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Abstract 
 
This paper demonstrates that genetic 
programming can be used to automatically 
create the design for both the topology and 
parameter values (tuning) for a common 
parameterized controller for all the plants 
in two families of plants that are 
representative of typical industrial 
processes. The genetically evolved 
controller is "general" in the sense that it 
contains free variables representing the 
characteristics of the particular plant. The 
genetically evolved controller outperforms 
the controller designed with conventional 
techniques. In addition, the genetically 
evolved controller infringes on an early 
patented invention in the field of control. 
 

1 Introduction 
Automatic controllers are ubiquitous in the real world. 
The purpose of a controller is to force, in a meritorious 
way, the actual response of a system (conventionally 
called the plant) to match a desired response (the 
reference signal or setpoint). For example, the cruise 
control device in a car continuously adjusts the engine 
(the plant) based on the difference between the speed 
specified by the driver (the reference signal) and the 
car's actual speed (the plant response).  

Genetic programming has recently been used to 
automatically create the design for both the topology 
and parameter values (tuning) for a controller for a 
particular two-lag plant and a particular three-lag plant 
(Koza, Keane, Yu, Bennett, and Mydlowec 2000). 
However, these two (different) evolved controllers 
applied only to particular plants (of the same family).  

The question arises as to whether it is possible to 
evolve a common controller (accessing various 
parameters representing the overall characteristics of 
the plant) that can perform well for an entire family of 
plants (say, the n-lag plants) and perhaps also for one 
or more additional families of plants.  

In their influential book, Astrom and Hagglund 
(1995) identified four families of plants "that are 
representative for the dynamics of typical industrial 

processes." Astrom and Hagglund then developed a 
common method for designing controllers and 
demonstrated improved performance for their method 
over the Ziegler-Nichols (1942) rules on all the plants 
in all four families of plants.  

One of the four families consists of the n-lag plants 
represented by transfer functions of the form 
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where n = 3, 4, and 8 and where s is the Laplace 
transform variable.  

Another family consists of plants represented by 
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where α = 0.2, 0.5, and 0.7. 
The methods developed by Astrom and Hagglund 

use pairs of parameters representing the overall 
characteristics of a plant. These parameters are not, of 
course, a complete representation of the behavior of the 
plant; however, they offer the practical advantage of 
usually being obtainable for a given plant by means of 
relatively straight-forward testing in the field.  

In one of their methods, Astrom and Hagglund use 
two frequency domain parameters, namely the ultimate 
gain, Ku (the minimum value of the gain that must be 
introduced into the feedback path to cause a system to 
oscillate) and the ultimate period, Tu (the period of this 
lowest frequency oscillation).  

In another version, Astrom and Hagglund use the 
time constant, Tr, and the dead time, L. Astrom and 
Hagglund describe a procedure for estimating these two 
parameters from the plant's response to a step input. 
These two parameters are obtained by approximating 
the plant with the transfer function 
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This paper shows that genetic programming can be 
used to automatically create the design for both the 
topology and tuning for a common parameterized 
controller for all plants belonging to the two families of 
plants described by equations (1) and (2). The common 
parameterized controller is created using a fitness 
measure that optimizes step response and disturbance 



rejection, while simultaneously constraining maximum 
sensitivity and sensor noise attenuation. The common 
genetically evolved controller outperforms the 
controller designed using the techniques of Astrom and 
Hagglund 1995.  

Section 2 discusses how genetic programming can 
be used to automatically synthesize the design for both 
the topology and tuning of controllers. Section 3 
itemizes the preparatory steps necessary to apply 
genetic programming to the above two families of 
plants. Section 4 presents the results.  
2 Genetic Programming and Control 
In a closed-loop continuous-time feedback system 
consisting of a plant and its controller, the output of the 
controller is input to the plant and the output of the 
plant is, in turn, input to the controller.  
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Figure 1 Block diagram of a plant and a PID controller 
composed of proportional, integrative, and derivative 

blocks.  
Figure 1 is a block diagram for an illustrative 

control system containing a controller and a plant. The 
directed lines in a block diagram represent time-domain 
signals while the blocks represent signal processing 
functions that operate in the time domain. The output of 
the controller 500 is a control variable 590 which is, in 
turn, the input to the plant 592. The plant has one 
output (plant response) 594. The plant response is fed 
back (externally as signal 596) and becomes one of the 
controller's two inputs. The controller's second input is 
the reference signal 508. The fed-back plant response 
596 and the externally supplied reference signal 508 are 
compared (by subtraction here). Notice that the takeoff 
point 520 of figure 1 provides a way to disseminate a 
particular result (of the subtraction 510) to three places 
in the block diagram (522, 524, and 526). The output 
(i.e., control variable 590) of this controller is the sum 
of three terms. First, there is a proportional (P) term 
(the gain block 530 with an amplification factor of 
214.0). Second, there is an integrating (I) term (the 
integrator 560 preceded by the gain block 540 with an 
amplification factor of 1,000.0). The integrator is 
shown in the figure as 1/s. Third, there is a a 
differentiating (D) term (the derivative block 570 

preceded by the gain block 550 with an amplification 
factor of 15.5).  The derivative is shown in the figure as 
s. Since the controller's output is the sum of a P, I, and 
D term, this type of controller is called a PID controller. 
The PID controller was invented and patented by 
Albert Callender and Allan Stevenson of Imperial 
Chemical Limited of Northwich, England (Callender 
and Stevenson 1939).  

Genetic programming (Koza 1992; Koza and Rice 
1992; Koza 1994a, 1994b; Koza, Bennett, Andre, and 
Keane 1999; Koza, Bennett, Andre, Keane, and Brave 
1999) is an extension of the genetic algorithm (Holland 
1975). Additional information on genetic programming 
can be found in books such as Banzhaf, Nordin, Keller, 
and Francone 1998; books such as Langdon 1998, 
Ryan 1999, and Wong and Leung 2000 in the series on 
genetic programming from Kluwer Academic 
Publishers; in edited collections of papers such as the 
Advances in Genetic Programming series of books 
from the MIT Press (Spector, Langdon, O'Reilly, and 
Angeline 1999); in the proceedings of the Genetic 
Programming Conference (Koza, Banzhaf, Chellapilla, 
Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, and Riolo 
1998); in the proceedings of the Euro-GP conference 
(Poli, Nordin, Langdon, and Fogarty 1999); in the 
proceedings of the Genetic and Evolutionary 
Computation Conference (Banzhaf, Daida, Eiben, 
Garzon, Honavar, Jakiela, and Smith 1999); at web 
sites such as www.genetic-programming.org; 
and in the Genetic Programming and Evolvable 
Machines journal (from Kluwer Academic Publishers).  

Evolutionary computation has been previously used 
for synthesizing controllers having mutually interacting 
continuous-time signal processing blocks and for 
system identification problems (Marenbach, 
Bettenhausen, and Freyer 1996). (Extensive references 
are itemized in Koza, Keane, Yu, Bennett, and 
Mydlowec 2000.)   

There are several different styles that are commonly 
used in genetic programming. As one example, genetic 
programming is often used as an automatic method for 
creating a program tree to solve a problem (Koza 
1992). The individual programs that are evolved by 
genetic programming are typically multi-branch 
programs consisting of result-producing branches, 
automatically defined functions (subroutines), and 
other types of branches. In this approach, the program 
tree is simply executed. The result of the execution may 
be a set of returned values, a set of side effects on some 
other entity (e.g., an external entity such as a robot or 
an internal entity such as computer memory), or a 
combination of returned values and side effects. In this 
approach, the functions in the program are sequentially 
executed, in time, in accordance with a specified "order 
of evaluation" such that the result of executing one 
function is available at the time when the next function 
is to be executed. Early work on the problem of 



automatically creating controllers used this 
conventional approach to genetic programming.  

As a second example, genetic programming is often 
also used to automatically create program trees which 
can be used in conjunction with a developmental 
process to design complex structures, such as neural 
networks (Gruau 1992) and analog electrical circuits 
(Koza, Bennett, Andre, and Keane 1996; Koza, 
Bennett, Andre, and Keane 1999). In this approach, the 
program tree is interpreted as a set of instructions for 
constructing the desired structure. The construction 
process is implemented by applying the functions of a 
program tree to an embryonic structure so as to develop 
the embryo into a fully developed structure. As in the 
first approach, the functions of the program are 
executed separately, in time, in accordance with the 
specified "order of evaluation."  

In this paper, a computer program (i.e., program 
tree, LISP symbolic expression) will represent the 
block diagram of a controller. The block diagram 
consists of signal processing functions linked by 
directed lines representing the flow of information. 
There is no "order of evaluation" of the functions and 
terminals of a program tree representing a controller. 
Instead, the signal processing blocks of the controller 
and the to-be-controlled plant interact with one another 
other as part of a closed system in the manner specified 
by the topology of the block diagram.  
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Figure 2 Program tree representation of the PID 

controller of figure 1.  
Figure 2 presents the block diagram for the PID 

controller of figure 1 as a program tree. The internal 
points of this program tree represent the signal 
processing blocks contained in the block diagram of 
figure 1 (i.e., derivative, integrator, gain, subtraction, 
addition). The external points (leaves) of this program 
tree represent numerical constants and time-domain 
signals, such as the reference signal and plant output. 
Notice that automatically defined function (subroutine) 
ADF0 in the left branch produces a time-domain signal 
that equals the result of subtracting the plant output 
from the reference signal. The three references to ADF0 
in the result-producing (right) branch of this program 
tree disseminate the result of subtracting the plant 
output from the reference signal and correspond to the 
takeoff point 520 of figure 1.  

In the style of ordinary computer programming, a 
reference to a subroutine ADF0 from inside ADF0 

would be considered to be a recursive reference. 
However, in the context of genetic programming and 
control systems, a subroutine that references itself 
corresponds to a loop in the controller's block diagram 
(i.e., internal feedback inside the controller).  
3 Preparatory Steps 
3.1 Program Architecture 
Since the to-be-synthesized controller has one output 
(control variable), each program tree in the population 
has one result-producing branch. Each program tree in 
the initial random population (generation 0) has no 
automatically defined functions. However, after 
generation 0, the architecture-altering operations may 
insert (and delete) automatically defined functions. 
Automatically defined functions may be used for 
takeoff points, internal feedback within the controller, 
and reuse of portions of the block diagram. The 
permitted maximum of five automatically defined 
functions is more than sufficient for this problem.  
3.2 Terminal Set 
The numerical parameter value for each signal 
processing block possessing a parameter is established 
by an arithmetic-performing subtree containing 
perturbable numerical terminals, arithmetic operations, 
and the four parameters for representing the overall 
characteristics of a plant. Arithmetic-performing 
subtrees may appear in both result-producing branches 
and any automatically defined functions that may be 
created during the run by the architecture-altering 
operations. The value returned by an entire arithmetic-
performing subtree is interpreted as a component value 
lying in a range of (positive values) between 10-3 and 
103. The terminal set for the arithmetic-performing 
subtrees is 
Taps = {ℜ, KU, TU, L, TR}.  
Here ℜ denotes a perturbable numerical value. In the 
initial random generation (generation 0) of a run, each 
perturbable numerical value is set, individually and 
separately, to a random value in a chosen range (from -
3.0 and +3.0 here). In later generations, a perturbable 
numerical value may be changed by adding or 
subtracting a relatively small number determined 
probabilistically by a Gaussian probability distribution. 
The standard deviation of the Gaussian distribution is 
1.0 here (i.e., one order of magnitude after the value 
returned by an entire arithmetic-performing subtree is 
interpreted). The perturbations are implemented by a 
genetic operation for mutating the perturbable 
numerical values. The perturbable numerical values are 
coded by 30 bits in our system. A constrained syntactic 
structure maintains one function and terminal set for the 
arithmetic-performing subtrees and a different function 
and terminal set (below) for all other parts of the 
program tree.  



The remaining terminals are time-domain signals. 
The terminal set, T, for the result-producing branch and 
any automatically defined functions (except the 
arithmetic-performing subtrees described above) is 
T = {REFERENCE_SIGNAL, 

CONTROLLER_OUTPUT, PLANT_OUTPUT}.  
Space does not permit a detailed description of the 

various terminals used herein (although the meaning of 
the above terminals should be clear from their names). 
See Koza, Keane, Yu, Bennett, and Mydlowec 2000.  
3.3 Function Set 
The function set, Faps, for the arithmetic-performing 
subtrees is 
Faps = {ADD_NUMERIC, SUB_NUMERIC, 

MUL_NUMERIC, DIV_NUMERIC, REXP, 
RLOG}.  

The two-argument DIV_NUMERIC function divides 
the first argument by the second argument, except that 
the quotient is never allowed to exceed 105. The one-
argument REXP function is the exponential function 
and the one-argument RLOG function is the natural 
logarithm of the absolute value.  

The function set, F, for the result-producing branch 
and any automatically defined functions (except the 
arithmetic-performing subtrees described above) 
consists of continuous-time signal processing functions 
and automatically defined functions.  
F = {GAIN, INVERTER, LEAD, LAG, LAG2, 

DIFFERENTIAL_INPUT_INTEGRATOR, 
DIFFERENTIATOR, ADD_SIGNAL, 
SUB_SIGNAL, ADD_3_SIGNAL, 
MUL_SIGNAL, DIV_SIGNAL, ULIMIT, 
ADF0, ADF1, ADF2, ADF3, ADF4}.  

The one-argument ULIMIT function limits a signal 
by constraining it between an upper and lower bound. 
This function returns the value of its argument (the 
incoming signal) when its argument lies between -1.0 
and +1.0. If the argument is greater than +1.0, the 
function returns +1.0. If the argument is less than -1.0, 
the function returns -1.0. ADF0, …, ADF4 denote 
automatically defined functions added during the run 
by the architecture-altering operations. The definitions 
of the other functions above are suggested by their 
names. See Koza, Keane, Yu, Bennett, and Mydlowec 
2000.  
3.4 Fitness Measure 
Genetic programming is a probabilistic algorithm that 
searches the space of compositions of the available 
functions and terminals under the guidance of a fitness 
measure. The fitness measure is a mathematical 
implementation of the problem's high-level 
requirements. It is couched in terms of “what needs to 
be done”  not “how to do it.” The fitness measure for 
most problems of controller design is multi-objective in 

the sense that there are several different (usually 
conflicting) requirements for the controller. 

The fitness of each individual in the population is 
determined by executing the program tree (i.e., the 
result-producing branch plus any automatically defined 
functions that may have been created during the run by 
the architecture-altering operations). The execution of 
the program tree produces an interconnected sequence 
of signal processing blocks  that is, a block diagram 
for the individual controller. The controller is 
embedded into a framework containing the (fixed) plant 
and the (fixed) external feedback loop. A SPICE netlist 
is then constructed to represent the block diagram of 
the controller, the (fixed) plant, and the (fixed) external 
feedback loop. This SPICE netlist is wrapped inside an 
appropriate set of SPICE commands to carry out 
various SPICE analyses in the time domain (described 
below). We also provide SPICE with subcircuit 
definitions to implement all the signal processing 
functions in the function set (described above) and all 
the signal processing functions necessary to represent 
the plant. The controller is then simulated using our 
modified version of the original 217,000-line SPICE3 
simulator (Quarles, Newton, Pederson, and 
Sangiovanni-Vincentelli 1994). Our modified version 
of SPICE is run as a submodule within our genetic 
programming system. The SPICE simulator returns 
tabular output (representing the plant output in the time 
domain). An interface communicates this information 
to our genetic programming code. See Koza, Keane, 
Yu, Bennett, and Mydlowec 2000 for details.  

The fitness of each controller in the population is 
measured by means of 48 separate invocations of the 
SPICE simulator. This 48-part fitness measure attempts 
to optimize step response and disturbance rejection 
while simultaneously imposing constraints on 
maximum sensitivity and sensor noise attenuation. The 
fitness of an individual controller is the sum of the 
detrimental contributions of these 48 elements of the 
fitness measure. The smaller the sum, the better.  

The first 36 elements of this 48-part fitness measure 
are time-domain-based elements that together represent 
the six plants from the two families (i.e., n = 3, 4, and 8 
and α = 0.2, 0.5, and 0.7), in conjunction with six 
choices of values for the height of the reference signal 
and disturbance signal (shown in table 1) that sample a 
range of values. The reference signal is step function 
that rises from 0 at time t = 0 to the specified height at t 
= 1 millisecond. The disturbance signal is a step 
function that rises from 0 at time t = 10Tu to the 
specified height at t = 10Tu + 1 millisecond. The 
disturbance signal is added to the controller's output. 
                    Table 1 Six combinations 
 Reference signal Disturbance signal 
 1.0 1.0 
 10-3 10-3 



 -10-6 10-6 
 1.0 -0.6 
 -1.0 0.0 
 0.0 1.0 

For each of these first 36 elements of the 48-part 
fitness measure, a transient analysis is performed in the 
time domain using the SPICE simulator. e(t) is the 
difference (error) at time t between the plant output and 
the reference signal. The contribution to fitness for each 
of these 36 elements is based on the sum of two 
integrals of time-weighted absolute error (ITAE). The 
first term of the integral accounts for the controller's 
step response while the second term accounts for 
disturbance rejection.  
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The factor B in the first term of the integral 
multiplies each value of e(t) by the reciprocal of the 
amplitude of the reference signal (so that all reference 
signals are equally influential). The factor C in the 
second term of the integral multiplies value of e(t) by 
the reciprocal of the amplitude of the disturbance 
signals. When the amplitude of either the reference 
signal or the disturbance signal is zero, the appropriate 
factor (B or C) is set to zero. The ITAE component of 
fitness is such that, all other things being equal, 
changing the time scale by a factor of F changes the 
ITAE by F2. The division of the integral by Tu

2 is an 
attempt to eliminate this artifact of the time scale and 
equalize the influence of each of the plants in the 
overall fitness measure. For these 36 elements of the 
fitness measure, the contribution to fitness is multiplied 
by 20 if the element is greater than for the Astrom and 
Hagglund (1995).  
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Figure 3 Overall model.  

The 37th through 42nd elements of the 48-part fitness 
measure are frequency-domain-based elements that 
measure stability margin. Figure 3 presents a model for 
the entire system containing the given plant and the to-
be-evolved controller. In this figure, R(s) is the 
reference signal; Y(s) is the plant output; and U(s) is the 
controller's output (control variable). Disturbance D(s) 
may be added to the controller's output U(s). Sensor 
noise N(s) may be added to the plant's output Y(s) 
yielding Q(s). Here N(s) is an AC signal. For each of 

these six elements of the fitness measure, an AC sweep 
is performed using the SPICE simulator from 
1/(1000Tu) to 1000/Tu while holding the reference 
signal R(s) and the disturbance signal D(s) at zero. The 
maximum sensitivity, Ms, is a measure of the stability 
margin. It is desirable to minimize the maximum 
sensitivity (and therefore maximize the stability 
margin). The quantity 1/Ms is the minimum distance 
between the Nyquist plot and the point (-1,0) and is the 
stability margin incorporating both gain and phase 
margin. The maximum sensitivity is the maximum 
amplitude of Q(s). The contribution to fitness is 0 if Ms 
< 1.5; 2(Ms - 1.5) for 1.5 ≤ Ms ≤ 2.0; and 20(Ms - 2.0) + 
1 for Ms > 2.0. For these six elements of the fitness 
measure (as well as the six elements below), the 
contribution to fitness is multiplied by 10 if the element 
is greater than for the Astrom and Hagglund controller 
(1995).  

The 43rd through 48th elements of this 48-part 
fitness measure are frequency-domain-based elements 
measuring the sensor noise attenuation. Achieving 
favorable sensor noise attenuation is often in direct 
conflict with the goal of achieving a rapid response to 
setpoint changes and rejection of plant disturbances. 
For each of these six elements of the fitness measure, 
an AC sweep is performed using the SPICE simulator 
from 10/Tu to 1000/Tu while holding the reference 
signal R(s) and the disturbance signal; D(s) at zero. The 
attenuation of the sensor noise is measured at plant 
output at Y(s). Amin is the minimum attenuation in 
decibels within this frequency range. It is desirable to 
maximize the minimum attenuation. The contribution to 
fitness for sensor noise attenuation is 0 if Amin > 40 dB; 
(40 - Amin)/10 if 20 dB ≤ Amin ≤ 40 dB; and 2 + (20 - 
Amin) if Amin < 20 dB.  

A controller that cannot be simulated by SPICE is 
assigned a high penalty value of fitness (108).  
3.5 Control Parameters 
The population size, M, was 100,000. A (generous) 
maximum size of 150 points (for functions and 
terminals) was established for each result-producing 
branch and a (generous) maximum size of 100 points 
was established for each automatically defined 
function. The percentages of the genetic operations for 
each generation are 46% one-offspring crossover on 
internal points of the program tree other than numerical 
constant terminals, 9% one-offspring crossover on 
points of the program tree other than numerical 
constant terminals, 9% one-offspring crossover on 
numerical constant terminals, 1% mutation on points of 
the program tree other than numerical constant 
terminals, 20% mutation on numerical constant 
terminals, 9% reproduction, 2% subroutine creation, 
2% subroutine duplication, and 2% subroutine deletion. 
The other parameters are the same default values that 



we have used on many other problems (Koza, Bennett, 
Andre, Keane 1999).  
3.6 Termination 
The run was manually monitored and manually 
terminated when the fitness of many successive best-of-
generation individuals appeared to have reached a 
plateau. The best-so-far individual was harvested and 
designated as the result of the run.  
3.7 Parallel Implementation 
This problem was run on a home-built Beowulf-style 
(Sterling, Salmon, Becker, and Savarese 1999) parallel 
cluster computer system consisting of 1,000 350 MHz 
Pentium II processors (each accompanied by 64 
megabytes of RAM). The system has a 350 MHz 
Pentium II computer as host. The processing nodes are 
connected with a 100 megabit-per-second Ethernet. The 
processing nodes and the host use the Linux operating 
system. The distributed genetic algorithm with 
unsynchronized generations and semi-isolated 
subpopulations was used with a subpopulation size of 
Q = 100 at each of D = 1,000 demes. As each processor 
(asynchronously) completes a generation, four 
boatloads of emigrants from each subpopulation are 
dispatched to each of the four toroidally adjacent 
processors. The 1,000 processors are hierarchically 
organized. There are 5 × 5 = 25 high-level groups (each 
containing 40 processors). If the adjacent node belongs 
to a different group, the migration rate is 2% and 
emigrants are selected based on fitness. If the adjacent 
node belongs to the same group, emigrants are selected 
randomly with a 5% migration rate (10% if the adjacent 
node is in the same physical box).  
4 Results 
The initial random generation is a blind random search 
of the search space of the problem.  The best-of-

generation circuit from generation 0 has a fitness of 
14,530.8.  

The best-of-run controller (figure 4) appears in 
generation 217. This genetically evolved controller has 
an overall fitness of 14.996. The program tree has one 
result-producing branch with 10 points and five 
automatically defined functions (with 22, 38, 3, 19, and 
3 points, respectively). The result-producing branch 
refers to ADF0. Also, ADF0 hierarchically refers to 
ADF1. The other three automatically defined functions 
are not referenced. Note that the controller's output is 
fed back internally into the controller.  

Figure 5 compares the time-domain response of the 
best-of-run controller (triangles) from generation 217 
and the Astrom and Hagglund controller (squares) to a 
1-volt reference signal for the three-lag plant. The 
comparisons for other reference signals, disturbance 
signals, and plants from the two families are similarly 
superior (and are not shown for reasons of space).  
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Figure 5 Comparison of time-domain responses.  
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Figure 4 Block diagram of best-of-run controller from generation 217.  

 
Table 2 Control signal, U(s), for the best-of-run controller from generation 217 
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Table 3 Three coefficients of PID controller equivalent to the best-of-run controller from generation 217 
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Table 4 Comparison of characteristics of the controller and the Astrom and Hagglund controller for all six 
plants 
Plant Plant Genetically evolved Controller Astrom and Hagglund 

Controller 
  ITAE 

Step 
ITAE 
Disturb

Ms Amin ITAE 
Step 

ITAE 
Disturb 

Ms Amin 

1 
3)1(

1
s+

 
1.93 1.15 1.66 41.26 2.75 1.28 2.11 43 

2 
4)1(

1
s+

 
4.60 6.64 1.80 54.17 8.5 7.6 2.08 58 

3 
8)1(

1
s+
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0.436 0.498 1.72 47.5 0.945 0.522 2.07 50 
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( )( )( )ssss 32 7.017.017.01)1(
1
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1.40 1.99 1.77 52.2 2.9 2.23 2.07 55 

 
Figure 6 compares the time-domain response of 

the best-of-run controller (triangles) from generation 
217 and the Astrom and Hagglund controller 
(squares) to a 1-volt disturbance signal for the three-
lag plant. The comparisons for other reference 
signals, disturbance signals, and plants from the two 
families are similarly superior.  
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Figure 6 Comparison of the disturbance responses.  

Table 2 presents the control signal, U(s), for the 
best-of-run controller from generation 217. Note that 
all four parameters (Ku, Tu, Tr, and L) appear. 

When simplified, it can be seen that the best-of-
run controller from generation 217 is a PID controller 
whose three coefficients are as shown in table 3.  

Table 4 compares the characteristics of the best-
of-run controller from generation 217 with those of 
the Astrom and Hagglund (1995) controller for all six 
plants. As can be seen, the genetically evolved 
controller is superior to the Astrom and Hagglund 
controller for all six plants for the integral of the 
time-weighted absolute error (ITAE) for the step 
input, the ITAE for disturbance rejection, and the 
maximum sensitivity, Ms. All values of Amin are 
above the required minimum 40 (except for plant 4). 
Averaged over the six plants, the ITAE for the step 
input for the genetically evolved controller is only 
58% of the value for the Astrom and Hagglund 
controller; the ITAE for disturbance rejection is 91% 
of the value for the Astrom and Hagglund controller; 
and the maximum sensitivity, Ms. for the genetically 
evolved controller is only 85% of the value for the 
Astrom and Hagglund controller.  



The PID controller was a significant improvement 
over previous approaches to control. As Callender 
and Stevenson state in their 1939 patent, 

"A specific object of the invention is to 
provide a system which will produce a 
compensating effect governed by factors 
proportional to the total extent of the 
deviation, the rate of the deviation, and the 
summation of the deviation during a given 
period …"  

Claim 1 of Callender and Stevenson (1939) 
covers what is now called the PI controller,  

"A system for the automatic control of a 
variable characteristic comprising means 
proportionally responsive to deviations of 
the characteristic from a desired value, 
compensating means for adjusting the value 
of the characteristic, and electrical means 
associated with and actuated by responsive 
variations in said responsive means, for 
operating the compensating means to correct 
such deviations in conformity with the sum 
of the extent of the deviation and the 
summation of the deviation."  

Claim 3 of Callender and Stevenson (1939) 
covers what is now called the PID controller, 

"A system as set forth in claim 1 in which 
said operation is additionally controlled in 
conformity with the rate of such deviation."  

The legal criteria for obtaining a U. S. patent are 
that the proposed invention is "new” and “useful" 
and 

"... the differences between the subject 
matter sought to be patented and the prior 
art are such that the subject matter as a 
whole would [not] have been obvious at the 
time the invention was made to a person 
having ordinary skill in the art to which said 
subject matter pertains." (35 United States 
Code 103a).  

Patents are only issued if an arms-length 
examiner is convinced that the proposed invention is 
novel, useful, and satisfies the statutory test for 
unobviousness. Since filing for a patent entails the 
expenditure of a considerable amount of time and 
money, patents are generally sought only if the 
invention is likely to prove useful in the real world. 
Certainly the PID controller has proved useful since 
PD, PI, and PID controllers are in widespread use in 
industry throughout the world.  

The fact that genetic programming rediscovered 
both the topology and sizing of a controller that was 
unobvious "to a person having ordinary skill in the 
art" establishes that this evolved result satisfies 

Arthur Samuel's criterion (1983) for artificial 
intelligence and machine learning, namely 

“The aim [is] ... to get machines to exhibit 
behavior, which if done by humans, would 
be assumed to involve the use of 
intelligence.” 

The values of the PID coefficients of the 
controller created by genetic programming are very 
close to those of the Astrom and Hagglund (1995) 
controller.  

Most of the computer time was consumed by the 
fitness evaluation of candidate individuals in the 
population. The fitness evaluation (involving 36 
time-consuming time-domain SPICE simulations and 
12 relatively fast frequency-domain SPICE 
simulations) averaged about 6.7 seconds per 
individual (using a 350 MHz Pentium II processor). 
The best-of-run individual from generation 217 was 
produced after evaluating 2.18 × 107 individuals. 
This required 40.58 hours on our 1,000-node parallel 
computer system  that is, the expenditure of 5.11 × 
1016 computer cycles (about 51 peta-cycles of 
computer time).  

The four parameters (Ku, Tu, Tr, and L) in the 
above automatically created result are free variables. 
A mathematical formula containing one or more free 
variables is "general" in the sense that it provides a 
solution to an entire category of problems. For 
example, the familiar formula for solving a quadratic 
equation contains free variables representing the 
coefficients of the equation. Here genetic 
programming has automatically created a "general" 
solution to an entire category of problems (i.e., all the 
plants in the two families)  not merely a single 
instance of the problem (i.e., a particular single 
plant).  
5 Conclusion 
This paper demonstrated that genetic programming 
can be used to automatically create the design for 
both the topology and parameter values (tuning) for a 
single common controller (containing various 
parameters representing the overall characteristics of 
the plant) for two families of plants. The genetically 
evolved controller outperforms the controller 
designed with conventional techniques. The 
genetically evolved controller is "general" in the 
sense that it provides a solution that is applicable to 
all the plants in the two families  not merely a 
particular single plant).  
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