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Automatic Defect Inspection for LCDs Using  
Singular Value Decomposition 

 

ABSTRACT 
 

Thin Film Transistor Liquid Crystal Displays (TFT-LCDs) have become 

increasingly popular and dominant as display devices. Surface defects on TFT panels 

not only cause visual failure, but result in electrical failure and loss of LCD 

operational functionally. In this paper, we propose a global approach for automatic 

visual inspection of micro defects on TFT panel surfaces. Since the geometrical 

structure of a TFT panel surface involves repetitive horizontal and vertical elements, it 

can be classified as a structural texture in the image. The proposed method does not 

rely on local features of textures. It is based on a global image reconstruction scheme 

using the singular value decomposition (SVD). Taking the image as a matrix of pixels, 

the singular values on the decomposed diagonal matrix represent different degrees of 

detail in the textured image. By selecting the proper singular values that represent the 

background texture of the surface and reconstructing the matrix without the selected 

singular values, we can eliminate periodical, repetitive patterns of the textured image, 

and preserve the anomalies in the restored image. In the experiments, we have 

evaluated a variety of micro defects including pinholes, scratches, particles and 

fingerprints on TFT panel surfaces, and the result reveals that the proposed method is 

effective for LCD defect inspections. 

 

Keywords: LCDs, defect inspection, singular value decomposition, machine vision 
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1. INTRODUCTION 
 

Thin Film Transistor Liquid Crystal Displays (TFT-LCDs) have become 

increasingly important in recent years due to their full-color display capabilities, low 

power consumption and small size. In order to monitor the process stability and 

guarantee the display quality of LCD flat panels, the inspection of defects on the TFT 

panels becomes a critical task in manufacturing. Human visual inspection and 

electrical functional tests are the most commonly used methods for LCD defect 

detection. However, manual inspection is a time consuming and tiresome task. The 

manual activity of inspection could be subjective and highly dependent on the 

experience of human inspectors. The electrical functional test is inherently limited to 

offline operations, and generally can only be accomplished after the fabrication of a 

TFT panel is complete. In this paper, we propose an automatic visual system for LCD 

defect inspections.  

Surface defects of the TFT panel not only cause visual failure but also cause 

electrical failure to operate an LCD panel. Appearance defects on TFT panels can be 

roughly classified into two categories, macro and micro defects [12]. Macro defects 

include “MURA”, “SIMI” and “ZURE”. “MURA” means unevenness of a TFT 

panels. “SIMI” mean stains on a TFT panel. “ZURE” means misalignment of a TFT 

panel. Micro defects include pinholes, fingerprints, particles and scratches. The macro 

defects appear as high contrast regions with irregular sizes and shapes. They are 

generally large in size and, therefore, can be easily detected by human inspectors. 

However, sizes of micro defects are generally very small and can not be easily found 

by human inspectors or detected with electrical methods. The proposed method in this 

paper especially focuses on the inspection of micro defects by utilizing the structural 

features of TFT panels. 
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Regarding automatic inspection systems for LCDs, several electrical or optical 

based inspection techniques have been developed for LCD manufacturing [3,7,18,25]. 

Henly and Addiego [5] used a 2-D electro-optic modulator to generate voltage images, 

which measured the surface potential of the LCD panel in a non-contact manner. Kido 

et al. [26] presented an optical charge sensing technique for partially completed 

active-matrix LCD panels. Surface reflection was used to sense optical changes and to 

generate a map that shows the type and location of line and point defects. Most 

existing methods of automatic inspection systems for LCDs are based on conventional 

electrical methods to detect the surface potential. Those electrical methods work well 

for functional verification of a TFT panel. As aforementioned, they can only be 

accomplished after the fabrication is completed. In-process inspection may not be 

possible with the functional test approach. 

A few vision-based techniques that use pattern-matching algorithms were 

developed for LCDs inspection. Nakashima [12] presented an inspection system based 

on image subtraction and optical Fourier filtering for detecting defects on an LCD 

color filter panel. The image subtraction method was utilized to detect white and 

black defects such as black matrix holes and particles, and the Fourier filtering was 

applied for grain defects. Sokolov and Treskunov [24] developed an automatic vision 

system for final output check of LCDs. For defect detection they compared brightness 

distributions between a reference LCD image and a test image. The existing 

vision-based techniques generally need a pre-stored reference image for comparison. 

This requires a large volume of data for reference and precise environmental controls 

such as alignment and lighting for test images. Moreover, the techniques for LCD 

inspection mainly focus on final appearance checks for defects such as nap or 

dark/bright spots after the fabrication is completed. 
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A TFT panel generally involves repetitive horizontal gate lines and vertical data 

lines. Since the geometrical structure of a TFT panel surface involves these horizontal 

and vertical elements, it can be classified as a structural texture in the image. The 

textural feature of a TFT panel surface results in a homogeneous image that consists 

of an arrangement primarily of horizontal and vertical lines appearing periodically on 

the surface. Since singular value decomposition (SVD) of a matrix involves horizontal 

and vertical basis functions, it is well suited for representing the structural features of 

TFT panels. In this study, we use the SVD-based image reconstruction technique to 

detect the micro defects on TFT panel surfaces. 

The SVD method was first proposed in the 1970s and has been applied in a wide 

range of computer vision applications such as image hiding [14,21], image restoration 

[10,11,16], and image compression and reconstruction [1,2,9,15,19,20,22,27,28]. For 

image compression and reconstruction applications, the SVD-based methods were 

mainly applied to extract the significant feature components of the image. The global, 

main information of the image is mostly concentrated within a certain number of 

singular values with related singular vectors. Only the relevant parts of the singular 

values and related singular vectors need to be retained as the compressed data for 

reconstructing the original images. The local, detailed information can be truncated to 

eliminate the redundancy of image compression. 

A few studies have been done with the use of the SVD for texture analysis in 

computer vision. Luo and Chen [8] utilized the SVD for texture discrimination. They 

used the proportion of dominant singular values of an image matrix as textural 

features to discriminate textures. Hatipoglu and Mitra [23] combined Teager filters 

and the SVD for texture feature extraction. Teager filters were first used to find the 

local energy values and provide efficient feature vectors. The filter outputs were then 
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combined with the eigenvalues obtained from the SVD of local image partitions to 

form feature vectors. Kvaal et al. [13] used the SVD for feature extraction from the 

image of bread. They applied the SVD to extract the singular values of each inspected 

image and to form an SV-spectra matrix. Then, the SV-spectra matrix was used to 

classify the sensory porosity of wheat baguettes. 

The aforementioned SVD-based methods for texture analysis generally use 

singular values or singular vectors derived from a textured image to characterize the 

textural features, and then use complicated classifiers to segment or classify textures. 

However, different textures may need different textural features to describe the 

textural patterns. The feature extraction process for a best set of textural features is 

generally carried out by trial and error, and may highly rely on human expertise.  

In this paper, we propose a global approach that uses an SVD-based image 

reconstruction technique for inspecting micro defects including pinholes, scratches, 

particles and fingerprints on the surface of TFT panels. The proposed method does not 

rely on textural features to detect local anomalies, and does not require a reference 

image for comparison. It alleviates all limitations of the feature extraction schemes 

and template matching methods just mentioned. 

The SVD can be used to decompose an image and obtain a diagonal matrix. The 

ordered entries of the diagonal matrix are singular values. The main information, or 

the approximation, of an image can be represented by a few singular values with large 

magnitude. The remaining singular values with small magnitude provide detailed 

information of the image. Since the TFT panels contain periodical horizontal and 

vertical structures, the larger singular values retain the information of the repetitive 

structural pattern of a TFT panel, and the smaller singular values are associated with 

anomalies in the TFT panel. In the application of LCD defect inspection, we can set 
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the larger singular values to zero and preserve the smaller singular values to 

reconstruct the image. The background texture will be removed and anomalies can be 

distinctly enhanced in the restored image accordingly. 

The SVD is ideally suited for describing the orthogonal pattern in a gray-level 

image. By considering an input image as a matrix, the SVD process decomposes the 

image into the eigenvalue-eigenvector factorization. We first select the proper number 

of larger singular values to represent the repetitive, orthogonal structure features of a 

TFT panel. Then, we set the selected singular values to zero and reconstruct the image. 

For a faultless TFT panel, the reconstruction process will result in a uniform image. 

For a defective TFT panel, the anomalies will be preserved and the periodical patterns 

of the horizontal and vertical lines will be eliminated on the restored image. Finally, 

the statistical process control principle is used to set the threshold for distinguishing 

between defective regions and uniform regions in the restored image.  

This paper is organized as follows: Section 2 first discusses the structural 

characteristics of TFT panel surfaces, and describes the properties of the SVD. The 

selection of the proper number of larger singular values, and the image reconstruction 

scheme for LCD defects inspection, are then thoroughly described. Section 3 presents 

the experimental results from a variety of LCD micro defects. Sensitivity of changes 

in image rotation and the sensitivity of the selective number of singular values are 

also evaluated in this section. The paper is concluded in section 4. 
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2. THE DEFECT DETECTION SCHEME 
 

2.1 The Structural Pattern of a TFT panel 
 

A TFT panel generally contains horizontal gate lines on one plane and vertical 

data lines on the other plane. At each pixel, the gate of the TFT is connected to the 

gate line and the source is connected to the data line. Figure 1 shows the schema of a 

single pixel of a typical TFT panel [26]. Since the TFT panel is comprised of 

horizontal gate lines and vertical data lines, it forms a structural texture that contains 

horizontal and vertical line patterns. The structurally textured image of a TFT panel is 

shown in Figure 2. 

 

2.2 Singular Value Decomposition  
 

Consider an input image of size NM ×  as a matrix X  of dimensions NM × , 

where NM ≥ . It is possible to represent this image in the r -dimensional subspace, 

where r  is the rank of X , and Nr ≤ . The SVD [6] is a factorization of a matrix X  

into orthogonal matrices,  

 
TUSVX =                                    (1) 

 

where U  is an rM ×  matrix and consists of the orthonomalized eigenvectors of 

TXX , V  is an rN ×  matrix and consists of the orthonomalized eigenvectors of 

XX T . S  is an rr ×  diagonal matrix consisting of the “singular values” of X , 

which are the nonnegative square roots of the eigenvalues of XX T . These singular 

values, denoted by σ , are sorted in non-increasing order, i.e., 021 ≥≥⋅⋅⋅≥≥ rσσσ . 

The SVD is based on orthonormal bases for decomposing the matrix X [17]. 

The singular values (σ ) represent the energy of matrix X  projected on each 
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subspace. The singular values and their distribution, which carry useful information 

about the contents of X , vary drastically from image to image. For an image with 

orthogonal texture content such as horizontal and/or vertical structures, only a very 

few larger singular values will dominate, and yet all others have magnitudes close to 

zero. Figure 3 shows two artificial images and a TFT panel image and their 

corresponding first ten singular values. Both artificial images in Figures 3(a) and (b) 

contain well-structured lines with different line spacing. Figure 3(c) is a real TFT 

panel image. All three images contain horizontal and vertical lines patterns. From 

Figure 3, we can observe that the first (the largest) singular value dominates all other 

singular values, which decrease to zero rapidly.  

In most of the cases, the larger singular values (with lager magnitude) represent 

the global approximation of the original image. All other smaller singular values 

provide the local, detailed information of the image. Therefore, we can select the 

proper number of larger singular values to represent the global, repetitive textural 

feature of the image and remove such background texture by reconstructing the image 

without the use of larger singular values. 

 

2.3 SVD-Based Image Reconstruction 
 

In this study, we use machine vision to tackle the problem of detecting micro 

defects including pinholes, scratches, particles and fingerprints which appear as local 

anomalies in TFT panels. The SVD has desirable properties of orthogonal bases to 

deal with the orthogonal textural feature of TFT panel surfaces. Therefore, the 

SVD-based image reconstruction technique is used to remove the orthogonal line 

patterns in TFT panel surfaces. With this approach, we do not have to define various 

features for different types of defects. For defect detection purposes, the SVD-based 
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image reconstruction scheme simply eliminates all repetitive horizontal and vertical 

patterns of TFT panels. What is retained in the resulting image can then be easily 

identified as defects on the TFT panels.  

The image reconstructed from the selective singular values is given by 

 

∑
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  σ                               (2) 

 

where 
∧
X  is the reconstructed image, jU  and jV  are jth  column vectors of U  

and V , respectively; k  is some selected number of singular values; jσ  is jth  

singular value of S , and r  is the rank of the matrix X . 

For the image compression and reconstruction application, we can preserve only 

the k  largest singular values to closely approximate the original image. Figure 4 

shows an artificial orthogonal-lines image and its reconstructed images. Figure 4(a) 

shows the original image containing horizontal and vertical lines. Figures 4(b1) and 

(b2) show the images reconstructed from individual 1σ  and 2σ , respectively. It can 

be observed that the reconstructed image from sole 1σ  or 2σ  alone can not 

sufficiently represent the texture feature of the original image. It can be seen from 

Figure 4(b3) that the reconstructed image from the first two largest singular values 

(both 1σ  and 2σ ) can well represent the original image (Fig. 4(a)). Note that the 

image size in Figure 4 is 256256× , and there are a total of 256 singular values. Only 

the first two largest singular values, 1σ  and 2σ , dominate the global, repetitive 

texture of the line pattern. 

On the other hand, in the defect inspection application, we can set the proper 

number of larger singular values (from 1σ  to kσ ) to zero and preserve the smaller 
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singular values to reconstruct an image. The background texture will be removed and 

the defects will be preserved if they exist. Figures 4(c1)-(c3) illustrate the 

reconstructed images by excluding the singular values with larger magnitude. Figure 

4(c1) shows the reconstructed image by excluding the largest singular value 1σ , and 

Figure 4(c2) shows the resulting image by excluding the second largest singular value 

2σ . It can be seen that solely setting 1σ  or 2σ  to zero cannot sufficiently eliminate 

the background texture in the reconstructed image. Figure 4(c3) demonstrates the 

reconstructed image by excluding both 1σ  and 2σ  simultaneously. We can observe 

that the resulting image is approximately a uniform black image for the original 

faultless image.  

 

2.4 Selecting the Proper Number of Singular Values  
 

When using the SVD image reconstruction scheme for defect detection, we first 

use Eq. (1) to decompose the image and obtain a set of singular values. Then, we need 

to select the proper number (i.e., the parameter k  in Eq. (2)) of singular values, 

which can sufficiently represent the repetitive structural pattern, and use Eq. (2) to 

reconstruct the image. In this study, the proper number k  is determined by the 

difference between two adjacent singular values iσ  and 1+iσ . The difference can be 

considered as the degree of significance of 1+iσ  with respect to iσ . Since various 

images have a different spread of ranges of magnitudes of singular values (see Fig. 

3(d)), it is difficult to determine a suitable threshold directly from the difference 

between iσ  and 1+iσ  for the selection of the proper number k . In order to find the 

proper value of the threshold and to accommodate various images, singular values of 

each image under inspection must be normalized. The normalization proceeds as 
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follows: 
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where '
iσ  is the ith  normalized singular value, iσ  is the ith  singular value, σµ  

is the mean and σs  is the standard deviation of all singular values for a given image. 

Let '
1

'
+−=∆ iii σσσ , which represents the normalized marginal gain of energy at 

singular value number i . If iσ∆  is larger than some threshold ( σ∆T ), the additional 

singular value 1+iσ  is considered to be significant. It must also contribute significant 

energy of the repetitive horizontal and vertical background texture. In that case, it 

should be excluded in the reconstruction process. 

Figure 5(a) represents an artificial structural image that contains two scratch 

defects. Figure 5(b) shows the plot of the marginal gain ( σ∆ ) of the normalized 

singular values of the image in Figure 5(a). It can be observed from Figure 5(b) that 

the marginal gains decrease rapidly to zero after the stable point and become steady 

afterwards. Thus, the value at the stable point can be used as a threshold ( σ∆T ) to 

determine the proper number of singular values that contribute in a major way to the 

background texture. For Figure 5, the proper number is 4 ( k =4), i.e., 1σ , 2σ , 3σ  

and 4σ  should be excluded for image reconstruction. 

Once the proper number of singular values is selected, we can eliminate the 

background texture and preserve the defects by excluding the first k  largest singular 

values in Eq. (2). The reconstructed image in Figure 5(c) shows that the resultant 

region associated with the repetitive line pattern becomes approximately uniform and 

local anomalies of scratches are well preserved in the reconstructed image. 

Since the intensity variation in the background region is very small in the 



 11 

reconstructed image, we can use the statistical process control principle to set up the 

control limits for distinguishing defects from the uniform region. The upper and lower 

control limits for intensity variation in the reconstructed image are given by 

 

∧∧ ⋅±
XX
stµ                                  (4) 

 

where, ∧
X

µ  and ∧
X
s  are the mean and standard deviation of gray levels in the 

restored image 
∧
X ; and t  is a control constant. According to the Chebyshev’s 

theorem [4], the probability that any random variable x  will fall within t  standard 

deviations of the mean is at least 2

11
t

− . That is, 
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In TFT panel manufacturing, the size of a micro defect is generally small with 

respect to the whole sensed image. In this study, we set the control constant to 4=t , 

which corresponds to 93.75% for pixels falling within the control limits.  

If a pixel with its gray level falls within the control limits, the pixel is classified 

as a homogeneous element of the background region. Otherwise, it is classified as a 

defective element. Figure 5 (d) depicts the defect detection result of Figure 5 (c) as a 

binary image. It shows that the two scratches in the original image are correctly 

presented in the resulting binary image.  
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3. Experiments and Discussion 
 

3.1 Experimental Results 
 

In this section, we present experimental results from a variety of micro defects 

including pinholes, scratches, particles and fingerprints on TFT panel surfaces to 

evaluate the performance of the proposed defect detection scheme. The test images 

are 256256×  pixels wide with 8-bit gray levels. Figures 6(a)-(c) show respectively 

three defective images containing pinhole, scratch and particle blemishes on TFT 

panel surfaces under a fine image resolution (60 pixels/mm). Figure 7 shows a 

fingerprint defect under a coarser image resolution (20 pixels/mm). The pinhole, 

scratch and particle defects can only be detected in images of fine resolution, whereas 

the fingerprint defect can only be observed in images of coarse resolution.   

Figures 8(a)-(d) depict the plots of marginal gain ( σ∆ ) of the four test images 

shown in Figures 6(a)-(c) and Figure 7, respectively. It can be observed from Figure 8 

that if the marginal gains are less than 0.05, they rapidly decrease approximately to 

zero and become steady afterwards. The singular values with σ∆ >0.05 sufficiently 

represent the orthogonal structure pattern of a TFT panel surface. 

Table 1 summarizes the detailed information about the normalized singular 

values and their marginal gains of the four defect images in Figures 6(a)-(c) and 

Figure 7. It can be seen from the table that the marginal gains greater than 0.05 are 

fluctuant and drop rapidly, whereas those smaller than 0.05 will steadily decrease and 

approximate to zero afterwards. Therefore, 0.05 is the threshold ( σ∆Τ =0.05) of the 

marginal gain ( σ∆ ) used in this study to determine the proper number of singular 

values for defect detection in TFT panel surfaces. The numbers of singular values 

selected for pinholes (Fig. 6(a)), scratches (Fig. 6(b)), particles (Fig. 6(c)) and 
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fingerprints (Fig. 7) images are 5, 8, 4 and 6, respectively, based on the resulting 

statistics in Table 1. 

Figures 9(a1), (b1), (c1) and (d1) show the defect images of the TFT panel 

surfaces in Figure 6(a)-(c) and Figure 7, respectively. Figure 9(a2) shows the 

reconstruction result by setting the first five largest singular values (i.e., 521 ,,, σσσ ⋅⋅⋅ ) 

to zero for the pinhole defective image with (Fig. 9(a1)). It can be found that the 

repetitive structural texture becomes an approximately uniform gray-level region and 

the abnormal pinhole is well enhanced in the restored image. Figures 9(b2) and (c2) 

show the reconstruction results of the defective images with scratch (Fig. 9(b1)) and 

particle (Fig. 9(c1)) by setting the first eight (i.e., 821 ,,, σσσ ⋅⋅⋅ ) and the first four 

(i.e., 421 ,,, σσσ ⋅⋅⋅ ) singular values to zero, respectively. They also reveal that the 

scratch and particle defects are well preserved in the restored images. Figure 9(d2) 

illustrates the restored image of Figure 9(d1) by setting the first six singular values (i.e. 

621 ,,, σσσ ⋅⋅⋅ ) to zero. The fingerprint is also distinctly enhanced in the restored 

image. Figures 9(a3)-(d3) show the defect detection results of Figures 9(a1)-(d1) as 

binary images, of which the control constant 4=t  is used for all test images. It can 

be seen that the orthogonal texture patterns on the TFT panel surfaces are eliminated 

and defects are distinctly preserved. 

In order to test the robustness of the proposed method, the detection result of a 

faultless TFT panel surface is also evaluated. Figure 10(a) shows a faultless version of 

the image in Figure 6, and Figure 10(b) depicts its corresponding marginal gain ( σ∆ ). 

Table 2 summarizes the faultless image’s detailed statistics for the normalized singular 

values and their marginal gains. Based on the threshold ( σ∆Τ =0.05) selected before, it 

can be observed from Figure 10(b) and Table 2 that the proper number of singular 

values are six ( 6=k ). Figure 10(c) shows the restored image by setting the first six 
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largest singular values (i.e., 621 ,,, σσσ ⋅⋅⋅ ) to zero. The restored image of the faultless 

surface is approximately a uniform gray-level image. As seen in Figure 10(d), the 

resulting binary image of the faultless surface is uniformly white. No defect is 

claimed in the resulting image for the faultless sample. 

 

3.2 Effect of Varied Number of Singular Values 
 

The number of singular values, k , determines how many singular values will be 

used to represent the background texture. Too many selected singular values will 

remove both background texture and local anomalies in the restored image, and may 

overlook subtle defects. However, too few selected singular values cannot completely 

remove the background texture in the restored image and may result in false alarms. 

The test image in Figure 7 is used as the sample to evaluate the effect of varied 

numbers of singular values on detection results. 

As mentioned, we use the threshold σ∆Τ =0.05 to determine the proper number 

of singular values. In this experiment, we have examined eight different numbers in 

the neighborhood of the selected number of singular values k , i.e., ik ±  for =i 1, 2, 

3, 4. Figure 11(a) presents the restored image of Fig. 7 by excluding the first six 

largest singular values (i.e., 6=k ). Figures 11(b)-(e) show the restored images of 

Figure 7 with selected numbers 5, 4, 3, and 2, respectively. When the selected number 

of singular values is not sufficient, the background texture residuals may be retained 

in the restored image. They have no effect on the local defects. It can be seen from 

Figures 11(b) and (c) that the background texture can also be sufficiently removed in 

the restored image for the numbers of singular values 1−k  and 2−k  However, 

Figures 11(d) and (e) show that the residuals of repetitive horizontal and vertical lines 

patterns along with the defects are retained in the restored images. 
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Figures 11(f)-(i) show the restored images of Figure 7 with selected numbers 7, 8, 

9, and 10, respectively. When the selected number of singular values is more than 

required, the local defects will be blurred and better uniformity of the background 

texture will be generated in the restored image. It can be seen from Figures 11(f) and 

(g) that the restored images of the TFT panel surface can still well enhance the defects. 

However, Figures 11(h) and (i) show that the defects become blurred with the 

increasing numbers of singular values 3+k  and 4+k . 

Based on the result from Figure 11, we can find that 2±k  will not affect the 

result of an LCD defect inspection. The restored images of defective surfaces can still 

effectively remove the background texture and well preserve defects. The selection 

procedure for the number of singular values along with the tolerance of SVD image 

reconstruction make the proposed method practical for defect detection in TFT panels.  

 

3.3 Effect of Image Rotation  
 

The SVD is based on the orthogonal bases used to decompose a matrix. The 

orthogonal bases are sensitive to the rotation of an image. The test image in Figure 

6(b) is used as the sample to evaluate the effect of rotation on detection results. The 

test image is rotated by o1 , o2 , o3 , o4  and o5 .  

Figures 12(a)-(f) present the restored images in varied angles of the test image in 

Figure 6(b). Figure 12(a) shows the restored image of the original image in Figure 6(b) 

without rotational change. It can be observed from Figures 12(b) and (c) that the 

restored images of the TFT panel surface can still well enhance the defects with a few 

random noisy points when the rotation angles are not larger than o2 . However, when 

the rotation angles are larger than o2 , the residuals of repetitive vertical line patterns 
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along with the defects are retained in the restored images, as seen in Figures 12(d)-(f). 

The larger the rotation angles, the more residuals of structural lines are preserved in 

the resulting images.  

Based on the results from Figure 12, we find that 2 degrees is the acceptable 

rotation for LCD defect inspection. When rotation angles of a sensed image are 

smaller than 2 degrees, the restored image of a defective surface can still effectively 

remove the background texture. Conversely, if the rotation angles are greater than 2 

degrees, the restored images will contain many structural background noisy points and 

may result in false rejection of a faultless image. In LCD manufacturing, the TFT 

panels are generally well aligned. The o2 -rotation restriction of the SVD-based 

machine vision scheme will not affect the detection performance in practice. 

 

4. CONCLUSIONS 
 

Surface defects on TFT panels not only cause visual failure, but result in 

electrical failure and loss of LCD operational functionally. In this paper, we have 

presented a global approach for automatic visual inspection of micro defects on TFT 

panel surfaces. The proposed method does not rely on the conventional electrical and 

feature extraction methods to detect defects. It is based on an image reconstruction 

scheme using singular value decomposition. The SVD approach decomposes an 

image into the eigenvalue-eigenvector factorization. The SVD orthogonal bases can 

well represent the horizontal and vertical structures of a TFT panel. By selecting the 

proper number of singular values on the diagonal matrix and reconstructing the image 

without the use of the selected singular values, we can eliminate global repetitive 

patterns of the structurally textured image, and preserve local anomalies in the 

reconstructed image.  
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In the experiments, we have evaluated a variety of micro defects including 

pinholes, scratches, particles and fingerprints on TFT panel surfaces. The 

experimental results have concluded that 0.05 is a well-suited threshold of marginal 

gains ( σ∆ ) to determine the proper number of larger singular values that contribute to 

the repetitive background texture. The experiments also show that the selected 

number k  of larger singular values can tolerate minor variation without affecting the 

reconstruction result. The experiment on the effect of rotation has shown that the 

tolerable rotation angles of the proposed method are 2 degrees. The proposed 

SVD-based machine vision scheme has shown promising results for micro defects 

inspection of TFT panels.
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Figure 1. The schema of a single pixel of a 

TFT panel (source: see [26]). 

Figure 2. The surface image of a  

TFT panel. 
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Figure 3. (a) and (b) Two artificial lines images with different line spacing; (c) a TFT 

panel image; (d) the plot of the corresponding first ten largest singular 

values.   
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(b1) (b2) (b3) 

   

 
(a) 

(c1) (c2) (c3) 

Figure 4. (a) The artificial horizontal/vertical lines image (the original image); (b1) 

the reconstructed image from 1σ ;  (b2) the reconstructed image from 2σ ; 

(b3) the reconstructed image from both 1σ  and 2σ ; (c1) the reconstructed 

image excluding 1σ ;  (c2) the reconstructed image excluding 2σ ; (b3) the 

reconstructed image excluding both 1σ  and 2σ . 
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Figure 5. The artificial orthogonal image with scratch defects:(a) the original image; 

(b) the plot of the marginal gain ( σ∆ ) of normalized singular values; (c) the 

restored image; (d) the resulting binary image for defect segmentation. 
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(a) (b) (c) 

Figure 6. Three defective images under fine image resolution (60 pixels/mm): (a) 

pinhole; (b) scratch; (c) particle.  

 

 
Figure 7. A defective image with fingerprint under coarse image resolution (20 

pixels/mm). 
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(a)  (b) 

(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

  

(c)  (d) 

Figure 8. The plots of marginal gain ( σ∆ ) of defective images: (a) the defective image of 

pinhole in Fig. 6(a); (b) the defective image of scratch in Fig. 6(b); (c) the defective 

image of particle in Fig. 6(c); (d) the defective image of fingerprint in Fig. 7. 
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Table 1. The normalized singular values and their marginal gains ( σ∆ ) for the 

defective images in Figs. 6 and 7. 

Defective 

image 

Pinhole 

Fig. 6(a) 

Scratch 

Fig. 6(b) 

Particle 

Fig. 6(c) 

Fingerprint 

Fig. 7 

Singular 

value ( iσ ) 
'σ  σ∆  'σ  σ∆  'σ  σ∆  'σ  σ∆  

1σ  15.86 14.56 15.77 13.96 15.83 14.38 15.89 15.29 

2σ  1.30 0.85 1.81 0.98 1.45 0.90 0.60 0.10 

3σ  0.45 0.15 0.83 0.30 0.55 0.26 0.51 0.17 

4σ  0.30 0.13 0.53 0.21 0.30 0.04 0.34 0.05 

5σ  0.17 0.04 0.32 0.05 0.25 0.04 0.29 0.10 

6σ  0.13 0.04 0.27 0.10 0.21 0.04 0.19 0.02 

7σ  0.09 0.03 0.17 0.10 0.17 0.03 0.17 0.01 

8σ  0.06 0.03 0.07 0.02 0.14 0.02 0.16 0.04 

9σ  0.03 0.01 0.05 0.02 0.12 0.03 0.12 0.01 

10σ  0.02 0.02 0.04 0.01 0.09 0.01 0.11 0.02 
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(a1) (a2) (a3) 
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(d1) (d2) (d3) 

Figure 9. (a1)-(d1) The defective images with pinhole, scratch, particle and fingerprint, 

respectively; (a2)-(d2) the respective restored images; (a3)-(d3) the 

resulting binary images for defect segmentation. 
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(a) 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 
(c) (d) 

Figure 10. (a) A faultless version of the image in Fig. 6; (b) the plot of marginal gains 

( σ∆ ); (c) the restored image; (d) the resulting binary image. 
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Table 2. The normalized singular values and their marginal gains ( σ∆ ) of the 

faultless image in Fig. 10(a). 

Faultless image in Fig. 10(a) Singular value  

( iσ ) 'σ  σ∆  

1σ  15.87 14.55 

2σ  1.31 0.87 

3σ  0.44 0.27 

4σ  0.17 0.09 

5σ  0.08 0.05 

6σ  0.03 0.03 

7σ  0.00 0.02 

8σ  -0.02 0.01 

9σ  -0.03 0.00 

10σ  -0.03 0.01 
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(a) 6=k  

 

 

 

 

 

 

 

 

 
(b) 1−k (i.e., 5) (c) 2−k (i.e., 4) (d) 3−k (i.e., 3) (e) 4−k (i.e., 2) 

 

 

 

 

 

 

 

 
(f) 1+k (i.e., 7) (g) 2+k (i.e., 8) (h) 3+k (i.e., 9) (i) 4+k (i.e., 10) 

 

Figure 11. The restored results of the fingerprint image in Fig. 7 from different 

selected numbers of singular values: (a) the result from 6=k ; (b)-(e) the 

results from different selected numbers 1−k , 2−k , 3−k  and 4−k , 

respectively; (f)-(i) the results from different selected numbers 1+k , 

2+k , 3+k  and 4+k , respectively. 
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(a) o0  (b) o1  (c) o2  

 

 

 

 

 

 

(d) o3  (e) o4  (f) o5  

Figure 12. The restored results of the scratch image in Fig. 6 from various rotation 

angles: (a) the result from the original image; (b)–(f) the results from the 

images with o1 -, o2 -, o3 -, o4 - and o5 -rotation, respectively. 

 

 

 

 


