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Abstract. Multi-objective evolutionary algorithms (MOEAs) have been
the subject of a large research effort over the past two decades. Tradi-
tionally, these MOEAs have been seen as monolithic units, and their
study was focused on comparing them as blackboxes. More recently, a
component-wise view of MOEAs has emerged, with flexible frameworks
combining algorithmic components from different MOEAs. The num-
ber of available algorithmic components is large, though, and an algo-
rithm designer working on a specific application cannot analyze all pos-
sible combinations. In this paper, we investigate the automatic design of
MOEAs, extending previous work on other multi-objective metaheuris-
tics. We conduct our tests on four variants of the permutation flowshop
problem that differ on the number and nature of the objectives they
consider. Moreover, given the different characteristics of the variants,
we also investigate the performance of an automatic MOEA designed for
the multi-objective PFSP in general. Our results show that the automat-
ically designed MOEAs are able to outperform six traditional MOEAs,
confirming the importance and efficiency of this design methodology.

1 Introduction

Multi-objective evolutionary algorithms (MOEAs) are the most studied meta-
heuristics for solving multi-objective optimization problems and a large number
of MOEAs have been proposed in the past two decades [1,2,8,10,21,22]. A few
surveys of the field have been conducted [19,24] and competitions have been held
to identify the best MOEA for particular benchmarks [20]. These works study
MOEAs as monolithic units and provide insights on which particular MOEAs are
state of the art for specific problems, giving a baseline for future developments.
More recently, a component-wise view of MOEAs has drawn the attention of the
MOEA community [5,13]. “Deconstructed” MOEAs actually differ by a few main
algorithmic components, which can be individually analyzed to assess their ac-
tual contribution to the overall efficiency of the algorithm. This component-wise
view has been recently strengthened by the development of flexible algorithmic
frameworks [11, 13], where novel MOEAs can be devised combining existing al-
gorithmic components. However, the potential of such approach remains unclear
as the number of possible combinations is extremely large to be fully explored.

In a parallel research trend, the automatic design of multi-objective optimiz-
ers has produced several state-of-the-art algorithms [3,9,16]. This methodology



consists of applying automatic offline parameter configuration tools (tuners, for
short) to flexible algorithmic frameworks, such as the ones recently proposed for
MOEAs. By doing so, the parameter space searched by the tuner is actually a
space of different algorithms, which allows the analysis and comparison of several
novel algorithms at a time. The final configuration selected by the tuner is not
necessarily the best possible algorithm as the configuration space is not searched
exhaustively, but it is usually a high-performing one. In this work, we investi-
gate the efficiency of the automatic algorithm design methodology for creating
MOEAs for combinatorial optimization problems. We use four different variants
of the permutation flowshop problem (PSFP) as test benchmarks. These variants
combine, in different ways, the most relevant optimization criteria for the PFSP,
namely makespan (Cmax), total flow time (TFT), and total tardiness (TT).

In a first step, we present the framework we use for this work, which com-
bines components from ParadisEO-MOEO [13], PISA [7], and PaGMO [6]. Par-
ticularly, some of the MOEAs from the literature cannot be easily represented
just by the combination of a fitness and a diversity component as proposed in
ParadisEO-MOEO. Instead, following [23], we use a more general preference
relation, defined as a combination of a set-partitioning criterion, a quality in-
dicator and a diversity measure. Second, although some MOEAs claim to use
an external archive, this archive is used during the evolutionary search process,
either for mating or selection. In our implementation, we allow MOEAs to use
two archives at a time: an internal one, which can replace the population of the
algorithm; and an external one, which is only used for building the final ap-
proximation front. Finally, our implementation incorporates elements from new
MOEAs, such as sequential versus one-shot removal of solutions [1], quality in
terms of hypervolume contribution [1, 2], and adaptive-grid diversity [12].

In a second step, we generate five automatically designed MOEAs (Auto-
MOEAs): one for each of the PFSP variants considered here, and an extra one
for solving all variants (AutoMOEAPFSP). Since related works have shown these
variants present different search space characteristics [5, 9], it is important to
understand whether (i) the automatic design methodology can produce a single
optimizer that performs better than the others for all variants, or; (ii) the best
strategy is to have an AutoMOEA tailored for each variant. We then conduct an
experimental analysis on a PFSP variant basis. For each PFSP variant, we (i)
compare the structure of the variant-specific AutoMOEA to AutoMOEAPFSP;
and (ii) compare their performance to six traditional MOEAs. Results show that
the AutoMOEAs are often able to outperform the traditional MOEAs. Although
the more general AutoMOEAPFSP reaches better results than the traditional
MOEAs, the variant-specific AutoMOEAs perform better in most scenarios, re-
inforcing the need for the automatic algorithm design methodology.

2 A framework for instantiating MOEAs

A summary of the components that differentiate most current MOEA algorithms
is given in Table 1. The most important components are (i) the mating selec-



Table 1. Algorithmic components of the MOEA framework used.

Component Domain Description

µ N
+ Population size

λ N
+ Number of offspring

pop { fixed-size, bounded } Population type

pop
ext

{ none, bounded, unbounded } External archive type

Next N
+ pop

ext
size, if pop

ext
type = bounded

Selection











random

deterministic tournament

stochastic tournament

Mating selection operator

Removal

{

sequential

one shot
Population replacement policy

Set-partitioning































none

dominance rank

dominance strength

dominance depth

dominance depth-rank

Quality indicator



















none

binary indicator (ǫ or hypervolume) (IBEA)

hypervolume contribution (SMS-EMOA)

h-hypervolume contribution (HypE)

Diversity































none

niche sharing

k-th nearest neighbor

crowding distance

adaptive grid (PAES)

tion (Mating), and (ii) the environmental selection or truncation (Replacement).
Traditionally, mating and replacement have been defined as compositions of a
fitness component, designed to favor convergence, and a diversity component,
meant to keep the population spread across the objective space. Following more
recent work [23], we consider general preference relations comprising three lower-
level components: (i) a set-partitioning relation, which partitions a set of solu-
tions in a manner consistent with Pareto dominance but cannot discriminate
between nondominated solutions; (ii) a quality indicator, which assigns a quality
value to solutions in a manner that does not contradict Pareto dominance (often
used as a refinement of the partitions); and (iii) a diversity metric, which does
not need to be consistent with Pareto dominance. All the options implemented
for these low-level components are shown in Table 1.

We define the Mating component as being composed of a preference relation
and a selection method. The selection method may be any of the traditional
methods in EAs: random, tournament, etc. Conversely, component Replacement

is composed of a preference relation and a removal policy. The latter may be
either sequential [15] (also called iterative [1]), i.e., one individual/solution is
removed at a time and preference relations are re-computed before the next is
discarded; or one-shot, i.e., preference relations are computed once and the worst
solutions are removed altogether [1].



Table 2. Instantiation of MOEAs using our framework. Other components are param-
eters except pop = fixed-size and pop

ext
= none. SMS-EMOA uses λ = 1 by design.

Mating Replacement

Algorithm SetPart Quality Diversity Selection SetPart Quality Diversity Removal

MOGA [10] rank — sharing det. tour. rank — sharing one-shot

NSGA-II [8] depth — crowding det. tour. depth — crowding one-shot

SPEA2 [22] strength — k-NN det. tour. strength — k-NN sequential

IBEA [21] — bin. ind. — det. tour. — bin. ind. — sequential

SMS-EMOA [2] — — — random
depth hyperv.

— —
rank contrib.

HypE [1] —
h-hyperv.

— det. tour. depth
h-hyperv.

— sequential
contrib. contrib

Table 3. Parameter space for tuning the numerical parameters of all MOEAs.

Parameter µ λ pC pmut pX

Domain {10, 20, . . . , 100} 1 or λr · µ [0, 1] [0, 1] [0, 1]
λr ∈ [0.1, 2]

Algorithm IBEA MOGA SPEA2

Parameter indicator σshare k

Domain {Iǫ, I
−

H
} [0.1, 1] {1, . . . , 9}

Besides the components explained above, populations and archives also need
to be highlighted. Traditionally, a population is a set of individuals (dominated
and nondominated alike) that are subject to the evolutionary process. As dis-
cussed elsewhere [19], an archive can be seen as a generalized population that
may (i) keep only nondominated solutions and/or (ii) have unlimited capacity.
In this work, we implement an internal archive pop (in place of the popula-
tion), as well as an external archive pop

ext
, which does not interfere with the

evolutionary process. Concretely, if pop is set to fixed-size, it behaves like a
regular population. If it is set to bounded, it behaves like an internal archive,
accepting only nondominated solutions until its maximum capacity is reached.
At this point, a replacement is carried out. By using this flexible implementa-
tion, we are able to instantiate algorithms such as SPEA2, which were origi-
nally described with an external archive that interferes in the evolutionary pro-
cess. Concerning the external archive as implemented in this work, a MOEA
may choose (i) not to use it (pop

ext
= none), (ii) to use it without capacity

constraints (pop
ext

= unbounded), or (iii) to use it with a maximum capac-
ity Next (pop

ext
= bounded). In the latter case, an additional replacement

component ReplacementExt needs to be defined, similar to the replacement com-
ponent used by the internal set. Moreover, we add a numerical parameter µ0 to
determine the initial number of random solutions in this bounded archive.

As shown in Table 2, by selecting the corresponding components for each al-
gorithm, we can instantiate at least six well-known MOEAs from the literature.
Particularly, SMS-EMOA and HypE use slightly different definitions of hyper-
volume contribution, and the definition used by HypE is further parametrized
by a parameter h (k in the original paper [1]). SPEA2 uses a pre-defined formula
for computing its k parameter value. Here, we implement both the formula and
an option for manual input of k, i.e., k becomes a numerical parameter.



Table 4. The MOEAs are sorted according to their sum of ranks (in parenthesis).

Cmax AutoMOEA AutoMOEA IBEA NSGA-II SPEA2 HypE MOGA SMS
TFT PFSP (249) Cmax-TFT (302) (398) (472) (479) (585) (687) (788)

Cmax AutoMOEA AutoMOEA NSGA-II SPEA2 IBEA HypE SMS MOGA
TT Cmax-TT (209) PFSP (253) (357) (464) (547) (574) (770) (786)

TFT MOGA IBEA AutoMOEA HypE NSGA-II AutoMOEA SPEA2 SMS
TT (304) (371) TFT-TT (475) (499) (499) PFSP (553) (615) (644)

Cmax AutoMOEA AutoMOEA IBEA SPEA2 HypE NSGA-II SMS MOGA
TFT-TT (161) PFSP (251) (417) (525) (528) (541) (735) (802)

3 Experimental setup

We consider the six standard MOEAs in Table 2 and we compare them with
the novel, automatically designed MOEAs instantiated using this framework for
the multi-objective PFSP variants. Our goal is to identify good combinations
of such components, specially if they differ from (and are better than) existing
combinations used by standard MOEAs.

We use irace [14] as tuner, adapting it to multi-objective optimization by
using the hypervolume quality measure [16]. For computing the hypervolume,
we normalize the objective values to the range [1, 2] using the maximum and
minimum ever found per problem, and use (2.1, 2.1) and (2.1, 2.1, 2.1), respec-
tively, as reference points for the bi- and tri-objective variants. We set a budget
of 5 000 runs for each tuning in order to design each variant-specific AutoMOEA.
Since AutoMOEAPFSP needs to see four times more instances than the variant-
specific AutoMOEAs, we give it a tuning budget of 20 000 runs. Moreover, since
the traditional MOEAs do not present default values for an application to the
PFSP, we tune their numerical parameters using the same budget given to the
variant-specific AutoMOEAs (5 000 runs per MOEA per variant per tuning).
The parameter space used for the numerical parameters is given in Table 3; it
is the same for all MOEAs. Following [5], we use random initial solutions, two-
point crossover and two problem-specific mutation operators, namely insert and
exchange. In Table 3, pmut stands for the probability of applying mutation to a
given individual, while pX is the probability of using the exchange operator if
the first test is successful (1− pX for the insertion operator).

To ensure that our results are not affected by overtuning, we use two indepen-
dent benchmark sets for testing and tuning. The tuning benchmark set contains
the instances with 20 machines from the tuning benchmark set proposed by [9].
The testing benchmark set is an adaptation of the benchmark set proposed by
Taillard [18], following what is traditionally done in the multi-objective PFSP
literature [9, 17]. Once the algorithms are tuned, we run them 10 times on each
test instance, compute the average hypervolume, and compare the results using
rank sum analysis and parallel coordinate plots. Experiments are run on a single
core of Intel Xeon E5410 CPUs, running at 2.33GHz with 6MB of cache size un-
der Cluster Rocks Linux version 6.0/CentOS 6.3. For brevity, few representative
results are given here. The complete list of results is provided as supplementary
material [4], as well as the parameter settings used by irace.
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4 Results and discussion

As shown in Table 5, the structures of AutoMOEACmax-TFT and AutoMOEAPFSP

differ substantially. AutoMOEACmax-TFT combines components from almost all
specific known MOEAs that built the basis for the algorithmic components
included in the framework. Its mating preference relation joins components
from MOGA (dominance rank), SMS-EMOA (hypervolume contribution), and
NSGA-II (crowding distance). The replacement preference relation is a com-
bination of the components from NSGA-II and IBEA. Interestingly, this very
heterogeneous MOEA is able to outperform all traditional MOEAs on many
of the tested instances. In fact, it is only outperformed by AutoMOEAPFSP.
The structure of AutoMOEAPFSP is radically simpler. The mating selection
is performed randomly, so no preference relation is required. For replacement,
only the shared hypervolume contribution proposed for HypE is used. How-
ever, the one-shot removal policy is adopted, most likely to cope with the com-
putational overhead for the three-objective variant. Despite its relatively sim-
ple structure, AutoMOEAPFSP outperforms all MOEAs considered, including
AutoMOEACmax-TFT.

The similarity of the structures of AutoMOEACmax-TT and AutoMOEAPFSP is
remarkable. In fact, the only significant differences between these two algorithms
lie in the addition of the crowding distance diversity operator in AutoMOEACmax-TT

and the population size, which in AutoMOEACmax-TT is half the size used by
AutoMOEAPFSP. These small differences are reflected on the similar rank sums
they achieve. This time, however, the variant-specific AutoMOEA outperforms
the general AutoMOEA for several instances. In fact, both algorithms attain
better hypervolume values for almost all test instances in comparison to the
traditional MOEAs.

For the TFT-TT variant, results reflect the peculiarity of the problem’s struc-
ture. For this variant, the number of nondominated solutions decreases as the
problem size increases. This is confirmed by the fact that many algorithms ap-
plied to this variant tend to find a single solution for the larger instances. Having
this mixed nature, the design of AutoMOEATFT-TT is unable to outperform some
algorithms across the whole benchmark. In fact, MOGA is the only algorithm
to perform well in the instances with few nondominated solutions. We suspect
this unexpectedly good performance of MOGA can be explained by its capac-
ity to establish and maintain niches, an effective strategy for single-objective
EAs. Given the peculiarities of this variant, the high rank sum achieved by
AutoMOEAPFSP confirms that using general-purpose designed algorithms may
eventually present sub-optimal performance, and that using a variant-specific
design one can overcome to some extent this type of drawbacks.

This mixed characteristics of this variant are shown in the parallel coordinate
plots depicted in Fig. 1. For the “multi-objective” instances like the ones with 50
jobs and 20 machines (top), AutoMOEA often performs best. However, for the
“single-objective” ones, like the ones with 200 jobs and 20 machines (bottom),
all algorithms perform clearly worse than MOGA. To verify whether we could
automatically generate an AutoMOEA as good as MOGA for this problem, we
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Fig. 1. MOEA’s average hypervolume on 10 instances of Cmax-TFT. Top: 50 jobs and
20 machines. Bottom: 200 jobs and 20 machines. Each vertical line depicts one instance.

ran irace again under a different setup. First, we added the generational removal
policy from MOGA, which we had excluded from the parameter space in an early
development stage because of the evidence favoring elitism throughout the MO
literature. Second, we added the configuration of MOGA as an initial candidate
for irace. However, this candidate was discarded in the first iteration, and the
final configuration was very similar to the one presented here. This could also
be explained by possible differences in the training and test sets.

To conclude, the structure of AutoMOEACmax-TFT-TT combines elements from
AutoMOEACmax-TFT (mating) and AutoMOEACmax-TT (replacement), which was
expected since these components proved to be effective for these objectives. In-
terestingly, only the replacement hypervolume-based component is maintained.
This is likely explained by the computational overhead that the hypervolume-
based components introduce, particularly for three-objective scenarios. Concern-
ing the performance of this AutoMOEA, the rank sum depicted in Table 4 shows
that this AutoMOEA achieves hypervolumes that are better over almost all test
instances considered. AutoMOEAPFSP ranks second, confirming that it is a flex-
ible but effective algorithm.



5 Conclusions

In this paper, we have investigated the automatic design of multi-objective evo-
lutionary algorithms (MOEAs). We used an extended framework that combines
components from ParadisEO-MOEO, PISA, and PaGMO to deal with four dif-
ferent variants of the permutation flowshop problem (PFSP). We have used irace,
an offline algorithm configuration tool, to automatically select the components
that were more effective for each PFSP variant, thus producing novel MOEAs.
These automatically designed MOEAs (AutoMOEAs) have outperformed the
traditional MOEAs on all variants considered, confirming that novel combina-
tions of existing MOEAs can lead to much improvement on the state-of-the-art,
and reinforcing the need for research works on automatic algorithm design.

The analysis conducted here has reached its two main goals. The first was
to assess whether the state of the art of MOEAs could be improved (and by
how much) by using an automatic algorithm design methodology. The results
shown here confirm that improvements can be achieved in the context of combi-
natorial optimization, particularly for the PFSP. The second was to investigate
whether a single AutoMOEA could potentially outperform the variant-taylored
AutoMOEAs, given that the variants present different search space character-
istics. In terms of its structure, AutoMOEAPFSP is a simple yet flexible and
efficient algorithm. Concerning performance, the more general version outper-
form the variant-specific AutoMOEA for the Cmax-TFT variant, but is unable
to match the performance of the other variant-specific AutoMOEAs. However,
AutoMOEAPFSP often outperforms the other MOEAs considered in this work.

Finally, the results presented here are preliminary. More experimental analy-
sis, ranging from combinatorial to continuous, would be required to assess the full
potential of the automatic design of MOEAs. Nonetheless, these initial results
suggest that our approach is not only feasible but that it may give significant
insights about the role various algorithmic components of MOEAs play and lead
to completely new MOEA designs that have never been tested or considered pre-
viously. Moreover, deeper analysis on individual components and reasons for the
high performance of the automatically designed configurations are an important
open research question.
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15. López-Ibáñez, M., Knowles, J.D., Laumanns, M.: On sequential online archiving
of objective vectors. In: Takahashi, R.H.C., et al. (eds.) EMO 2011, LNCS, vol.
6576, pp. 46–60. Springer (2011)
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