
Automatic Synthesis of Both the Topology and Tuning of a
Common Parameterized Controller for Two Families of Plants

using Genetic Programming

Martin A. Keane
Econometrics Inc.
Chicago, Illinois

makeane@ix.netcom.com

Jessen Yu
Genetic Programming Inc.

Los Altos, California
jyu@cs.stanford.edu

John R. Koza
Stanford University
Stanford, California

koza@stanford.edu

Abstract

This paper demonstrates that genetic
programming can be used to automatically
create the design for both the topology and
parameter values (tuning) for a common
parameterized controller for all the plants
in two families of plants that are
representative of typical industrial
processes. The genetically evolved
controller is "general" in the sense that it
contains free variables representing the
characteristics of the particular plant. The
genetically evolved controller outperforms
the controller designed with conventional
techniques. In addition, the genetically
evolved controller infringes on an early
patented invention in the field of control.

1 Introduction
Automatic controllers are ubiquitous in the real world.
The purpose of a controller is to force, in a meritorious
way, the actual response of a system (conventionally
called the plant) to match a desired response (the
reference signal or setpoint). For example, the cruise
control device in a car continuously adjusts the engine
(the plant) based on the difference between the speed
specified by the driver (the reference signal) and the
car's actual speed (the plant response).

Genetic programming has recently been used to
automatically create the design for both the topology
and parameter values (tuning) for a controller for a
particular two-lag plant and a particular three-lag plant
(Koza, Keane, Yu, Bennett, and Mydlowec 2000).
However, these two (different) evolved controllers
applied only to particular plants (of the same family).

The question arises as to whether it is possible to
evolve a common controller (accessing various
parameters representing the overall characteristics of
the plant) that can perform well for an entire family of
plants (say, the n-lag plants) and perhaps also for one
or more additional families of plants.

In their influential book, Astrom and Hagglund
(1995) identified four families of plants "that are
representative for the dynamics of typical industrial

processes." Astrom and Hagglund then developed a
common method for designing controllers and
demonstrated improved performance for their method
over the Ziegler-Nichols (1942) rules on all the plants
in all four families of plants.

One of the four families consists of the n-lag plants
represented by transfer functions of the form

ns
sG

)1(
1)(
+

= (1)

where n = 3, 4, and 8 and where s is the Laplace
transform variable.

Another family consists of plants represented by

)1)(1)(1)(1(
1)(32 ssss

sG
ααα ++++

= (2)

where α = 0.2, 0.5, and 0.7.
The methods developed by Astrom and Hagglund

use pairs of parameters representing the overall
characteristics of a plant. These parameters are not, of
course, a complete representation of the behavior of the
plant; however, they offer the practical advantage of
usually being obtainable for a given plant by means of
relatively straight-forward testing in the field.

In one of their methods, Astrom and Hagglund use
two frequency domain parameters, namely the ultimate
gain, Ku (the minimum value of the gain that must be
introduced into the feedback path to cause a system to
oscillate) and the ultimate period, Tu (the period of this
lowest frequency oscillation).

In another version, Astrom and Hagglund use the
time constant, Tr, and the dead time, L. Astrom and
Hagglund describe a procedure for estimating these two
parameters from the plant's response to a step input.
These two parameters are obtained by approximating
the plant with the transfer function

2)1(r

sL

sT
e
+

−

This paper shows that genetic programming can be
used to automatically create the design for both the
topology and tuning for a common parameterized
controller for all plants belonging to the two families of
plants described by equations (1) and (2). The common
parameterized controller is created using a fitness
measure that optimizes step response and disturbance

rejection, while simultaneously constraining maximum
sensitivity and sensor noise attenuation. The common
genetically evolved controller outperforms the
controller designed using the techniques of Astrom and
Hagglund 1995.

Section 2 discusses how genetic programming can
be used to automatically synthesize the design for both
the topology and tuning of controllers. Section 3
itemizes the preparatory steps necessary to apply
genetic programming to the above two families of
plants. Section 4 presents the results.
2 Genetic Programming and Control
In a closed-loop continuous-time feedback system
consisting of a plant and its controller, the output of the
controller is input to the plant and the output of the
plant is, in turn, input to the controller.

550

552

+15.5

540

542

+1000.0

530

532

+214.0

558

548

s

570

1/s

560

568

578

538

524

522

526

580

+

+

+

Control
Variable

Plant

592

Plant
Output

512
510

-

+

Reference
Signal

596

Controller

520

508 590 594

500

Figure 1 Block diagram of a plant and a PID controller
composed of proportional, integrative, and derivative

blocks.
Figure 1 is a block diagram for an illustrative

control system containing a controller and a plant. The
directed lines in a block diagram represent time-domain
signals while the blocks represent signal processing
functions that operate in the time domain. The output of
the controller 500 is a control variable 590 which is, in
turn, the input to the plant 592. The plant has one
output (plant response) 594. The plant response is fed
back (externally as signal 596) and becomes one of the
controller's two inputs. The controller's second input is
the reference signal 508. The fed-back plant response
596 and the externally supplied reference signal 508 are
compared (by subtraction here). Notice that the takeoff
point 520 of figure 1 provides a way to disseminate a
particular result (of the subtraction 510) to three places
in the block diagram (522, 524, and 526). The output
(i.e., control variable 590) of this controller is the sum
of three terms. First, there is a proportional (P) term
(the gain block 530 with an amplification factor of
214.0). Second, there is an integrating (I) term (the
integrator 560 preceded by the gain block 540 with an
amplification factor of 1,000.0). The integrator is
shown in the figure as 1/s. Third, there is a a
differentiating (D) term (the derivative block 570

preceded by the gain block 550 with an amplification
factor of 15.5). The derivative is shown in the figure as
s. Since the controller's output is the sum of a P, I, and
D term, this type of controller is called a PID controller.
The PID controller was invented and patented by
Albert Callender and Allan Stevenson of Imperial
Chemical Limited of Northwich, England (Callender
and Stevenson 1939).

Genetic programming (Koza 1992; Koza and Rice
1992; Koza 1994a, 1994b; Koza, Bennett, Andre, and
Keane 1999; Koza, Bennett, Andre, Keane, and Brave
1999) is an extension of the genetic algorithm (Holland
1975). Additional information on genetic programming
can be found in books such as Banzhaf, Nordin, Keller,
and Francone 1998; books such as Langdon 1998,
Ryan 1999, and Wong and Leung 2000 in the series on
genetic programming from Kluwer Academic
Publishers; in edited collections of papers such as the
Advances in Genetic Programming series of books
from the MIT Press (Spector, Langdon, O'Reilly, and
Angeline 1999); in the proceedings of the Genetic
Programming Conference (Koza, Banzhaf, Chellapilla,
Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, and Riolo
1998); in the proceedings of the Euro-GP conference
(Poli, Nordin, Langdon, and Fogarty 1999); in the
proceedings of the Genetic and Evolutionary
Computation Conference (Banzhaf, Daida, Eiben,
Garzon, Honavar, Jakiela, and Smith 1999); at web
sites such as www.genetic-programming.org;
and in the Genetic Programming and Evolvable
Machines journal (from Kluwer Academic Publishers).

Evolutionary computation has been previously used
for synthesizing controllers having mutually interacting
continuous-time signal processing blocks and for
system identification problems (Marenbach,
Bettenhausen, and Freyer 1996). (Extensive references
are itemized in Koza, Keane, Yu, Bennett, and
Mydlowec 2000.)

There are several different styles that are commonly
used in genetic programming. As one example, genetic
programming is often used as an automatic method for
creating a program tree to solve a problem (Koza
1992). The individual programs that are evolved by
genetic programming are typically multi-branch
programs consisting of result-producing branches,
automatically defined functions (subroutines), and
other types of branches. In this approach, the program
tree is simply executed. The result of the execution may
be a set of returned values, a set of side effects on some
other entity (e.g., an external entity such as a robot or
an internal entity such as computer memory), or a
combination of returned values and side effects. In this
approach, the functions in the program are sequentially
executed, in time, in accordance with a specified "order
of evaluation" such that the result of executing one
function is available at the time when the next function
is to be executed. Early work on the problem of

automatically creating controllers used this
conventional approach to genetic programming.

As a second example, genetic programming is often
also used to automatically create program trees which
can be used in conjunction with a developmental
process to design complex structures, such as neural
networks (Gruau 1992) and analog electrical circuits
(Koza, Bennett, Andre, and Keane 1996; Koza,
Bennett, Andre, and Keane 1999). In this approach, the
program tree is interpreted as a set of instructions for
constructing the desired structure. The construction
process is implemented by applying the functions of a
program tree to an embryonic structure so as to develop
the embryo into a fully developed structure. As in the
first approach, the functions of the program are
executed separately, in time, in accordance with the
specified "order of evaluation."

In this paper, a computer program (i.e., program
tree, LISP symbolic expression) will represent the
block diagram of a controller. The block diagram
consists of signal processing functions linked by
directed lines representing the flow of information.
There is no "order of evaluation" of the functions and
terminals of a program tree representing a controller.
Instead, the signal processing blocks of the controller
and the to-be-controlled plant interact with one another
other as part of a closed system in the manner specified
by the topology of the block diagram.

PROGN 700

DEFUN 702 VALUES 790

+ 780VALUES 712LIST

706

ADF0

704

- 710

REF

708

PLANT
OUTPUT

794

+214.0

732

ADF0

734

GAIN 730

+1000.0

742

ADF0

744

GAIN 740

1/s 760

+15.5

752

ADF0

754

750

770

GAIN

s

Figure 2 Program tree representation of the PID

controller of figure 1.
Figure 2 presents the block diagram for the PID

controller of figure 1 as a program tree. The internal
points of this program tree represent the signal
processing blocks contained in the block diagram of
figure 1 (i.e., derivative, integrator, gain, subtraction,
addition). The external points (leaves) of this program
tree represent numerical constants and time-domain
signals, such as the reference signal and plant output.
Notice that automatically defined function (subroutine)
ADF0 in the left branch produces a time-domain signal
that equals the result of subtracting the plant output
from the reference signal. The three references to ADF0
in the result-producing (right) branch of this program
tree disseminate the result of subtracting the plant
output from the reference signal and correspond to the
takeoff point 520 of figure 1.

In the style of ordinary computer programming, a
reference to a subroutine ADF0 from inside ADF0

would be considered to be a recursive reference.
However, in the context of genetic programming and
control systems, a subroutine that references itself
corresponds to a loop in the controller's block diagram
(i.e., internal feedback inside the controller).
3 Preparatory Steps
3.1 Program Architecture
Since the to-be-synthesized controller has one output
(control variable), each program tree in the population
has one result-producing branch. Each program tree in
the initial random population (generation 0) has no
automatically defined functions. However, after
generation 0, the architecture-altering operations may
insert (and delete) automatically defined functions.
Automatically defined functions may be used for
takeoff points, internal feedback within the controller,
and reuse of portions of the block diagram. The
permitted maximum of five automatically defined
functions is more than sufficient for this problem.
3.2 Terminal Set
The numerical parameter value for each signal
processing block possessing a parameter is established
by an arithmetic-performing subtree containing
perturbable numerical terminals, arithmetic operations,
and the four parameters for representing the overall
characteristics of a plant. Arithmetic-performing
subtrees may appear in both result-producing branches
and any automatically defined functions that may be
created during the run by the architecture-altering
operations. The value returned by an entire arithmetic-
performing subtree is interpreted as a component value
lying in a range of (positive values) between 10-3 and
103. The terminal set for the arithmetic-performing
subtrees is
Taps = {ℜ, KU, TU, L, TR}.
Here ℜ denotes a perturbable numerical value. In the
initial random generation (generation 0) of a run, each
perturbable numerical value is set, individually and
separately, to a random value in a chosen range (from -
3.0 and +3.0 here). In later generations, a perturbable
numerical value may be changed by adding or
subtracting a relatively small number determined
probabilistically by a Gaussian probability distribution.
The standard deviation of the Gaussian distribution is
1.0 here (i.e., one order of magnitude after the value
returned by an entire arithmetic-performing subtree is
interpreted). The perturbations are implemented by a
genetic operation for mutating the perturbable
numerical values. The perturbable numerical values are
coded by 30 bits in our system. A constrained syntactic
structure maintains one function and terminal set for the
arithmetic-performing subtrees and a different function
and terminal set (below) for all other parts of the
program tree.

The remaining terminals are time-domain signals.
The terminal set, T, for the result-producing branch and
any automatically defined functions (except the
arithmetic-performing subtrees described above) is
T = {REFERENCE_SIGNAL,

CONTROLLER_OUTPUT, PLANT_OUTPUT}.
Space does not permit a detailed description of the

various terminals used herein (although the meaning of
the above terminals should be clear from their names).
See Koza, Keane, Yu, Bennett, and Mydlowec 2000.
3.3 Function Set
The function set, Faps, for the arithmetic-performing
subtrees is
Faps = {ADD_NUMERIC, SUB_NUMERIC,

MUL_NUMERIC, DIV_NUMERIC, REXP,
RLOG}.

The two-argument DIV_NUMERIC function divides
the first argument by the second argument, except that
the quotient is never allowed to exceed 105. The one-
argument REXP function is the exponential function
and the one-argument RLOG function is the natural
logarithm of the absolute value.

The function set, F, for the result-producing branch
and any automatically defined functions (except the
arithmetic-performing subtrees described above)
consists of continuous-time signal processing functions
and automatically defined functions.
F = {GAIN, INVERTER, LEAD, LAG, LAG2,

DIFFERENTIAL_INPUT_INTEGRATOR,
DIFFERENTIATOR, ADD_SIGNAL,
SUB_SIGNAL, ADD_3_SIGNAL,
MUL_SIGNAL, DIV_SIGNAL, ULIMIT,
ADF0, ADF1, ADF2, ADF3, ADF4}.

The one-argument ULIMIT function limits a signal
by constraining it between an upper and lower bound.
This function returns the value of its argument (the
incoming signal) when its argument lies between -1.0
and +1.0. If the argument is greater than +1.0, the
function returns +1.0. If the argument is less than -1.0,
the function returns -1.0. ADF0, …, ADF4 denote
automatically defined functions added during the run
by the architecture-altering operations. The definitions
of the other functions above are suggested by their
names. See Koza, Keane, Yu, Bennett, and Mydlowec
2000.
3.4 Fitness Measure
Genetic programming is a probabilistic algorithm that
searches the space of compositions of the available
functions and terminals under the guidance of a fitness
measure. The fitness measure is a mathematical
implementation of the problem's high-level
requirements. It is couched in terms of “what needs to
be done”  not “how to do it.” The fitness measure for
most problems of controller design is multi-objective in

the sense that there are several different (usually
conflicting) requirements for the controller.

The fitness of each individual in the population is
determined by executing the program tree (i.e., the
result-producing branch plus any automatically defined
functions that may have been created during the run by
the architecture-altering operations). The execution of
the program tree produces an interconnected sequence
of signal processing blocks  that is, a block diagram
for the individual controller. The controller is
embedded into a framework containing the (fixed) plant
and the (fixed) external feedback loop. A SPICE netlist
is then constructed to represent the block diagram of
the controller, the (fixed) plant, and the (fixed) external
feedback loop. This SPICE netlist is wrapped inside an
appropriate set of SPICE commands to carry out
various SPICE analyses in the time domain (described
below). We also provide SPICE with subcircuit
definitions to implement all the signal processing
functions in the function set (described above) and all
the signal processing functions necessary to represent
the plant. The controller is then simulated using our
modified version of the original 217,000-line SPICE3
simulator (Quarles, Newton, Pederson, and
Sangiovanni-Vincentelli 1994). Our modified version
of SPICE is run as a submodule within our genetic
programming system. The SPICE simulator returns
tabular output (representing the plant output in the time
domain). An interface communicates this information
to our genetic programming code. See Koza, Keane,
Yu, Bennett, and Mydlowec 2000 for details.

The fitness of each controller in the population is
measured by means of 48 separate invocations of the
SPICE simulator. This 48-part fitness measure attempts
to optimize step response and disturbance rejection
while simultaneously imposing constraints on
maximum sensitivity and sensor noise attenuation. The
fitness of an individual controller is the sum of the
detrimental contributions of these 48 elements of the
fitness measure. The smaller the sum, the better.

The first 36 elements of this 48-part fitness measure
are time-domain-based elements that together represent
the six plants from the two families (i.e., n = 3, 4, and 8
and α = 0.2, 0.5, and 0.7), in conjunction with six
choices of values for the height of the reference signal
and disturbance signal (shown in table 1) that sample a
range of values. The reference signal is step function
that rises from 0 at time t = 0 to the specified height at t
= 1 millisecond. The disturbance signal is a step
function that rises from 0 at time t = 10Tu to the
specified height at t = 10Tu + 1 millisecond. The
disturbance signal is added to the controller's output.
 Table 1 Six combinations
 Reference signal Disturbance signal
 1.0 1.0
 10-3 10-3

 -10-6 10-6
 1.0 -0.6
 -1.0 0.0
 0.0 1.0

For each of these first 36 elements of the 48-part
fitness measure, a transient analysis is performed in the
time domain using the SPICE simulator. e(t) is the
difference (error) at time t between the plant output and
the reference signal. The contribution to fitness for each
of these 36 elements is based on the sum of two
integrals of time-weighted absolute error (ITAE). The
first term of the integral accounts for the controller's
step response while the second term accounts for
disturbance rejection.

22

20

10

10

0
)()10()(

u

u

u

u

u

T

T

Tt
u

T

T

t
CdtteTtBdttet ∫ −

+
∫

== .

The factor B in the first term of the integral
multiplies each value of e(t) by the reciprocal of the
amplitude of the reference signal (so that all reference
signals are equally influential). The factor C in the
second term of the integral multiplies value of e(t) by
the reciprocal of the amplitude of the disturbance
signals. When the amplitude of either the reference
signal or the disturbance signal is zero, the appropriate
factor (B or C) is set to zero. The ITAE component of
fitness is such that, all other things being equal,
changing the time scale by a factor of F changes the
ITAE by F2. The division of the integral by Tu

2 is an
attempt to eliminate this artifact of the time scale and
equalize the influence of each of the plants in the
overall fitness measure. For these 36 elements of the
fitness measure, the contribution to fitness is multiplied
by 20 if the element is greater than for the Astrom and
Hagglund (1995).

R(s)
Y(s)

+
Controller Plant

U(s)

D(s)

N(s)

+

+
+

Q(s)

Figure 3 Overall model.

The 37th through 42nd elements of the 48-part fitness
measure are frequency-domain-based elements that
measure stability margin. Figure 3 presents a model for
the entire system containing the given plant and the to-
be-evolved controller. In this figure, R(s) is the
reference signal; Y(s) is the plant output; and U(s) is the
controller's output (control variable). Disturbance D(s)
may be added to the controller's output U(s). Sensor
noise N(s) may be added to the plant's output Y(s)
yielding Q(s). Here N(s) is an AC signal. For each of

these six elements of the fitness measure, an AC sweep
is performed using the SPICE simulator from
1/(1000Tu) to 1000/Tu while holding the reference
signal R(s) and the disturbance signal D(s) at zero. The
maximum sensitivity, Ms, is a measure of the stability
margin. It is desirable to minimize the maximum
sensitivity (and therefore maximize the stability
margin). The quantity 1/Ms is the minimum distance
between the Nyquist plot and the point (-1,0) and is the
stability margin incorporating both gain and phase
margin. The maximum sensitivity is the maximum
amplitude of Q(s). The contribution to fitness is 0 if Ms
< 1.5; 2(Ms - 1.5) for 1.5 ≤ Ms ≤ 2.0; and 20(Ms - 2.0) +
1 for Ms > 2.0. For these six elements of the fitness
measure (as well as the six elements below), the
contribution to fitness is multiplied by 10 if the element
is greater than for the Astrom and Hagglund controller
(1995).

The 43rd through 48th elements of this 48-part
fitness measure are frequency-domain-based elements
measuring the sensor noise attenuation. Achieving
favorable sensor noise attenuation is often in direct
conflict with the goal of achieving a rapid response to
setpoint changes and rejection of plant disturbances.
For each of these six elements of the fitness measure,
an AC sweep is performed using the SPICE simulator
from 10/Tu to 1000/Tu while holding the reference
signal R(s) and the disturbance signal; D(s) at zero. The
attenuation of the sensor noise is measured at plant
output at Y(s). Amin is the minimum attenuation in
decibels within this frequency range. It is desirable to
maximize the minimum attenuation. The contribution to
fitness for sensor noise attenuation is 0 if Amin > 40 dB;
(40 - Amin)/10 if 20 dB ≤ Amin ≤ 40 dB; and 2 + (20 -
Amin) if Amin < 20 dB.

A controller that cannot be simulated by SPICE is
assigned a high penalty value of fitness (108).
3.5 Control Parameters
The population size, M, was 100,000. A (generous)
maximum size of 150 points (for functions and
terminals) was established for each result-producing
branch and a (generous) maximum size of 100 points
was established for each automatically defined
function. The percentages of the genetic operations for
each generation are 46% one-offspring crossover on
internal points of the program tree other than numerical
constant terminals, 9% one-offspring crossover on
points of the program tree other than numerical
constant terminals, 9% one-offspring crossover on
numerical constant terminals, 1% mutation on points of
the program tree other than numerical constant
terminals, 20% mutation on numerical constant
terminals, 9% reproduction, 2% subroutine creation,
2% subroutine duplication, and 2% subroutine deletion.
The other parameters are the same default values that

we have used on many other problems (Koza, Bennett,
Andre, Keane 1999).
3.6 Termination
The run was manually monitored and manually
terminated when the fitness of many successive best-of-
generation individuals appeared to have reached a
plateau. The best-so-far individual was harvested and
designated as the result of the run.
3.7 Parallel Implementation
This problem was run on a home-built Beowulf-style
(Sterling, Salmon, Becker, and Savarese 1999) parallel
cluster computer system consisting of 1,000 350 MHz
Pentium II processors (each accompanied by 64
megabytes of RAM). The system has a 350 MHz
Pentium II computer as host. The processing nodes are
connected with a 100 megabit-per-second Ethernet. The
processing nodes and the host use the Linux operating
system. The distributed genetic algorithm with
unsynchronized generations and semi-isolated
subpopulations was used with a subpopulation size of
Q = 100 at each of D = 1,000 demes. As each processor
(asynchronously) completes a generation, four
boatloads of emigrants from each subpopulation are
dispatched to each of the four toroidally adjacent
processors. The 1,000 processors are hierarchically
organized. There are 5 × 5 = 25 high-level groups (each
containing 40 processors). If the adjacent node belongs
to a different group, the migration rate is 2% and
emigrants are selected based on fitness. If the adjacent
node belongs to the same group, emigrants are selected
randomly with a 5% migration rate (10% if the adjacent
node is in the same physical box).
4 Results
The initial random generation is a blind random search
of the search space of the problem. The best-of-

generation circuit from generation 0 has a fitness of
14,530.8.

The best-of-run controller (figure 4) appears in
generation 217. This genetically evolved controller has
an overall fitness of 14.996. The program tree has one
result-producing branch with 10 points and five
automatically defined functions (with 22, 38, 3, 19, and
3 points, respectively). The result-producing branch
refers to ADF0. Also, ADF0 hierarchically refers to
ADF1. The other three automatically defined functions
are not referenced. Note that the controller's output is
fed back internally into the controller.

Figure 5 compares the time-domain response of the
best-of-run controller (triangles) from generation 217
and the Astrom and Hagglund controller (squares) to a
1-volt reference signal for the three-lag plant. The
comparisons for other reference signals, disturbance
signals, and plants from the two families are similarly
superior (and are not shown for reasons of space).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8

Time

P
la

n
t

O
u

tp
u

t

Figure 5 Comparison of time-domain responses.

Reference
Signal

Control
Variable

Plant
Output

+

-

+

-

()LKu 334419.1ln + +

-

()ur KT
uu eKK −+ln

+

+

()uKln sTr+1 ()uKln

+

+
sTu+1

1+
+

+

()uKln sTr+1

Figure 4 Block diagram of best-of-run controller from generation 217.

Table 2 Control signal, U(s), for the best-of-run controller from generation 217

()() () () ()() ()() ()()
sT

LKeKKsTKsTsT
sU

u

u
KT

uuruur
ur 1334419.1ln1lnln1ln11

)(
2 −+++++++

=
−

Table 3 Three coefficients of PID controller equivalent to the best-of-run controller from generation 217

() ()()()
u

uruu

T
KTTKK ln1ln ++

=

() rud TKK ln=

() ()() () ()() ()()
u

u
KT

uuu
i T

LKeKKKK
ur 133419.1ln1lnlnln1ln −+++++

=
−

Table 4 Comparison of characteristics of the controller and the Astrom and Hagglund controller for all six
plants
Plant Plant Genetically evolved Controller Astrom and Hagglund

Controller
 ITAE

Step
ITAE
Disturb

Ms Amin ITAE
Step

ITAE
Disturb

Ms Amin

1
3)1(

1
s+

1.93 1.15 1.66 41.26 2.75 1.28 2.11 43

2
4)1(

1
s+

4.60 6.64 1.80 54.17 8.5 7.6 2.08 58

3
8)1(

1
s+

27.43 74.20 1.69 85.8 49.7 78 1.87 90

4

()()()ssss 32 2.012.012.01)1(
1

++++

0.037 0.0055 1.59 35.23 0.051 0.006 1.9 40

5

()()()ssss 32 5.015.015.01)1(
1

++++

0.436 0.498 1.72 47.5 0.945 0.522 2.07 50

6

()()()ssss 32 7.017.017.01)1(
1

++++

1.40 1.99 1.77 52.2 2.9 2.23 2.07 55

Figure 6 compares the time-domain response of

the best-of-run controller (triangles) from generation
217 and the Astrom and Hagglund controller
(squares) to a 1-volt disturbance signal for the three-
lag plant. The comparisons for other reference
signals, disturbance signals, and plants from the two
families are similarly superior.

-0.05

0

0.05

0.1

0.15

0.2

0 2 4 6 8

Time

P
la

n
t

O
u

tp
u

t

Figure 6 Comparison of the disturbance responses.

Table 2 presents the control signal, U(s), for the
best-of-run controller from generation 217. Note that
all four parameters (Ku, Tu, Tr, and L) appear.

When simplified, it can be seen that the best-of-
run controller from generation 217 is a PID controller
whose three coefficients are as shown in table 3.

Table 4 compares the characteristics of the best-
of-run controller from generation 217 with those of
the Astrom and Hagglund (1995) controller for all six
plants. As can be seen, the genetically evolved
controller is superior to the Astrom and Hagglund
controller for all six plants for the integral of the
time-weighted absolute error (ITAE) for the step
input, the ITAE for disturbance rejection, and the
maximum sensitivity, Ms. All values of Amin are
above the required minimum 40 (except for plant 4).
Averaged over the six plants, the ITAE for the step
input for the genetically evolved controller is only
58% of the value for the Astrom and Hagglund
controller; the ITAE for disturbance rejection is 91%
of the value for the Astrom and Hagglund controller;
and the maximum sensitivity, Ms. for the genetically
evolved controller is only 85% of the value for the
Astrom and Hagglund controller.

The PID controller was a significant improvement
over previous approaches to control. As Callender
and Stevenson state in their 1939 patent,

"A specific object of the invention is to
provide a system which will produce a
compensating effect governed by factors
proportional to the total extent of the
deviation, the rate of the deviation, and the
summation of the deviation during a given
period …"

Claim 1 of Callender and Stevenson (1939)
covers what is now called the PI controller,

"A system for the automatic control of a
variable characteristic comprising means
proportionally responsive to deviations of
the characteristic from a desired value,
compensating means for adjusting the value
of the characteristic, and electrical means
associated with and actuated by responsive
variations in said responsive means, for
operating the compensating means to correct
such deviations in conformity with the sum
of the extent of the deviation and the
summation of the deviation."

Claim 3 of Callender and Stevenson (1939)
covers what is now called the PID controller,

"A system as set forth in claim 1 in which
said operation is additionally controlled in
conformity with the rate of such deviation."

The legal criteria for obtaining a U. S. patent are
that the proposed invention is "new” and “useful"
and

"... the differences between the subject
matter sought to be patented and the prior
art are such that the subject matter as a
whole would [not] have been obvious at the
time the invention was made to a person
having ordinary skill in the art to which said
subject matter pertains." (35 United States
Code 103a).

Patents are only issued if an arms-length
examiner is convinced that the proposed invention is
novel, useful, and satisfies the statutory test for
unobviousness. Since filing for a patent entails the
expenditure of a considerable amount of time and
money, patents are generally sought only if the
invention is likely to prove useful in the real world.
Certainly the PID controller has proved useful since
PD, PI, and PID controllers are in widespread use in
industry throughout the world.

The fact that genetic programming rediscovered
both the topology and sizing of a controller that was
unobvious "to a person having ordinary skill in the
art" establishes that this evolved result satisfies

Arthur Samuel's criterion (1983) for artificial
intelligence and machine learning, namely

“The aim [is] ... to get machines to exhibit
behavior, which if done by humans, would
be assumed to involve the use of
intelligence.”

The values of the PID coefficients of the
controller created by genetic programming are very
close to those of the Astrom and Hagglund (1995)
controller.

Most of the computer time was consumed by the
fitness evaluation of candidate individuals in the
population. The fitness evaluation (involving 36
time-consuming time-domain SPICE simulations and
12 relatively fast frequency-domain SPICE
simulations) averaged about 6.7 seconds per
individual (using a 350 MHz Pentium II processor).
The best-of-run individual from generation 217 was
produced after evaluating 2.18 × 107 individuals.
This required 40.58 hours on our 1,000-node parallel
computer system  that is, the expenditure of 5.11 ×
1016 computer cycles (about 51 peta-cycles of
computer time).

The four parameters (Ku, Tu, Tr, and L) in the
above automatically created result are free variables.
A mathematical formula containing one or more free
variables is "general" in the sense that it provides a
solution to an entire category of problems. For
example, the familiar formula for solving a quadratic
equation contains free variables representing the
coefficients of the equation. Here genetic
programming has automatically created a "general"
solution to an entire category of problems (i.e., all the
plants in the two families)  not merely a single
instance of the problem (i.e., a particular single
plant).
5 Conclusion
This paper demonstrated that genetic programming
can be used to automatically create the design for
both the topology and parameter values (tuning) for a
single common controller (containing various
parameters representing the overall characteristics of
the plant) for two families of plants. The genetically
evolved controller outperforms the controller
designed with conventional techniques. The
genetically evolved controller is "general" in the
sense that it provides a solution that is applicable to
all the plants in the two families  not merely a
particular single plant).
References
Astrom, Karl J. and Hagglund, Tore. 1995. PID

Controllers: Theory, Design, and Tuning. Second
Edition. Research Triangle Park, NC: Instrument
Society of America.

Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E.,
Garzon, Max H., Honavar, Vasant, Jakiela, Mark,
and Smith, Robert E. (editors). 1999. GECCO-99:
Proceedings of the Genetic and Evolutionary
Computation Conference, July 13-17, 1999,
Orlando, Florida USA. San Francisco, CA:
Morgan Kaufmann.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E.,
and Francone, Frank D. 1998. Genetic
Programming – An Introduction. San Francisco,
CA: Morgan Kaufmann and Heidelberg: dpunkt.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer,
Marc, and Fogarty, Terence C. 1998. Genetic
Programming: First European Workshop.
EuroGP'98. Paris, France, April 1998
Proceedings. Paris, France. April l998. Lecture
Notes in Computer Science. Volume 1391. Berlin,
Germany: Springer-Verlag.

Callender, Albert and Stevenson, Allan Brown. 1939.
Automatic Control of Variable Physical
Characteristics. United States Patent 2,175,985.
Filed February 17, 1936 in United States. Filed
February 13, 1935 in Great Britain. Issued October
10, 1939 in United States.

Gruau, Frederic. 1992. Genetic synthesis of Boolean
neural networks with a cell rewriting
developmental process. In Schaffer, J. D. and
Whitley, Darrell (editors). Proceedings of the
Workshop on Combinations of Genetic Algorithms
and Neural Networks 1992. Los Alamitos, CA:
The IEEE Computer Society Press.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge, MA:
MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1999. Genetic Programming
III: Darwinian Invention and Problem Solving.
San Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A., and Brave, Scott. 1999. Genetic
Programming III Videotape: Human-Competitive
Machine Intelligence. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Keane, Martin A., Yu, Jessen,
Bennett, Forrest H III, and Mydlowec, William.
2000. Automatic creation of human-competitive
programs and controllers by means of genetic

programming. Genetic Programming and
Evolvable Machines. 1 (1 -2) 121 - 164.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT
Press.

Langdon, William B. 1998. Genetic Programming
and Data Structures: Genetic Programming +
Data Structures = Automatic Programming!
Amsterdam: Kluwer.

Marenbach, Peter, Bettenhausen, Kurt D., and
Freyer, Stephan. 1996. Signal path oriented
approach for generation of dynamic process
models. In Koza, John R., Goldberg, David E.,
Fogel, David B., and Riolo, Rick L. (editors).
Genetic Programming 1996: Proceedings of the
First Annual Conference, July 28-31, 1996,
Stanford University. Cambridge, MA: MIT Press.
Pages 327 - 332.

Poli, Riccardo, Nordin, Peter, Langdon, William B.,
and Fogarty, Terence C. 1999. Genetic
Programming: Second European Workshop.
EuroGP'99. Proceedings. Lecture Notes in
Computer Science. Volume 1598. Berlin:
Springer-Verlag.

Quarles, Thomas, Newton, A. R., Pederson, D. O.,
and Sangiovanni-Vincentelli, A. 1994. SPICE 3
Version 3F5 User's Manual. Department of
Electrical Engineering and Computer Science,
University of California. Berkeley, CA. March
1994.

Ryan, Conor. 1999. Automatic Re-engineering of
Software Using Genetic Programming.
Amsterdam: Kluwer Academic Publishers.

Samuel, Arthur L. 1983. AI: Where it has been and
where it is going. Proceedings of the Eighth
International Joint Conference on Artificial
Intelligence. Los Altos, CA: Morgan Kaufmann.
Pages 1152 – 1157.

Spector, Lee, Langdon, William B., O'Reilly, Una-
May, and Angeline, Peter (editors). 1999.
Advances in Genetic Programming 3. Cambridge,
MA: MIT Press.

Sterling, Thomas L., Salmon, John, Becker, Donald
J., and Savarese, Daniel F. 1999. How to Build a
Beowulf: A Guide to Implementation and
Application of PC Clusters. Cambridge, MA: MIT
Press.

Wong, Man Leung and Leung, Kwong Sak. 2000.
Data Mining Using Grammar Based Genetic
Programming and Applications. Amsterdam:
Kluwer Academic Publishers.

Ziegler, J. G. and Nichols, N. B. 1942. Optimum
settings for automatic controllers. Transactions of
ASME. (64) 759-768.

