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ABSTRACT:

In this paper we present a method for fully automatic generation of digital surface models (DSM) from very high resolution (VHR)

satellite imagery and the consecutively automatic change detection from the derived 3D information.

Common change detection methods are normally only based on spectral change detection. These methods will fail for e.g. comparing

summer and winter scenes with the latter covered with snow. Introducing the digital elevation model into the change detection process

will allow for a more detailled object modeling and also for the possibility to detect more sophisticated changes like volume estimation

of mining activities.

Here we present the involved methods for the generation of the high resolution surface models, the fusion and classification and finally

the automatic 3D change detection. The methods are applied to some VHR stereo test data sets and the results are evaluated for quality

and usefulness for automatic information derivation from large data sets.

1 INTRODUCTION

With the launch of more and more high resolution satellites like

the Sentinel series the available amount of earth observation data

increases so rapidly that new fully automatic methods for infor-

mation derivation from these data is increasingly essential. Very

high resolution satellites like the commercial WorldView, Geo-

Eye or Pléiades satellites and their predecessors QuickBird and

Ikonos expanded the ground sampling distance for the first time

below one metre. Such resolutions allow the automatic genera-

tion of high resolution DSMs even from urban areas. Through

the newly available dense matching methodologies very high de-

tailed DSMs can be derived for urban areas, especially if several

viewing directions are acquired by the satellite within one orbit.

Consecutive monitoring of areas and automatic derivation of the

digital surface models make an automatic detection of changes

more efficient than just using the spectral information. So e.g.

the image based automatic change detection between vegetation

and snow covered regions delivers too much false positive results

where volume changes like new buildings, excavations or dumps

mostly will not be detected correctly. In such cases the generation

of DSMs give an additional information for detection of changes.

A newly developed method for automatic bundle adjustment of

VHR stereo or multistereo images and the subsequent derivation

of a DSM of high accuracy is presented, using the DLR developed

semi global matching (SGM) method. By developing a method-

ology of fusing the information from imagery with the high reso-

lution DSM from different epochs an automatic detection of three

dimensional changes together with a detailled volume estimation

can be performed.

1.1 Overview

In this article we first present an operational method for gener-

ating a digital surface model (DSM) from two or more satellite

images from very high resolution (VHR) satellites – i.e. satellites

with a ground sampling distance of about 2.5 m or below. Using

two DSMs and the associated ortho images of different epochs

allow for a more sophisticated change detection than only using

imagery. In the second part we describe a new approach for an

also operational and fully automatic method for deriving change

detection maps.

In the Experiments section we apply the presented change de-

tection method to different VHR image sets of same or different

sensors and discuss the results finally in the Results section.

1.2 Preliminary work

The presented system is based on a method for dense stereo match-

ing called Semi global matching described in Hirschmüller (2005)

and refined in dAngelo et al. (2008) which generates a dense dig-

ital surface model (DSM). Based on this resulting DSM a digital

terrain model (DTM) containing only the ground height and no

objects like buildings and trees is derived using approaches as de-

scribed in Arefi et al. (2009) or Krauß et al. (2011). Also ortho

images can be calculated using the stereo imagery and the result-

ing DSM. Based on these ortho images objects are classified and

extracted as described in Krauss et al. (2012). Afterwards a ro-

bust change detection method like the one described in Tian and

Reinartz (2011) is applied to the imagery and DSM data.

2 METHOD

2.1 DSM generation

Before applying the semi global matching (Hirschmüller, 2005)

to a set of different multitemporal (multi-) stereo image pairs first

a bundle block adjustment as described in dAngelo et al. (2008)

has to be done to assure a highly accurate (below one pixel) rel-

ative orientation of all of the images. These relatively corrected

images are transformed to epipolar geometry (see fig. 1).

In this geometry height changes show only up in horizontal shifts.

So the result of applying the semi global matching (see fig. 2) to

each stereo pair is a so called dense disparity map D(p) fitting on

one of the stereo images and containing a relative pixel distance

of each pixel to it’s mate in the stereo partner image in epipolar

(horizontal) direction.



Figure 1: Pan channels of a GeoEye stereo pair transformed to

epipolar geometry; area 16 × 8 km, Jülich, Germany, acquired

2012-08-12; north to the upper right corner

Figure 2: Semi global matching method: for a disparity range

[−d, d] a cost cube C(x, y, d) (e.g. |I1(x, y) − I2(x + d, y)|)
of size w × h × (2d + 1) (w, h are the width and height of the

images Ii) is calculated, afterwards these costs are aggregated

from different directions (semi-globally) and the disparity d con-

taining the lowest aggregated cost for each pixel p = (x, y) is

selected; applying this method exchanging I1 and I2 and doing a

left-right-check filters out most of the outliers (mostly occluded

areas)

Transforming these disparities D(p) to heights using the sensor

model and reprojecting the resulting disparity map back on one

of the stereo images result in a so called height-map H(p). This

height-map fits exactly on one of the stereo images and contains

for each pixel the derived absolute ellipsoid height or no-value if

the stereo processing fails for this pixel. The latter occurs usually

in so called “occlusions”. These are areas which are only visible

in one of the stereo images like walls of houses or narrow streets.

See for clarification of the terms used also fig. 3.

Using the original imagery together with a filled height map al-

lows the generation of ortho images. Applying this method to

stereo pairs of different epochs results in one filled and one un-

filled DSM together with one ortho image for each of the epochs

(see figs. 4 and 5).

2.2 Data preparation

For applying robust change detection methods from the DSMs

and ortho imagery derived in the DSM generation step some more

information has to be extracted in advance. This contains the

digital terrain model (DTM) which is in turn together with the

DSM used for detection of elevated objects. Also the multispec-

tral imagery has to be converted to top of atmosphere (TOA) re-

flectances for classification of ground objects.

The DTM is generated using the morphological method described

in Krauß et al. (2011) based on the un-interpolated DSM. After-

wards a shadow mask is calculated following the algorithm of

Figure 3: Terms and definitions of all components used through-

out this paper illustrated on one image line
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Figure 4: DSM of the GeoEye scene from 2012, 16 × 9 km, 0 to

350 m height

Makarau et al. (2011) using the blue, green and red channel of

the ortho photo. Also the land cover is derived from the pan-

sharpened multispectral TOA images using the spectral fuzzy clas-

sification method described in Krauss et al. (2012).

Combining the DSM and DTM allows the extraction of high ob-

jects. Adding the shadow and classes gives as result the class map

shown in fig. 6. Using these classes the changes can be classified

as lined out in tab. 1.

Table 1: Possible changes depending on classified areas, empty

fields mean “no change”, v and v̄ denote vegetation or non-

vegetation, bld. stands for building

low→ low low→ high high→ low high→ high

v → v trees growed trees logged

v → v̄ harvested bld. erected trees logged trees→ bld.

v̄ → v planted trees growed bld. demolished bld.→ trees

v̄ → v̄ bld. erected bld. demolished

In mining areas the classification becomes more complex since

the DTM does not follow the DSM correctly, so the mining area

can show up any of the height changes. In this case only the real

height change is of interest. Also the phenology of the trees have

a great influence on the classification. In the WorldView-2 image

taken in March most of the forest areas do not show up as high

vegetation since the DSM generation process delivers mainly the

more dominant ground.

2.3 Change detection

For applying the 3D change detection first the DSMs contain-

ing no-data values (mismatches and occlusions) have to be filled.



Figure 5: Ortho image of the GeoEye scene from 2012, 16×9 km

Figure 6: Ortho image, unfilled DSM and class map of the

WorldView-2 (2011, top) and the GeoEye (2012, bottom) scenes

(section 150 × 200 m); Classes: red/dark red: high non-

vegetation objects (mainly buildings)/with shadows, tan/blue:

low non-vegetation objects (mainly bare soil)/with shadows, dark

green/olive: high vegetation objects (e.g. trees)/with shadows,

light green/olive: low vegetation objects (grassland)/with shad-

ows

This is done by segmenting the no-data areas. These holes are

filled using the inverse distance weighted interpolation from the

lowest neighbouring heights.

Afterwards the so called Robust difference (Tian and Reinartz,

2011) is used for detecting height changes. The robust difference

for pixel p = (x, y) between the two DSMs D1 and D2 is defined

as

dp(x, y) = min
x′,y′

``

D1(x, y) − D2(x
′

, y
′)

´

≥ 0
´

dn(x, y) = max
x′,y′

``

D1(x, y) − D2(x
′

, y
′)

´

≤ 0
´

with x′ ∈ [x − w, x + w] and y′ ∈ [x − w, x + w] in a small

window around p and d = dp if |dp| < |dn| or d = dn otherwise.

These height changes are filtered afterwards using morphological

closing and opening operation to eliminate noise. Also for a more

accurate change detection of buildings the changes can be masked

using the shadow mask and or other land cover masks. But this

masking of the height changes is not applied in the experiments

described subsequently.

Combining the classification results (vegetation/non-vegetation

and high/low masks) with the detected changes allow for a more

detailled classification of the changes.

3 EXPERIMENTS

3.1 WorldView-2 – GeoEye

The first example is a multi-season multi-sensor 3D change de-

tection of an area near Jülich, Germany containing urban areas,

open land and the largest open-cast mining area for brown coal

in Germany. For the change detection analysis two scenes were

available: A WorldView-2 stereo pair acquired on 2011-03-24 at

10:58 and a GeoEye stereo pair acquired on 2012-08-12 at 10:39.

Based on these stereo images first the DSMs were derived using

the SGM algorithm as described above in fig. 2 and afterwards

the DTM, the filled DSM and the TOA ortho image together with

the classification images were genereated. Fig. 5 shows the ortho

image and fig. 4 the DSM of this area.

Figure 7: Volume changes between the WorldView-2 and GeoEye

scene, 16× 9 km, red: negative changes, green: positive changes

(0–60 m)

Fig. 7 shows the changes resulting from the robust difference cal-

culation and appropriate morphological filtering. Fig. 8 shows a

small detail of the changes. Here a newly erected building can

be seen in the left top edge (in green) while a cut down forest is

visible in the right bottom (in red). The types of objects (build-

ing, forest) and type of change (erection and logging) is hereby

derived from the class-map and following tab. 1.

Figure 8: Volume changes between the WorldView-2 and GeoEye

scene, small section 1100×450 m, top left (green): newly erected

building, bottom right (red): cut down forest, rest (green): trees

grown up or only detected in the summer DSM

Taking only the open-cast mining area in the left bottom edge

(Braunkohletagebau Inden) which is defined as a positive or neg-

ative height change from any kind of vegetation to non-vegetation

allows us to calculate the mined volumes. For this the positive

(green) and negative (red) volumes of fig. 7 are calculated as

79.87 and 122.76 millions of cubic metres. The negative changes

are the whole digged out volume containing the coal and also the



mine wastes. The positive changes are however only the dumped

mine wastes. The mine wastes consist only of earth and stone

with a density of ρsoil = 1500 kg/m3 while the brown coal has

a density of ρcoal = 1000 kg/m3. This allows us to convert the

volume changes to mass changes as shown in tab. 2.

Table 2: Validation of 3D change detection results for the open-

cast mining Inden (left bottom mining area); reference data from

http://de.wikipedia.org/wiki/Tagebau Inden

Value Mine wastes Digged brown coal

Reference amount per year 80–85 Mio t/a 20–25 Mio t/a

Amount between images (506 days) 111–118 Mio t 28–35 Mio t

Volumes (m/ρ) 74–79 Mio m3 28–35 Mio m3

Measured volume changes 80 Mio m3 43 Mio m3

In tab. 2 first the reference amounts per year have to be scaled

to the time distance of the two scenes which are 506 days apart.

Afterwards the amount is converted to volumes and compared to

the measured volumes from the 3D change detection between the

two scenes. Finally we see that the measured volume changes

from the described automatic change detection method comply

very well with the amounts listed on Wikipedia for this mine.

3.2 Ikonos building detection in summer and winter scenes

For an example of a building change-detection in different sea-

sons two sections of Ikonos scenes from Dong-An (North-Korea)

acquired 2006 and 2010 (snow covered) are shown in fig. 9 and

the extracted DSMs in fig. 10.

Figure 9: Ortho images of Ikonos scenes of 2006 (left) 2010

(right, covered with snow), both sections 1000 × 1000 m

Figure 10: DSMs from the scenes of 2006 (left) 2010 (right), both

sections 1000 × 1000 m, color coded heights in m

The described method is applied to the DSMs masked with the

results from the ortho images and deliver the change probility

map shown in fig. 12, left. Using a manually created reference

change mask and thresholding the changes allows for a evalua-

tion of the results (see fig. 11 for explanation of the colors). The

overall accuracy for this example is 0.9920 while the kappa in-

dex of agreement is 0.7502. These measures are calculated pixel-

based between the results and the manually created change mask.

Here the true positives (TP, green) are all pixels found by the al-

gorithm and in the reference mask, true negatives (TN, black) are

the number of pixels detected as unchanged and also marked as

unchanged in the reference. False positives (FP, red) denote un-

changed pixels found erroneously as changes by the algorithm

while false negatives (FN, blue) are changed pixels wrongly clas-

sified as unchanged. From this the overall accuracy (OA) and the

kappa index of agreement κ are calculated as (Congalton, 1991):

OA =
TP + TN

N
and κ =

OA − PA

1 − PA

with N = TP + TN + FP + FN as the total number of pixels

and PA as the hypothetical probability of agreement:

PA =
(TP + FP ) · (TP + FN)

N2
+

(TN + FP ) · (TN + FN)

N2

Figure 11: Color coding scheme of changes shown in change

masks

Figure 12: Detected changes in the Ikonos stereo DEMs of Dong-

An, left: change probability (in %), right: change mask (green:

true detected changes, blue: missed changes, red: erroneously

detected changes)

3.3 Cartosat – Forest

Using the image segmentations of the pre and post images and

merging these together allows also for forest change detection

in pan images as delivered from the indian Cartosat-1 (IRS-P5)

satellite. These images are acquired with two stereo cameras (for-

ward: 26◦, backward: −5◦) with a resolution of 2.5 m.

Two ortho images of a region near Oberammergau (Germany) are

shown in fig. 13. The DSMs created from the stereo imagery can

be seen in fig. 14.

Applying a mean-shift over-segmentation to the ortho imagery

and a region merging on the combination results in a land cover

segmentation. To analyze the changes the height changes from

the DSMs and robust multi-level change features from the images

are used. Putting this all together results in a change probability

map shown in fig. 15, left.

For the change detection between the two Cartosat images the

overall accuracy is 0.9945 and the kappa index 0.5879.



Figure 13: Cartosat ortho images of a forest area near Oberam-

mergau 2008 (left) and 2009 (right)

Figure 14: DSMs created from the Cartosat stereo images of a

forest area near Oberammergau 2008 (left) and 2009 (right)

4 RESULTS

The 3D change detection results from the described automatic

chain are promising but yet not perfect. This is mostly due to the

errors in the creation of the DSMs. Better DSMs can be gener-

ated using three or more stereo images. First experiments already

conducted with multi-stereo WorldView-2 and Pléiades imagery

show that a third image improves the quality of the DSM dras-

tically while a fourth or fifth image lead only to minor further

improvements. Also scenes acquired in the same season lead to a

more consistent classification for the change detection.

The volume calculation of the mining area shows the usability

of the method for such applications. But the 3D change detec-

tion delivers many layers of information so that the results are

also somehow dependend on the searched changes. If the main

goal is the detection of changed buildings the usage of shadow

masks allow for a more precise modeling of the buildings and

improvement of the DSM. While when searching for mining ac-

tivities the generated DSMs should be changed (improved) as few

as possible to keep the volume information valid. Also the DSMs

generated in forest areas or even worse on water areas are con-

taining much noise and outliers. So for such applications sophis-

ticated segmentation, classification and DSM filtering has to be

conducted.

The first version of the automatic change detection method de-

scribed in this paper was tested in three different applications:

The monitoring of mining activities shows the high accuracy and

good usefulness of the method in this case. The detection of

building changes and the detection of forest changes also give al-

ready very good results. Especially the change detection example

of Dong-An shows the potential of 3D change detection methods

between different seasons where classical intensity based change

detection methods will mostly fail. But for a more correct de-

tection of building changes better DSMs or better DSM improve-

ment methods have still to be developed.

Figure 15: Resulting changes from the Cartosat forest im-

ages/DSMs, left: change probability map, right: change mask

(green: true detected changes, blue: missed changes, red: erro-

neously detected changes)

5 CONCLUSION AND OUTLOOK

In this paper we presented an potentially fully automatic change

detection method based on the creation of dense digital surface

models (DSMs), derivation of digital terrain models, a fused clas-

sification approach and finally a robust 3D change detection of

objects of different kinds. The method allows a more sophis-

ticated change detection than only image based methods. One

main advantage is that the method also works in different seasons

like summer and winter. The main disadvantage of the method is

the need of pre- and post-elevation information.

Especially in the application of this method to disaster mapping

like after the Haiti earthquake shows the problem: In most cases

no pre-disaster stereo imagery or DSMs of the required resolu-

tion and region exists. But especially for such disaster mapping

applications the 3D change detection could deliver much more

valuable information since in earthquakes buildings often col-

lapse vertically. Such changes can only be seen in volumetric

change detection methods.

Other useful applications are the monitoring of mining activities

(as shown in the Jülich example), illegal timber logging or the

monitoring of the evolution of large cities. The method still has

to be improved and tuned to different resulting change detection

maps for different questions and applications.

Finally we propose an additional sentinel mission covering the

whole earth permanently like the indian Cartosat-1 (IRS-P5) mis-

sion with a two- or even better a three-line-stereo-scanner (like

ALOS-Prism), a ground sampling distance of the stereo scanners

of at least 2.5 m and also a nadir looking multispectral VNIR

scanner with also about 2.5 m GSD or better.
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