benchmarks, the optimized kernels exhibit significantly
higher performance than the original ones on all the three
GPUs. The benchmark SR1 achieves the highest speedup
(4.14X) over the original kernel on GTX480. This is
because most global memory accesses in this kernel are
redundant, not only among different warps but also among
threads in a warp. By promoting those redundant global
memory accesses into register accesses, the access time to
all input data sets is highly reduced. Similar global or
shared memory redundancy also exists in HS, BP1, BP2,
MM, BT1, BT2, and LUD. For HS, PF and NQU. Many
shared memory variables in these kernels have no data

0.5
1

1.5
2

2.5
3

3.5
4

4.5

S
pe

ed
up

GTX480
GTX680
K20c

Table 3. Benchmarks and their resource usage.
GTX480 GTX680 K20C

Benchmark Input reg smem regsmem reg smem
HotSpot (HS) height 2 35 3072 36 3072 39 3072
Back Prop1 (BP1) 65536 layer 13 1088 11 1088 12 1088
Back Prop 2 (BP2) 65536 layer 22 0 20 0 21 0
SRAD1 (SR1) 2048*2048 20 0 20 0 26 0
SRAD2 (SR2) 2048*2048 19 0 20 0 20 0
Matrix Multiply (MM) 2048*2048 23 8192 26 8192 25 8192
Path Finder (PF) 409600 steps 16 2048 18 2048 17 2048
N-Queue (NQU) N=8 15 15744 19 15744 16 15744
Marching Cubes (MC) 32768 voxels 63 9216 63 9216 76 9216
B+tree1 (BT1) qrSize=6000 18 0 19 0 21 0
B+tree2 (BT2) qrSize=6000 23 0 28 0 30 0
Lu-Decompose (LUD) 2048.dat 15 2048 17 2048 17 2048

exchanges among threads, thus these shared memory
variables are candidates for register promotion. In NQU,
there are five shared memory variables and four of them are
promoted, leading to a high performance speed-up of 3.3x
on GTX680. For PF, _syncthreads() can be safely removed.
However, even though it is not removed, the optimized
code (e.g., on GTX480) can still achieve 7% performance
improvement. For MC, shared memory variables holding
two on-chip working sets can be promoted into local
memory arrays so as to remove the resources limitation on
the number of concurrent TBs, thereby achieving higher
performance. Overall, using the geometric mean as an
average, the kernels optimized on GTX480 can achieve up
to 4.14x speedup and an average of 1.76x speedup
compared to the original benchmarks, up to 3.30x speedup
and an average of 1.61x speedup on GTX680, and up to
2.44x speedup and an average of 1.48x speedup on K20c.

In our second experiment, we first breakdown the
effectiveness of each placement pattern. Figure 8a and 8b
shows the benchmarks that can be applicable to compiler
pass 1 and pass 2. Among them, only HS benefits from
both pattern 1 and pattern 3 (the total improvement of
64.2%: breakdown into 4.8% from pattern 1 and 59.4%
from pattern 3), while other benchmarks only benefit from
one in three patterns: MC benefits from pattern 2; PF, NQU
benefit from pattern 1, and others benefit from pattern 3.

(a) Optimization using compiler pass 1

(b) Optimization using compiler pass 2

Figure 8. Auto-tuning of our automatic data-placement for
all benchmarks on GTX680 (Performance normalized to
original kernel).

We further evaluate the effectiveness of our auto-tuning
process for each benchmark. As shown in Figure 8a, the
benchmarks NQU, PF, HS and MC benefit from promoting
shared memory arrays into register/local/global memory.
The search space is how many shared memory variables
can be promoted into registers or L1 D-cache using our
compiler pass 1 in Section 3.2.1. For all the cases,
promoting more shared memory variables into registers or
L1 D-cache will lead to higher performance. For the
benchmark kernels benefiting from reduced redundant

shared/global memory accesses, Figure 8b shows the
impact of the search parameter C_Factor in our compiler
pass 2 in Section 3.2.2. From Figure 8b, we can see that the
best C_Factor varies across different benchmarks. For
SR1, the best performing version is achieved when
C_Factor is 16. However for BP1, the best performing one
is obtained when C_Factor is 2, and further increasing
C_Factor to 4 degrades the performance as it reduces the
number of active warps in a thread block. Such reduced
TLP subsequently degrades the latency hidden ability for
off-chip memory accesses, offsetting the profit from
reducing redundant accesses. Therefore, auto-tuning is
stopped when such a performance drop is observed. We can
see that if C_Factor is increased to 8 for BP1, the
performance will degrade even more. This validates the
effectiveness of our auto-tuning policy, which searches
C_Factor in an incremental manner. The same scenario has
also been observed in the compiler pass 1 from Figure 8a
when searching for the appropriate shared memory
variables to be promoted in MC.

Figure 9. The optimal parameter, the number of shared
memory array to be promoted and the C-Factor, determined
for different GPUs.

Third, in Figure 9, we present the optimal parameters
determined by our auto-tuning process on the different
GPUs. For PF, NQU and MC, the y-axis means how many
variables should be promoted while for others, the y-axis
denote the optimal C_Factor values on different GPUs.
Our compiler can intelligently generate the optimized
kernel for specific architecture to achieve optimization
portability. We can see that the different architecture
features of these GPUs lead to different optimal
parameters. For example, NQU achieves best performance
when its four shared memory variables are promoted on

0

1

2

3

4

HS PF NQU MC

P
er
fo
rm

an
ce

Sp
ee
d
u
p

Promote 1 smem array
Promote 2 smem arrays
Promote 3 smem arrays
Promote 4 smem arrays

0.5

1

1.5

2

2.5

HS BP1 BP2 SR1 SR2 MM BT1 BT2 LUD

P
er
fo
m
ra
n
ce

Sp
ee
d
u
p

C_Factor= 2 C_Factor= 4 C_Factor= 8 C_Factor= 16

0
3
6
9
12
15
18

HS BP1 BP2 SR1 SR2 MM PF NQU MC BT1 BT2 LUD

GTX480

GTX680

k20c

Table 4. The auto-tuning time on GTX 680

Original
search space

Pruned
search space

Auto-tuning
time (ms)

HS 48 8 42.873
BP1 16 3 11.361
BP2 16 4 15.755
SR1 16 5 24.133
SR2 16 5 21.941
MM 32 5 210.876
PF 1 1 8.88
NQU 45 12 48.124
MC 9 6 23.986
BT1 3 3 12.183
BT2 3 3 14.343
LUD 16 4 129.531

GTX680, while on K20C, the best performance is achieved
when three shared memory variables are promoted.

Fourth, our auto-tuning process has a low overhead on
searching the optimal parameters. We report the cost of the
auto-tuning function in Table 4. From the left to right, we
report the search space, i.e., the number of all possible
values to be tried, in the original search if there is no
pruning strategy in searching, the search space after
applying our pruning strategies in our compiler passes, and
the total execution time of our auto-tuning process for
generating the optimal kernel for each benchmark. We can
see that the search space is reduced significantly by our
pruning strategy. We also validated that the optimized one
from our pruned space can achieve the same performance
as the one from the original search space.

Figure 10. Performance speedup of optimized kernels in
Marching Cubes with different input sizes.

Finally, besides the kernel code itself, we also consider
how the problem input of a workload affects our proposed
optimization process. For our first compiler pass, the shared
memory array sizes are fixed with constants or macro
variables which are independent of input sizes. The reason
is that the benchmark code has been already optimized to
process the inputs as tiled working sets. For the second
pass, the input size will impact on the number of thread
blocks in a grid and each thread block usually has a pre-
defined size to work on a tile of input elements. Thus, the
variation of the input size will not affect the steps of our
compiler analysis and optimizations. Provided that the
performance is in general correlated with the input size, our
performance improvement will higher when the problem
size is larger. Because the larger inputs will often lead to
more frequent on-chip memory resource accesses to
process them and our optimized kernel will in turn benefit
more from the optimized access patterns. Figure 10 shows
the effect of increased input size, from 8K Voxels to 512K
Voxels, on Marching Cubes. As the input problem size
increases, the performance improvement of our optimized
kernel from compiler also increases from 1.179x to 1.446x.

6. Related work
In recent years, GPUs have been widely used for general-
purpose computation due to their high computational
throughput. However, achieving high performance on
GPUs is not easy, and one of reasons is the intricate on-
chip memory resources. Among on-chip resources, shared
memory is controlled by users, and many highly optimized
applications or algorithms on GPUs utilize shared memory

carefully [12][23][24][27] so as to enjoy the low-access
access latency and high bandwidth. Besides them, [12]
analyses the upper performance bound of SGEMM on
GPUs and optimizes the kernel through register blocking
by reusing data in registers as much as possible for
maximal throughput. However, none of these works
considers the overhead of intensive usage of shared
memory and the impacts of varying on-chip resources
across different GPU generations.

To relieve the burden of optimizing GPU programs from
the programmers, many auto-tuning frameworks
[15][16][22][25][26] have been developed to automatically
optimize the GPU programs to achieve high performance.
For example, a polyhedral model is used in [16] for
optimizing global memory accesses. In [27], the shared
memory is time multiplexed to reduce the pressure on
limited shared memory capacity. In [25], language and
compiler support are proposed to leverage nested
parallelism inside the GPU programs. However, most of
these works focuses on optimizing memory accesses and
managing thread-level parallelism using compiler
techniques. Management of different types of on-chip
memory, especially the varying on-chip memory across
different GPU generations, has not been the focus. To the
best of our knowledge, our work is the first compiler
algorithm to automatically optimize data placement across
different on-chip memory resources in a systematic way.

We also observed that vendor’s compiler may promote
the variables in shared memory to register file. The way to
avoid such an optimization is to use the ‘__volatile__’
keyword when declaring a shared memory array. However,
as we verified from the assembly codes, we found that the
vendor’s compiler does not apply such optimizations on the
benchmarks used in our work.

Current studies on on-chip memory resources mainly
focus on identifying resources limitation and boosting the
performance by improving architecture design [6][7] or
compiler support [9][27]. On-chip data cache may lead to
cache contention and [9] proposes a compiler algorithm to
automatically turn on/off the D-cache by predicting how
cache will affect the performance. The register usage
pattern is studied in [6] and the register file accesses are
reduced by proposing a register file cache. However, these
works target on optimizing one specific resource to conquer
their limitations instead of balancing on-chip resources.

The trade-offs between software-managed shared
memory and hardware-managed D-cache on GPUs have
been studied in [14]. Gebhart et al. [7] made the
observation that different applications have different needs
for various memory resources. They proposed unified local
memory that can dynamically change the partition among
registers, cache, and shared memory according to each
application’s needs. Hayes and Zhang [8] proposed unified
on-chip memory allocation which uses shared memory to

1
1.1
1.2
1.3
1.4
1.5

8k 16k 32k 64k 128k 256k 512k

Sp
ee
d
u
p

Input Size (Voxels)

offload register pressure. In comparison, our work focuses
on re-assigning data across all on-chip memory resources.

7. Conclusions
Judicious utilization of the on-chip memory resources has a
significant impact on application performance. However,
how to manage these intricate on-chip memory resources is
non-trivial for application developers. More importantly,
the varying on-chip resource across different GPU
generations makes performance portability a daunting
challenge. In this paper, we propose compiler-driven
automatic data placement as our solution. We focus on
GPGPU programs that have already been reasonably
optimized either manually by programmers or
automatically by existing compiler tools. Our proposed
compiler algorithms refine these programs by altering data
placement among different on-chip resources to achieve
both performance enhancement and performance
portability. In particular, we leverage three data placement
patterns. First, we explore shared memory variables to
promote them into registers. Second, we explore the
opportunities to utilize the L1 D-cache by promoting
variables from shared memory into global/local memory if
shared memory is a resource bottleneck. Third, we
eliminate redundant shared/global memory accesses across
different threads. To achieve performance portability, our
compiler performs auto-tuning on different GPUs to
achieve optimal performance. Among the benchmarks in
our study, our proposed compiler algorithms significantly
improve the performance by up to 4.14x and 1.76x on
average on Nvidia GTX480 (i.e., FERMI) GPUs, and by up
to 3.30x and 1.61x on average on GTX680 (i.e. KEPLER)
GPUs, and up to 2.44x speedup and an average of 1.48x
speedup on K20c GPUs. Our compiler-optimized kernel
can also save up to 74.3% energy and save an average of
40.3% energy overall measured on GTX680 GPUs.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their insightful

comments to improve our paper. This work is supported by
an NSF project 1216569 and a gift fund from AMD Inc.

References
[1] M. Abdel-Majeed. and M. Annavaram. Warped register file: A

power efficient register file for GPGPUs. HPCA, 2013.

[2] A. Bakhoda, G. Yuan, W.L. Fung, H. Wong and T. Aamodt.
Analyzing CUDA workloads using a detailed GPU simulator.
ISPASS, 2009.

[3] CUDA programming guide, http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html.

[4] S. Che, et al. Rodinia: A Benchmark Suite for Hetero-geneous
Computing. IISWC, 2009.

[5] K. D. Cooper, P. Schielke and D. Subramanian. Optimzing for
reduced code space using generic algorithms. LCTES, 1999.

[6] M. Gebhart, et al. Energy-efficient mechanisms for managing
thread context in throughput processors. ISCA, 2012.

[7] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky and W. J.
Dally. Unifying Primary Cache, Scratch, and Register File Memories
in a Throughput Processor. MICRO, 2012.

[8] A. Hayes and E. Zhang, Unified On-Chip Mmeory Allocation for
SIMT Architecture, ICS, 2014.

[9] W. Jia, K. Shaw, and M. Martonosi. Characterizing and improving
the use of demand-fetched caches in GPUs. ICS, 2012.

[10] O. Kayran, A. Jog, M. T. Kandemir and C.R. Das. Neither more nor
less: optimizing thread-level parallelism for GPGPUs. PACT, 2013.

[11] D. B. Kirk and W. W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach, 2010.

[12] J. Lai and A. Seznec. Performance upper bound analysis and
optimization of SGEMM on FERMI and KEPLER GPUs. CGO,
2013.

[13] S. Lee, et al. Cetus-An extensible compiler infrastructure for source-
to-source transformation. LCPC, 2004.

[14] C. Li, Y. Yang, H. Dai, S. Yan, F. Muller and H. Zhou.
Understanding the Tradeoffs between Software-Managed vs.
Hardware-Managed Caches in GPUs. ISPASS, 2014.

[15] Z. Lin, X. Gao, H. Wan and B. Jiang. GLES: A Practical GPGPU
Optimizing Compiler Using Data Sharing and Thread Coarsening.
LCPC, 2014.

[16] M. M. Baskaran, etal. A compiler framework for Optimization of
Affine Loop Nests for GPGPUs. ICS, 2008.

[17] NVIDIA FERMI: NVIDIA’s Next Generation CUDA Compute
Architecture, Nov. 2011.

[18] NVIDIA KEPLER GK110 white paper. 2012.

[19] NVIDIA. CUDA C/C++ SDK Code Samples, 2011.
http://developer.nvidia.com/gpu-computing-sdk, 2011.

[20] M. Stephenson, S. Amarasinghe, M. Martin and U.M. O’Reilly.
Meta optimization: improving compiler heuristics with machine
learning. PLDI, 2003.

[21] J. A. Stratton, S. S. Stone, and W. W. Hwu, MCUDA: An efficient
implementation of CUDA kernels on multi-cores. LCPC, 2008.

[22] S. Unkule, C. Shaltz and A.Qasem. Automatic Restructuring of GPU
Kernels for Exploiting Inter-thread Data Locality. CC, 2012.

[23] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X, Shen. Complexity
Analysis and Algorithm Design for Reorganizing Data to Minimize
Non-Coalesced GPU Memory Accesses. PPoPP, 2013.

[24] S. Yan, C. Li, Y. Zhang and H.Zhou. yaSpMV: Yet Another SpMV
Framework on GPUs. PPoPP, 2014.

[25] Y. Yang, and H. Zhou. CUDA-NP: Realizing Nested Thread-Level
Parallelism in GPGPU Applications. PPoPP, 2014.

[26] Y. Yang, P. Xiang, J. Kong, M. Mantor and H. Zhou. A GPGPU
Compiler for Memory Optimization and Parallelism Management.
PLDI, 2010.

[27] Y. Yang, P. Xiang, M. Mantor, N. Rubin and H. Zhou. Shared
Memory Multiplexing: A Novel Way to Improve GPGPU
Performance. PACT, 2012.

