
Automatic Derivation of Memoryless Policies and
Finite-State Controllers Using Classical Planners

Blai Bonet
Universidad Simón Bolı́var

Caracas, Venezuela
bonet@ldc.usb.ve

Héctor Palacios
Universidad Simón Bolı́var

Caracas, Venezuela
hlp@ldc.usb.ve

Héctor Geffner
ICREA & Univ. Pompeu Fabra

Barcelona, SPAIN
hector.geffner@upf.edu

Abstract

Finite-state and memoryless controllers are simple action se-
lection mechanisms widely used in domains such as video-
games and mobile robotics. Memoryless controllers stand
for functions that map observations into actions, while finite-
state controllers generalize memoryless ones with a finite
amount of memory. In contrast to the policies obtained from
MDPs and POMDPs, finite-state controllers have two advan-
tages: they are often extremely compact, involving a small
number of controller states or none at all, and they are gen-
eral, applying to many problems and not just one. A limita-
tion of finite-state controllers is that they must be written by
hand. In this work, we address this limitation, and develop
a method for deriving finite-state controllers automatically
from models. These models represent a class of contingent
problems where actions are deterministic and some fluents
are observable. The problem of deriving a controller from
such models is converted into a conformant planning prob-
lem that is solved using classical planners, taking advantage
of a complete translation introduced recently. The controllers
derived in this way are ‘general’ in the sense that they do not
solve the original problem only, but many variations as well,
including changes in the size of the problem or in the uncer-
tainty of the initial situation and action effects. Experiments
illustrating the derivation of such controllers are presented.

Introduction

Figure 1(a) illustrates a simple 1 × 5 grid where a robot,
initially at one of the two leftmost positions, must visit
the rightmost position, marked B, and get back then to A.
Assuming that the robot can observe the marks A and B
when in the cell, and that the actions Left and Right deter-
ministically move the robot one unit left and right respec-
tively, the problem can be solved by a contingent planner
or a POMDP solver, resulting in the first case in a contin-
gent tree, and a function mapping beliefs into actions in the
second (Levesque 1996; Kaelbling, Littman, and Cassandra
1999). A solution to the problem, however, can also be
expressed in a simpler manner as the finite-state controller
shown in Fig. 1(b). Starting in the controller state q0, this
controller selects the action Right, whether mark A or no
mark is observed (‘−’), until observing mark B. Then the

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) A B

(b)
q0

A/Right
-/Right

q1B/Left

-/Left

Figure 1: (a) A contingent problem where an agent initially in
one of the two leftmost positions has to get to B and then back
to A. These two marks are observable. (b) A 2-state controller
that solves this problem and many variations. The circles are the
controller states, and an edge q → q′ labeled o/a says to do a
when the observation is o in state q, switching then to q′.

controller switches to state q1 where it selects Left as long
as no mark is observed.1

The finite-state controller displayed in the figure has two
features that make it more appealing than contingent plans
and POMDP policies: it is very compact (it involves two
states only), and it is very general. Indeed, the problem can
be changed in a number of ways and the controller would
still work. For example, the size of the grid can be changed
from 1 × 5 to 1 × n, the agent can be placed initially any-
where in the grid (except at B), and the actions can be made
non-deterministic by the addition of ’noise’. This general-
ity is well beyond the power of contingent plans or exact
POMDP policies that are tied to a particular state space.
For these reasons, finite-state controllers are widely used in
practice, from controlling non-playing characters in video-
games (Buckland 2004) to mobile robots (Murphy 2000;
Mataric 2007). Memoryless controllers or policies (Littman
1994) are widely used as well, and they are nothing but
finite-state controllers with a single state. The additional
states provide finite-state controllers with memory that al-
lows different actions to be taken given the same observa-
tion.

The benefits of finite-state controllers, however, come
at a price: unlike contingent trees and POMDP policies,
they are usually not derived automatically from a model
but are written by hand; a task that is not trivial even in
the simplest cases. There have been attempts for deriving
finite-state controllers for POMDPs with a given number of

1The problem is a variation of one in (Meuleau et al. 1999).

34

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

states (Meuleau et al. 1999; Poupart and Boutilier 2003;
Amato, Bernstein, and Zilberstein 2007), but the problem
can be solved approximately only with no correctness guar-
antees.

In this work, we develop a model-based method for deriv-
ing finite-state controllers automatically. The models repre-
sent a class of contingent problems where actions are deter-
ministic and some fluents are observable. The task of deriv-
ing a controller for such models is converted into a confor-
mant planning problem that is solved by a classical planner,
taking advantage of a complete transformation reported re-
cently (Palacios and Geffner 2007). A conformant problem
is a contingent problem with no sensing where solutions are
action sequences like in classical planning.

We will show that the controllers derived automatically in
this way are ‘general’ in the sense that they not only solve
the original problem (i.e., for which they are formally cor-
rect) but many variations as well, including changes in the
size of the problem and in the uncertainty of the initial situa-
tion or action effects. We illustrate the nature and the deriva-
tion of such controllers through a number of examples.

The paper is organized as follows. We define the problems
(Sect. 2), the finite-state controllers (Sect. 3), and establish
a correspondence between the controllers that solve a given
problem P and the conformant plans that solve a problem
PN (Sect. 4). We then show how to solve this transformed
problem by solving a classical planning problem using either
an heuristic search planner or a SAT planner (Sect. 5) . We
finally present a number of examples (Sect. 6) and end with
a brief discussion (Sect. 7).

Model and Language

The model from which we will derive finite-state controllers
stands for a class of contingent planning problems. For prob-
lems in this class, we make three assumptions. First, that ac-
tions are deterministic and thus all uncertainty results from
incomplete information in the initial situation. Second, that
actions may have conditional effects but no preconditions,
and thus are always executable. And third, that sensing is
passive meaning that the set of observable fluents is fixed
and does not depend on the action taken. The contingent
planning problem remains challenging even under these as-
sumptions, and in particular, the controllers that we obtain
from these models often work when the assumption of de-
terminism is dropped.

Under these assumptions, we adopt a syntax for express-
ing contingent problems similar to the one used for defining
classical problems P = 〈F, I,A, G〉, where F is the set of
fluents, I and G stand for the initial and goal situations, and
A is the set of actions, except for the following features.

Actions a in A have all empty preconditions but may have
a number of conditional effects C → C ′, where C is a set
of fluent literals and C ′ is either one such set or one such
literal. We sometimes write them as a : C → C ′ when we
want to indicate the action name.

The initial situation I is given by a set of clauses over the
fluents in F so the possible initial states of P are the truth
valuations over F that satisfy I .

A set D of axioms or ramification rules r ⇐ C are used
to define a set of ‘non-primitive fluents’ r ∈ R, where C
is a set of literals defined over the ‘primitive fluents’ in F
(Thiébaux, Hoffmann, and Nebel 2005). The sets R and F
are disjoint, and we allow non-primitive fluents in the body
C of conditional effects C → C ′ and goals, but we do not
allow them in the heads C ′.

A state s is a truth valuation over the primitive fluents that
defines the truth value of the non-primitive fluents r ∈ R
through the axioms: r is true in s iff there is an axiom r ⇐ C
such that C is true in s.

The observable fluents or simply the observables refer to
a set O ⊆ R of non-primitive fluents whose truth value in a
given state s is known to the agent. An observation o rep-
resents the conjunction of O-literals that are true in a given
state. We refer to the observation that corresponds to the
state s as o(s) and to the set of all possible observations as
O∗. Clearly, the size of O∗ is exponential in the number
of observable fluents. The observables along with the set
of axioms defining them constitute what is called the sen-
sor model, that relates the true but hidden state s with the
information o(s) available to the agent.

These elements define the class of contingent problems
considered, that we call Partially Observable Deterministic
Control Problems (PODCPs), abbreviated simply as control
problems:
Definition 1. A control problem is a tuple P =
〈F, I, A,G, R, O, D〉 where
• F is a set of (primitive) fluents,
• I is a set of F -clauses representing the initial situation,
• A is a set of deterministic actions with conditional effects

but no preconditions,
• G is a set of literals representing the goal situation,
• R is a set of non-primitive fluents,
• O is the set of observable fluents, O ⊆ R, and
• D is the set of axioms defining the fluents in R.

As an illustration, the control problem expressed by the
problem depicted in Fig. 1(a), can be expressed by means of
(primitive) fluents pi, i = 1, . . . , 5, denoting the possible po-
sitions of the agent starting from the left, the non-primitive
fluent visitedB defined through the axiom visitedB ⇐ p5,
and initial and goal situations I = {oneof(p1, p2)} and
G = {p1, visitedB}. The observables are the non-primitive
fluents A and B defined by means of the axioms A ⇐ p1

and B ⇐ p5, and the actions are Left and Right with con-
ditional effects pi → pi+1 ∧ ¬pi and pi+1 → pi ∧ ¬pi+1

respectively, for each i = 1, . . . , 4.
In PODCPs, the initial situation defines a set S0 of

possible initial states s0, and from any such state, a se-
quence of actions 〈a0, . . . , an〉 defines a unique trajectory
〈s0, a0, . . . , an, sn+1〉 of state-action pairs, and a unique tra-
jectory 〈o0, a0, . . . , an, on+1〉 of observation-action pairs,
that can be obtained by replacing si by o(si).

Solutions Forms and Finite-State Controllers

PODCPs are a subclass of contingent planning problems
and ‘qualitative’ POMDPs where the uncertainty is repre-

35

sented by sets of states rather than by probability distribu-
tions. Their solutions can be expressed as contingent trees
or functions mapping beliefs (sets of states) into actions.

For example, for a version of the control problem shown
in Fig. 1 where the agent starts in one of the two leftmost
positions but the goal is set to reach the rightmost position,
a possible contingent solution can be expressed by the con-
tingent plan

〈Right,Right,Right, if ¬B then Right〉
where Right is the action to go right, and B is the observa-
tions that corresponds to the rightmost position.

A POMDP solution to the problem, on the other hand, can
be given by the partial policy π(b) = Right, with b ranging
over the belief states where the agent is certain not to be at
the rightmost position p5.

An iterative plan of the form

while − or A is observed do Right

also solves the problem but no domain-independent planner
considers such plans (Sardina et al. 2006).

Finite-state controllers (FSCs) provide yet another solu-
tion form. Formally, a finite-state controller for a PODCP
P = 〈F, I,A, G, R, O,D〉 is a tuple C = 〈Q, A,O∗, δ, q0〉
with a non-empty and finite set Q of controller states, sets
A and O∗ of actions and observations, a (partial) transi-
tion function δ that maps observation and controller state
pairs 〈o, q〉 ∈ O∗ ×Q into action and controller state pairs
〈a, q′〉 ∈ A×Q, and an initial controller state q0 ∈ Q.2

Controller states serve as controller memory allowing the
selection of different actions given the same observation. A
FSC with a single state represents a memoryless controller.

For example, the FSC C that solves the problem above
contains the single state q0, and a partial transition function
δ that maps the observations A and ‘−’ in the state q0 into
the action Right and the same state q0; namely δ(〈A, q0〉) =
〈Right, q0〉 and δ(〈−, q0〉) = 〈Right, q0〉.

We depict controllers graphically using circles to repre-
sent controller states q and directed edges with labels to rep-
resent the transition from one controller state into another (or
the same) controller state. An edge from q to q′ with label
o/a states that the transition function of the controller maps
the pair 〈o, q〉 into the pair 〈a, q′〉. A 2-state controller for
the problem is shown in Fig. 1(b). Memoryless controllers
are depicted instead as tables mapping observations into ac-
tions, as they contain a single state only.

We use rules of the form 〈o, q〉 → 〈a, q′〉 to express that
the transition function for C is defined on the pair 〈o, q〉 and
maps it into the pair 〈a, q′〉. It is also convenient to under-
stand a controller C as a set of such rules, that we express
as tuples. Thus we write t ∈ C for a tuple t = 〈o, q, a, q′〉
if C is defined over the pair 〈o, q〉 and maps it into the pair
〈a, q′〉. Note, however, that if t = 〈o, q, a, q′〉 is a tuple in C,
C cannot contain a tuple t′ 	= t with the same 〈o, q〉 pair, as
δ is a transition function over such pairs.

2Our FSCs are finite automata with output of Mealy-machine
type. Moore machines provide an alternative; yet both representa-
tions are equally expressive, with Mealy machines typically more
succinct (Hopcroft and Ullman 1979).

A finite-state controller C provides, like contingent
trees and POMDP policies, an specification of the action
ai+1 to do next after a given observation-action sequence
〈o0, a0, . . . , ai, oi+1〉. The action to do at time i = 0 is
a0 = a if t = 〈o0, q0, a, q′〉 is in C and o(s0) = o0, and the
controller state that results at time i = 1 is q′. Similarly, the
action to do at time i > 0 is a if o and q are the observation
and state at time i, and t = 〈o, q, a, q′〉 is a tuple in C, and
the controller state that results at time i + 1 is then q′.

A controller C and an initial state s0 determine a
unique trajectory 〈s0, a0, . . . , ai, si+1, . . .〉 of state-action
pairs, and a unique trajectory 〈o0, a0, . . . , ai, oi+1, . . .〉 of
observation-action pairs. These trajectories terminate at
time i + 1 if the controller state at time i + 1 is q and there
is no tuple t = 〈oi+1, q, a, q′〉 in C defined over the pair
〈oi+1, q〉. If this is not the case, the observation-action tra-
jectory resulting from s0 and C is infinite.

We will say that a controller C solves a control problem P
if all the state-action pair trajectories that it produces, start-
ing in a possible initial state s0 ∈ I , reach a goal state. This
is a weak form of solution as it does not demand all state tra-
jectories to terminate in a goal state. The difference does not
matter when the goals are observable but is relevant other-
wise. In this paper, we will stick to this weak solution form,
and leave stronger forms of solutions for future work. We
will show nonetheless that many of the controllers that we
obtain are terminating, and thus work, even if the goals are
not observable.

Finite-State Controllers as Conformant Plans

The benefits of finite-state controllers over contingent trees
and POMDP policies, namely, compact representations that
generalize to other problems, come at a prize: while there
are well known algorithms for computing solution trees
and policies from suitable models, there are no effective
methods for computing finite-state controllers. Instead,
finite-state controllers are usually written by humans. Re-
cently, heuristic methods for computing finite-state con-
trollers for POMDPs have been considered (Hansen 1998;
Meuleau et al. 1999; Poupart and Boutilier 2003) but such
methods do not provide any guarantee on the quality or cor-
rectness of the result. Below we develop a method for com-
puting finite-state controllers for PODCPs that is formally
correct and whose effectiveness will be tested over a number
of experiments. For this, the problem of deriving a finite-
state controller CN with N controller states for a control
problem P is mapped into the problem of solving a confor-
mant problem PN that is then tackled using known methods.

Definition 2. For P = 〈F, I,A, G, R, O,D〉 and N ≥ 1,
we define the conformant problem PN = 〈F ′, I ′, A′, G′〉 as
the tuple

• F ′ = F ∪ (R \O) ∪O∗ ∪Q,
• I ′ = I ∪ {q0} ∪ {¬o | o ∈ O∗} ∪ {¬q | q ∈ Q \ {q0}},
• G′ = G,
• A′ = {b(t) | t ∈ O∗ ×Q×A×Q} ∪ {b◦}
where Q = {q0, . . . , qN−1}. For t = 〈o, q, a, q′〉, the action

36

b(t) has conditional effects

q, o → q′, ¬o, ¬q if q 	= q′, or

q, o → ¬o if q = q′,

and conditional effects q, o, C → L for each conditional
effect a : C → L in P . The action b◦, on the other hand, is a
unique (ramification) action with conditional effects C → r
for each non-primitive fluent r ∈ R \ O and axiom r ⇐ C,
and conditional effects

C1, C2, . . . , Cn → o

for each o ∈ O∗ and each set of axioms {p1 ⇐ C1, p2 ⇐
C2, . . . , pn ⇐ Cn} such that pi, i = 1, . . . , n are the ob-
servables made true by o.

The ramification action b◦ takes care of updating the flu-
ents in PN that result from the non-primitive fluents in P :
this includes the non-primitive fluents r ∈ R \ O that are
non-observable, and the observations o ∈ O∗ that result
from the truth valuations over the observable fluents. The
number of observations is exponential in the number of ob-
servables, and moreover, the number of conditional effects
for keeping the value of the observations updated, can be ex-
ponential in the number of axioms. Normally, however, the
number of observables and the number of axioms for defin-
ing them, which constitute the sensor model for the problem,
can be kept bounded even if the size of the problem grows.

A direct and key consequence of this construction is that
the observation fluents o ∈ O∗ are all pairwise mutex in PN .
This information is used below for proving the correctness
of the translation and for solving the problem PN that will
yield the controller for P .

The translation of the control problem P into the confor-
mant problem PN does several things:

1. it translates the observations o ∈ O∗ and the controller
states q ∈ Q into fluents in PN ,

2. it sets the fluent q0 true in the initial situation, and all other
controller states and all observations o to false,

3. it makes the effects of the actions a in P conditional on
each observation o ∈ O∗ and each controller state q ∈ Q
so that the ‘controller action’ b(t) represents the action a,
conditioned on 〈o, q〉, that results in the controller state q′
when t = 〈o, q, a, q′〉, and

4. it captures the effects of actions on the observations and
the non-observable non-primitive fluents of P by means
of the ‘ramification action’ b◦.

The problem PN is conformant as the uncertainty in the
initial situation I of P is transferred into the uncertainty
about the initial situation I ′ of PN , and PN involves no ob-
servability at all. In PN , the observations have been com-
piled away into the conditional effects of the actions.

Recall that the solution of a conformant problem is an ac-
tion sequence π that maps the initial belief state into a goal
belief state. In the present setting, where actions are deter-
ministic, this can be simplified further, and indeed, an action
sequence π solves PN if π maps each possible initial state
of PN into a goal state.

We establish now the correspondence between the finite-
state controllers CN that solve a control problem P using N
controller states and a particular class of conformant plans π
that solve PN . First of all, it will be convenient to consider
two types of conformant plans, sequential and parallel, the
former being a special case of the latter.
Definition 3. A parallel plan in PN is a finite sequence of
sets of actions Ai each containing either ‘controller actions’
b(t) only, or the ‘ramification action’ b◦ only, but not both. A
sequential plan is a parallel plan where all the sets of actions
Ai are singletons.

In addition, we are interested in parallel or sequential
plans in PN that are consistent with a controller. We call
these the functional plans.
Definition 4. A sequential or parallel plan is functional iff
for any pair of actions b(t) and b(t′) appearing in the plan
for t = 〈o, q, a, q′〉 and t′ = 〈o, q, a′, q′′〉, 〈a, q′〉 = 〈a′, q′′〉.

Functional plans are the ones whose behavior can be ex-
plained by a finite-state controller. We show below how to
constrain the problem PN so that the resulting plans are all
functional in this sense. Actions b(t) and b(t′) are allowed
to be done in parallel in functional plans, as at most one of
these actions will have an effect on any state s in any be-
lief state over PN . Indeed, if t = 〈o, q, a, q′〉, then b(t) has
an effect on s only if s � o ∧ q, but then if b(t′) 	= b(t)
for t′ = 〈o′, q′′, a′, q′′′〉 either o′ or q′′ will be false in s as
both, different controller states, and different observations,
are mutually exclusive in PN .

The correspondence between the controllers CN that solve
the problem P with N controller states and a class of func-
tional plans that solve the conformant problem PN is estab-
lished by means of the following theorems:
Theorem 5. If the finite-state controller CN solves the con-
trol problem P in at most k steps, the functional parallel plan
π(CN) = 〈A0, B0, A1, . . . , Bk, Ak+1〉, where Ai = {b◦}
and Bi = {b(t) | t ∈ CN} for i = 0, . . . , k + 1, solves the
conformant problem PN .
Theorem 6. Let π be a functional conformant plan that
solves PN , whether sequential or parallel. Then the con-
troller CN (π) = {t | b(t) ∈ π} solves the problem P .

The proof of the first theorem mimics somewhat the proof
in (Hoffmann and Brafman 2005) that the actions in a con-
tingent tree that solves the delete-relaxation of a contingent
planning problem with no preconditions, form a parallel
conformant plan. The idea is that in a contingent problem
with no preconditions and no deletes, all the branches in the
plan can be applied in parallel, without interfering with each
other, mapping all the possible initial states into goal states.
If we consider the contingent tree that results from applying
the controller CN to P , and the actions a along the branch
associated with a possible initial state s, we obtain that those
actions map s into a goal state, and that the same occurs if
the actions a produced by the tuple t = 〈o, q, a, q′〉 in CN in
the branch are replaced by b(t) in the problem PN . More-
over, in PN , the actions along all branches can be applied in
parallel, thus mapping all the possible initial states into goal
states. The reason is that two different actions b(t) and b(t′)

37

done at the same time in different branches cannot interfere,
very much as actions in the delete relaxation.

Solving the Conformant Problem

In order to solve the conformant problem PN , we take ad-
vantage of a sound and complete translation into classical
planning (Palacios and Geffner 2007), which is used ei-
ther with a sequential suboptimal heuristic-search planner,
or with an optimal parallel SAT-based planner. In the first
case, we enforce solutions to be functional in the sense of
Definition 4 by modifying the resulting classical problem
PN with the addition of new fluents. In the second case, we
modify the CNF encoding by changing the mutex clauses.

For a conformant planning PN , Palacios and Geffner de-
fine a family of translations. We will make use of the trans-
lation KS0 that maps PN into the classical planning problem
KS0(PN). This translation is sound and complete, meaning
that the conformant plans for PN correspond to the classical
plans for KS0(PN), provided that certain dummy actions
created in the translation (merges) are dropped. The transla-
tion is polynomial in the number of initial states of P and is
thus effective when this number is not large.

The Controller from a Sequential Planner

Here we are interested in functional plans for the classical
problem KS0(PN), where PN is the conformant problem
associated with the control problem P . We obtain these
plans by transforming KS0(PN) slightly into a new classical
planning problem K ′

S0(PN) such that the classical plans for
K ′

S0(PN) are the functional plans for KS0(PN), and hence,
the functional conformant plans for PN . Recall that a plan
π, sequential or parallel, is functional if for every pair 〈o, q〉
of observation o and controller state q there is at most one
operator b(t) in π with t = 〈o, q, a, q′〉.

Non-functional plans can be excluded by adding two
types of fluents unused(o, q) and mapped(t) for all o ∈ O∗,
q ∈ Q, and t = 〈o, q, a, q′〉, and adding actions map(t).
The action map(t) for t = 〈o, q, a, q′〉 has precondition
unused(o, q) and effects mapped(t) and ¬unused(o, q),
while each literal mapped(t) is added as a precondition of
the action b(t). By making the new fluents initially false, the
functional plans for KS0(PN) become simply the plans for
K ′

S0(PN):
Theorem 7. Let π be a plan computed for K ′

S0(PN) by a
classical planner. Then, the finite-state controller CN (π) =
{t | b(t) ∈ π} solves the control problem P .

The Controller from a SAT Parallel Planner

It is possible and often convenient, however, to compute
a functional parallel plan that solves KS0(PN). We have
found it useful to use a SAT planner for computing such
plans (Kautz and Selman 1996; Hoffmann et al. 2007). In
this case, the restrictions ensuring that the resulting parallel
plans are functional can be expressed more conveniently by
means of additional literals and clauses.

Let F [KS0(PN)] be the standard CNF encoding of the
classical planning problem KS0(PN) with conditional ef-
fects, for some planning horizon, expressing the parallelism

Domain Inst. N Planner Time Fig Works for

Hall-A 1× 4 2 Both 0.0 1 1× n
4× 4 4 Satplan 5,730.5 2 n×m

Hall-R 1× 4 1 Both 0.0 1× n
4× 4 1 Both 0.0 2 n×m

Prize-A 4× 4 1 LAMA 0.0 3 4× n, 3× n
Corner-A 4× 4 1 Both 0.1 3 n×m
Prize-R 3× 3 2 LAMA 0.1 4× n, n× 4

5× 5 3 LAMA 2.7 3 6× n, 5× n
Corner-R 2× 2 1 Both 0.0 n×m
Prize-T 3× 3 1 Both 0.1 3 n×m

Blocks 6 2 Both 0.8 5 n blocks
Visual-M (8, 5) 2 Satplan 1,289.5 5 (n, m)

Gripper (3, 5) 2 Satplan 4,996.1 6 (n, m)

Table 1: Summary of results for some selected controllers: do-
main, instance, number of states, planner that solved the instance,
the time in seconds taken by the fastest planner, figure where con-
troller is shown, and instances for which the controller works.

captured in Definition 3. That is, in this encoding we only
disallow parallelism between ‘controller actions’ b(t) and
the ramification action b◦, but add instead other exclusions.
We refer to the resulting formula as F ′[KS0(PN)]. In this
formula, we add first a mutex constraint at all time points be-
tween the pairs of literals Ko/s and Ko′/s, for different ob-
servations o, o′ ∈ O∗ and every possible initial state s ∈ S0.
Likewise, we add a mutex constraint at all time points be-
tween pairs of different literals Kq/s and Kq′/s, and do the
same for the empty tag in place of s. The literals KL/s
are added by the translation KS0, and these constraints over
them capture implicit mutex constraints among different ob-
servations and among different controller states. Last, we
add in F ′[KS0(PN)] the constraints that ensure that the par-
allel plans encoded in the models of this formula are func-
tional. These constraints make any pair of actions b(t) and
b(t′) exclusive at any pair of time points if t = 〈q, o, a, q′〉,
t′ = 〈q, o, a′, q′′〉, and either a 	= a′ or q′ 	= q′′.

Theorem 8. Let M be a model of the CNF formula
F ′[KS0(PN)] obtained by a SAT solver. Then, the con-
troller CN (M) = {t | b(t) is true in M at some time point}
is a finite-state controller that solves the control problem P .

In this approach, the controller CN is obtained by invoking
a SAT solver over the CNF formula F ′[KS0(PN)] defined
for a plan horizon that is increased from 0 until a model
is found. The properties of the CNF encoding of classical
plans and the completeness of the above translations ensure
that this procedure terminates if there is one such controller.

Experiments

We computed finite-state controllers for control problems
over a number of domains: navigation in halls and grids,
trash collection, blocks, and gripper. For each problem
P and a given number of controller states N , the confor-
mant translation PN is first obtained, and then the problem
K ′

S0(PN) is solved by a classical planner or by a SAT-based

38

q0

q3

q1

q2

−/Down

C/Up

−/Left

A/Down −/Right

D/Right

−/Up
B/Left

A ↓ ← ← ← B

↓ ↑
↓ ↑

D → → → ↑ C

--→ Forward A-→ Forward

AW→ TurnRight B-→ Forward

BW→ TurnRight C-→ Forward

CW→ TurnRight D-→ Forward

DW→ TurnRight

A � → → � B

↑ ↓
↑ ↓

D � ← ← � C

Figure 2: Top: 4-state controller obtained for the instance of Hall-
A shown on right, with resulting execution. Bottom: memoryless
controller obtained for the instance of Hall-R shown on right, with
resulting execution. In Hall-A agent moves in each of the four
directions, in Hall-R it only moves forward but rotates. Both con-
trollers generalize to Halls of any size and work in the presence of
non-deterministic effects.

planner using the CNF formula F ′[KS0(PN)].3 In the first
case, LAMA (Richter, Helmert, and Westphal 2008) is used,
in the second case, the SAT-based parallel planner reported
in (Hoffmann et al. 2007), that handles conditional effects,
is used. We tried other planners and solvers, but these ended
up being the best choices.4 Experiments were performed on
Xeon processors running at 1.86GHz in a 2Gb RAM Linux
machine.

Table 1 provides a summary of most of the experimental
results. It details the domains, the instance size used to de-
rive the controller, the number of states in the controller, the
planner used, the time taken, the figure where the controller
is shown, and the family of instances for which the resulting
controller applies.

Halls

The problem in the introduction is the version 1 × 5 of the
Halls domain. The n× n version, includes four 1× n halls
arranged in a square, and observable marks A, B, C, D at
the four corners. Starting in A, the robot has to visit all
the marked positions and return to A. As in the problems
involving grids below, we consider two representations for
the problem: in Hall-A, there are four actions that move the
agent in each of the four possible directions, in Hall-R, there
is the action to move forward, and two actions for turning
90◦ left or right. Thus one representation involves absolute
coordinates (A), the other coordinates that are relative to the
agent (R). In the second representation, the presence of a
wall in front of the agent can be detected (W).

3The number of controller states N is set by hand in the exper-
iments, although one could also search for N by looking for the
minimum integer N for which a solution to the conformant plan-
ning problem PN can be found starting with N = 1.

4Silvia Richter made an adjustment in LAMA for us, as LAMA
could not extract the multivalued variables involved.

----→ Up ---L→ Down

--B-→ Up --BL→ Right

-R--→ Down -RB-→ Left

T---→ Right T--L→ Down

TR--→ Down

↓ → → ↓
↓ ↑ ↑ ↓
↓ ↑ ↑ ↓
→ ↑ ↑ ←

----→ Up ---L→ Up

--B-→ Left --BL→ Up

-R--→ Up -RB-→ Left

T---→ Left TR--→ Left

← ← ←
↑ ↑ ↑ ↑
↑ ↑ ↑ ↑
↑ ← ← ←

q0 q2

W/TurnRight

q1-/Forward

-/Forward

W/TurnRight

W/TurnLeft
-/TurnRight

-−→ Forward

W−→ TurnRight

P−→ TurnRight

� → → �
� → � ↓
↑ ← � ↓
� ← ← �

Figure 3: Top: memoryless controller obtained for the instance
of Prize-A shown on right, with resulting execution. Second Row:
memoryless controller obtained for the instance of Corner-A shown
on right, with resulting execution. Third Row: 3-state controller for
the 5 × 5 instance of Prize-R. Bottom: Memoryless controller for
the 4 × 4 instance of Prize-T shown on right.

A 4-state controller obtained for the 4×4 instance of Hall-
A, and a memoryless controller obtained for a 4×4 instance
of Hall-R are shown in Fig. 2. The arrows in the cells show
the execution that results when the controller is applied to
the initial state where the agent is at A. Both controllers gen-
eralize to Halls of any dimension, and work also in the pres-
ence of noise in both the initial situation and in the action
effects. This generalization is achieved in spite of having
inferred the controller from a fixed initial state, and results
from the change of representation: sequential plans do not
generalize as they do not represent finite-state controllers,
unless we associate controller states with time indices. By
removing the dependence on time indices, the generaliza-
tion is achieved. Another way to look at the controllers, is
as contingent plans in a language where looping constructs
are allowed (Levesque 2005).

Navigation in Grids

The domains Prize and Corner involve rectangular grids. In
Prize, the agent has to scan the grid completely for a hidden
prize; in Corner, the agent has to get to the top-left corner.
The domain options ‘A’ and ‘R’ represent the two possible
encodings as in Hall, except for the observations: in ‘A’,
the agent observes the presence of walls in the four adjacent
cells; in ‘R’, the agent observes the presence of a wall in
front. In the Corner instances, the agent starts in an unknown

39

FNU → WanderForTrash AAU → Grab
FAU → WanderForTrash AFU → WanderForTrashcan
FFU → WanderForTrash AFU → WanderForTrashcan
NAU → MoveToTrash FNH → MoveToTrashcan
NNU → MoveToTrash FAH → Drop
NFU → MoveToTrash FAH → Drop
ANU → Grab

Figure 4: Memoryless Controller for Trash Collecting: first posi-
tion in observation vector refers to how far is the trash (Far, Near,
At), the second to how far is the trash can (Far, Near, At), and the
third, to whether trash is being held.

location; in Prize, the agent starts at the top-left corner.
Some of the controllers obtained for these domains are

shown in Fig. 3. Surprisingly, the memoryless controller ob-
tained for the 4× 4 instance of Prize-A (Top), does not gen-
eralize to all grids, but only to grids of any ‘height’. Proba-
bly, the solution for the 5 × 5 would generalize to any grid
size, but we could not solve it (more about this below). On
the other hand, the controller obtained for Corner-A for a
4× 4 instance (Fig. 3, Second Row), generalizes to any grid
size. In this controller, the agent moves along the walls to
get to the target corner, and on all other locations, it moves
toward one particular wall. This policy is actually very ro-
bust, and works in the presence of noisy actions or changes
in the initial situation. A 3-state controller for the 5 × 5
instance of Prize-R is also shown (Fig. 3, Third Row). As
in the 4 × 4 instance of Prize-A, the controller generalizes
along one dimension but not along the other. We also tried
a variation of Prize-R, called Prize-T, in which the agent is
allowed to drop ‘pebbles’ as it moves around the grid like
in the story of Hansen and Gretel. The agent can observe
both whether it is in front of a wall (‘W’) or in front of a cell
with a pebble (‘P’). Figure 3 (Bottom) shows the memory-
less controller obtained from a 3× 3 instance that solves the
problem Prize-T for any grid size, by making the agent scan
the grid by following an spiral.

Trash Collecting

Figure 4 shows a controller for a trash-can collecting robot
(Connell 1990; Murphy 2000; Mataric 2007), that can wan-
der for a target object until the object is near, can move to
an object if the object is near, can grab an object if located
right where the object is, and can drop an object if the ob-
ject is being held. The task is to move around, wandering
for trash, and when a piece of trash is being held, wander
for a trash can to drop it. In the encoding, the observable
fluents are trash-held, far-from-X , near-X and at-X where
X is trash or trashcan. The observations correspond to vec-
tors ABC where A refers to how far is the trash (Far, Near,
At), B refers to how far is the trash can (Far, Near, At), and
C refers to whether the trash is being held (Held, Unheld).
This problem is solved in milliseconds.

Blocks

The first blocksworld problem (Blocks) represents a tower
with n blocks, and the goal is to have a green block ‘col-
lected’. We encode the domain with three actions, Unstack,

q0

-G/Unstack
H-/Collect

q1

--/Unstack

HG/Drop

H-/Drop
q0

TB/Up
-B/Up
TC/Right

q1-C/Down
TB/Right

-B/Down

Figure 5: Left. Blocks: 2-state controller for collecting a green
block in a tower, by observing whether the top block is green and
whether an object is being held. Right. Visual-M: 2-state controller
for placing a visual marker on top of a green block.

q0

--S/Move

BH-/Drop
-H-/Drop
BHS/Drop
-HS/Drop

q1

B-S/Move

BH-/Move
-H-/Move

-HS/Move

B-S/Pickup
BHS/Pickup

Figure 6: Gripper: 2-state controller for the instance (3, 5) that
consists of a robot with 3 grippers and an uncertain number of
balls, from 1 to 5. The controller generalizes for problems with
an arbitray number of balls and grippers.

Drop, and Collect, that take no arguments and have condi-
tional effects. The first, if block x is clear and on y, unstacks
x, clears y, and puts x in the gripper; the second discards
the block being held, and the third, collects it. If this block
is green, the goal is achieved, otherwise a dead end results.
The observable fluents are whether the top block in the tower
is green (G), and whether a block is being held (H). Thus
the condition that the block being held is green is not ob-
servable, and a memoryless controller would not solve the
problem. A 2-state controller that generalizes to any num-
ber of blocks is shown in Fig. 5 (left).

The second blocksworld problem (Visual-M) is about
placing a visual marker on top of a green block in a blocks-
world scene, and is inspired by the use of deictic represen-
tations in (Chapman 1989; Ballard et al. 1997). The visual
marker, initially at the lower left corner, can be moved along
the four compass directions between the cells of the scene,
one cell at a time. The observations are whether the cell be-
neath the marker is empty (‘C’), is a non-green block (‘B’),
or is a green block (‘G’), and whether it is on the table (‘T’)
or not (‘-’). We obtained controllers for different instances
yet none generalized over arbitrary configurations. An in-
stance (n, m) contains m horizontal cells and n blocks in
some diposition. By restricting the left/right movements of
the visual marker to the level of the table (i.e., when ‘T’ is
observed true), however, we obtained a controller that works
for any number of blocks and cells. It is shown in the right
side of Fig. 5, and it basically searches for a tower with a
green block from left to right, going all the way up to the
top in each tower, then going all the way down to the table,
and iterating in this manner until the visual marker appears
on top of a block that is green.

Gripper

This is a version of the familiar Gripper domain, where a
robot with a number of grippers must carry balls from room

40

LAMA SATPLAN

Problem N Largest Len Time Largest Len/MkSp Time

Hall-A 4 3× 2 36 1.3 4× 4 24/24 5,730.5
Hall-R 1 4× 4 41 0.0 4× 4 32/32 68.1

Prize-A 1 4× 4 41 0.0 4× 4 33/32 253.0
Corner-A 1 4× 4 37 0.4 4× 4 25/14 1.3
Prize-R 4 4× 4 198 0.3 3× 2 20/20 106.1
Corner-R 1 5× 5 22 1.6 5× 5 21/20 6.2
Prize-T 1 5× 5 71 0.3 5× 4 56/57 4,586.0

Blocks 2 20 185 34.8 13 68/58 3,964.8
Visual-M 2 (7, 5) 26 0.3 (8, 5) 39/39 1,289.5

Gripper 2 (2, 2) – – (3, 5) 41/29 4,996.1

Table 2: Results that illustrate the scalability of LAMA and SAT-
plan. LAMA fails on memory, and SATPLAN on either memory
or time.

B to room A. The robot can move between rooms, and it can
pick up and drop balls using its grippers. The observations
consist of whether there are balls left in B (‘B’), whether
there is space left in the grippers (‘S’), and whether the robot
is holding some ball (’H’). The robot cannot directly ob-
serve its location yet it is initially at room A with certainty.
The instance (n, m) refers to a problem with n grippers and
an uncertain number of balls in room B, that could range
from 1 to m. Fig. 6 shows the controller obtained for the in-
stance (3, 5) in 4,996 seconds by Satplan which also works
for problems (n, m) for arbitrary n and m. The robot goes
first to B, and picks up balls until no space is left in the grip-
pers, then it moves to A, where it drops all the balls, one
by one, repeating the cycle, until no balls are left in B and
the robot is not holding any balls. In this case, the goal is
observable and is true when neither B nor H are true.

Discussion

In this work, we have developed a method for deriving finite-
state controllers automatically from models in a class of con-
tingent problems. We have converted the problem of deriv-
ing a controller into a conformant planning problem that is
solved using a recently proposed transformation and classi-
cal planners. The controllers derived in this way are often
general in the sense that they do not solve the original prob-
lem only, but many variations too, including changes in the
size of the problem or in the uncertainty of the initial situa-
tion and action effects. It is not clear, however, from looking
at an instance whether the resulting controller will general-
ize along some, all, or none of these dimensions. This re-
mains an interesting open issue. The other challenge is scal-
ability. The classical problems that we obtain are not easy
for the current classical planners. Table 2 illustrates the cur-
rent capabilities in terms of the instances that the planners
LAMA and SATplan can solve. Finally, while the resulting
controllers solve the given control problem, the notion of so-
lution used in the paper is rather weak: it requires the goal
to be reached but it does not require the controller to halt the
execution. This, however, is necessary when the achieve-
ment of the goal is not observable. The approach, however,
can be generalized to yield such terminating controllers and
we will work out the details elsewhere.

Acknowledgements We thank Silvia Richter and Joerg Hoff-
mann for help with LAMA and SATplan, and Malte Helmert and
Patrik Haslum for trying their planners on some instances too. H.
Geffner is partially supported by grant TIN2006-15387-C03-03
from MEC/Spain.

References
Amato, C.; Bernstein, D.; and Zilberstein, S. 2007. Optimizing
memory-bounded controllers for decentralized pomdps. In Proc.
UAI.
Ballard, D.; Hayhoe, M.; Pook, P.; and Rao, R. 1997. Deictic
codes for the embodiment of cognition. Behavioral and Brain
Sciences 20(04):723–742.
Buckland, M. 2004. Programming Game AI by Example. Word-
ware Publishing, Inc.
Chapman, D. 1989. Penguins can make cake. AI magazine
10(4):45–50.
Connell, J. H. 1990. Minimalist Mobile Robotics. Morgan Kauf-
mann.
Hansen, E. 1998. Solving POMDPs by searching in policy space.
In Proc. UAI, 211–219.
Hoffmann, J., and Brafman, R. 2005. Contingent planning via
heuristic forward search with implicit belief states. In Proc.
ICAPS, 71–80.
Hoffmann, J.; Gomes, C.; Selman, B.; and Kautz, H. A. 2007.
SAT encodings of state-space reachability problems in numeric
domains. In Proc. IJCAI, 1918–1923.
Hopcroft, J., and Ullman, J. 1979. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley.
Kaelbling, L. P.; Littman, M.; and Cassandra, A. R. 1999. Plan-
ning and acting in partially observable stochastic domains. Artif.
Intell. 101:99–134.
Kautz, H., and Selman, B. 1996. Pushing the envelope: Planning,
propositional logic, and stochastic search. In Proc. AAAI, 1194–
1201.
Levesque, H. 1996. What is planning in the presence of sensing?
In Proc. AAAI, 1139–1146.
Levesque, H. 2005. Planning with loops. In Proc. IJCAI, 509–
515.
Littman, M. L. 1994. Memoryless policies: Theoretical limi-
tations and practical results. In Cliff, D., ed., From Animals to
Animats 3. MIT Press.
Mataric, M. J. 2007. The Robotics Primer. MIT Press.
Meuleau, N.; Peshkin, L.; Kim, K.; and Kaelbling, L. P. 1999.
Learning finite-state controllers for partially observable environ-
ments. In Proc. UAI, 427–436.
Murphy, R. R. 2000. An Introduction to AI Robotics. MIT Press.
Palacios, H., and Geffner, H. 2007. From conformant into clas-
sical planning: Efficient translations that may be efficient too. In
Proc. ICAPS, 264–271.
Poupart, P., and Boutilier, C. 2003. Bounded finite state con-
trollers. In Proc. NIPS, 823–830.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proc. AAAI, 975–982.
Sardina, S.; Giacomo, G. D.; Lesperance, Y.; and Levesque, H.
2006. On the limits of planning over belief states. In Proc. KR,
463–471.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense of
PDDL axioms. Artif. Intell. 168(1–2):38–69.

41

