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Automatic design of mechanical metamaterial
actuators
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Mechanical metamaterial actuators achieve pre-determined input–output operations

exploiting architectural features encoded within a single 3D printed element, thus removing

the need for assembling different structural components. Despite the rapid progress in the

field, there is still a need for efficient strategies to optimize metamaterial design for a variety

of functions. We present a computational method for the automatic design of mechanical

metamaterial actuators that combines a reinforced Monte Carlo method with discrete ele-

ment simulations. 3D printing of selected mechanical metamaterial actuators shows that the

machine-generated structures can reach high efficiency, exceeding human-designed struc-

tures. We also show that it is possible to design efficient actuators by training a deep neural

network which is then able to predict the efficiency from the image of a structure and to

identify its functional regions. The elementary actuators devised here can be combined to

produce metamaterial machines of arbitrary complexity for countless engineering

applications.
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M
echanical metamaterials are a novel class of artificial
materials engineered to have exceptional properties and
responses that are difficult to find in conventional

materials1–5. Their stiffness, strength-to-weight ratio6–8, elastic
response9, Poisson’s ratio10–14, energy trapping15,16, and fracture
resistance17,18 can be tuned to match or exceed those found in
standard materials. The increasing interest in metamaterials is
stimulated by the recent advances in digital manufacturing
technologies e.g. 3D printing and automated assembly, which
enable rapid manufacture of such material structures with the
removal of many of the constraints in scale and geometry at lower
and decreasing cost19.

Metamaterials derive their properties not from the inherent
nature of the bulk materials, but from their artificially designed
internal geometry composed of multiple sub-elements, or cells,
which are usually arranged in repeated regular patterns20,21.
Recent papers have also demonstrated the possibility to introduce
an increasing degree of disorder in the mechanical metamaterial,
without losing effectiveness22–25. Since cells can be designed and
placed in many different ways, the resulting structure can display
multiple degrees of freedom, giving rise to a variety of unusual
physical properties which then find natural applications in
industrial design, as architectural motifs or reinforcement pat-
terns for textiles, beams and other objects.

Interesting examples of shape changing structures are based on
origami and kirigami which use folds and cuts to program shape
changes26–29 with several engineering applications such as in
aerospace, for the satellite solar panel deployment30. Origami-
based31–33 and kirigami-based34 structures provide inspiration
for the design of mechanical metamaterials. In this context, a
recent paper explored the folding behavior of prismatic building
blocks with controllable multifunctionality and applied local
actuation patterns to study their mechanical behavior35.

Metamaterials can also be considered as true machines36, able
to accomplish mechanical functions through the transformation
of input stimuli into a programmable set of outputs. In this case,
constituent cells work together in a well-defined manner to obtain
the final controlled directional macroscopic movement. Meta-
material machines can be exploited as mechanical actuators for
human-machine interactions or as interactive/responsive com-
ponents in robotics. Conventional design strategies for metama-
terial structures and machines are often based on manual
operations, which work reasonably well in specific conditions but
are not guaranteed to yield maximum efficiency for all cases.

To overcome the limitations of manual design, we propose an
automatic optimization method for the automatic design of
mechanical metamaterial actuators (MMA), searching for the
optimal output response to an applied input through iterative
modifications of the structure. Generative methods based on
optimization algorithms have been used to design allosteric
materials37–39, fiber-reinforced actuators40 and to choose the
optimal cell geometry in periodic metamaterial lattices41,42. Our
method deals instead with ordered or disordered22,25 metama-
terials and selects the optimal output response to a given applied
input through iterative modifications by removal or reinsertion
of beams. We show that this optimization process can be effi-
ciently realized coupling the optimization algorithm with discrete
element simulations or with a suitably trained deep neural
network.

Results
Automatic design under displacement input/output. We con-
sider two prototypical actuators, the first in which the desired
input and output are orthogonal, tinp ¼ �ŷ, tout ¼ �x̂ (see

Fig. 1), and a second one in which they are anti-parallel,

tinp ¼ �ŷ, tout ¼ ŷ. In Supplementary Fig. 1, we report the evo-

lution of η during the MC dynamics for several realizations of the
orthogonal-functionalized MMAs (traces for the anti-parallel case
are similar). An example of generation of such structure during
the optimization steps can be visualized in Supplementary
Movie 1. We note that, after the annealing phase, efficiency tends
to evolve in steps, interspersed by noisy parts and by plateaus.
Steps can occur when a mechanism that engages the desired
response is finally triggered, while plateaus indicate a structure
whose efficiency is robust against the removal or addition of one
or more bonds. Hence, we have selected our most efficient
reference samples from the configurations laying in these plateaus
of η. We obtain a large variability of the final η values, indicating
a possible trapping in local minima that require thermally acti-
vated excitation to escape. Because of this, and depending on the
post-annealing conditions, the exploration of the whole phase-
space of the network can take very long times, which further
increase with the network size.

The use of a simplified model within the minimization
algorithm requires further validation through more refined
simulations. We thus have converted our structures to a FEM
mesh, in order to simulate the realistic response of the material
(see “Methods”). Simulation results for orthogonal and anti-
parallel motion are reported in Fig. 2 and Supplementary Fig. 3,
respectively. Note that the achievable efficiency can easily
approach and exceed the value obtained by the human-
designed structures, reported on the left panels. In all the cases
considered, the model-calculated efficiencies were validated by
FEM simulations, with minimal corrections on η with respect of
DEM estimates. It is possible to obtain information about the
stress propagation along the network from FEM or DEM
simulations and thus identify the regions mostly involved in the
mechanism actualization. In this respect, we note that the
machine-generated structures are characterized by a broad
distribution of internal stresses, indicating a collective engage-
ment of the network. Conversely, in the human-designed
structures the stress highlights the few pivot points employed to
perform the movement.

Size scaling of the algorithm. We investigate the scaling of the
algorithm from an empirical perspective. To do so, we prepare six
different lattices of increasing size, starting at Nb = 172 bonds
and up to Nb = 885 bonds. Following the displacement-based
protocol, we fix an input displacement of 1% relative to the total
side length of the lattice, and a desired output direction per-
pendicular to the input, as in the example in Fig. 1. We run our
algorithm for a total of 10 ⋅ Nb accepted MC steps, decreasing the
temperature from 0.06 down to 0, followed by 2 ⋅ Nb MC steps at
zero temperature. We generate 100 different structures for each
lattice size, totaling 600 structures. For each structure, we measure
its total execution time T and its efficiency η (see Fig. 3).

The scaling exponent α is obtained by fitting a liner regression
model between log T and logNb. We obtain an estimate of
α̂ ¼ 2:97. The efficiency of the obtained configurations increases
with Nb for the smallest lattice sizes, to then reach a plateau at
larger sizes. We notice that the Monte Carlo procedure was
designed to scale with Nb as well, so the relaxation part of the
algorithm would account for the remaining N2

b scaling. Although
some computational details or the usage of faster CPU equipment
could lower the reported execution times, there is an upper bound
on the lattice sizes that can be investigated with the present
algorithm. Still, our implementation allows us to find efficient
structures in less than roughly one day for lattice sizes of around
700 bonds, which is within the range of interest for mechanical
metamaterial actuators.
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Non-linear dependence of efficiency on input displacement.
The analysis presented in Fig. 2 and Supplementary Fig. 3 relied
on an initial triangular mesh, but the algorithm can also be
performed using a random mesh, as described in “Methods”. The
efficiency obtained using a periodic and a random lattice is
compared in Fig. 4 for the same input movement. We observe
that under a relatively small input displacement the random
lattice based metamaterial outperforms the one obtained from a
triangular lattice (Fig. 4a), but for a larger input displacement the
two lattices yield similar efficiencies (Fig. 4b, d).

We investigate the origin of this observation by measuring the
efficiency as a function of the input displacement. As shown in
Fig. 4c, the efficiency is a non-linear function of the input
displacement, saturating to a constant value at large enough
displacements. In the random lattice case, the efficiency increases
rapidly at very small displacement, while in the triangular case

such increase occurs at much higher displacements. The non-
linearity results from a crossover between compression domi-
nated to bending dominated behavior through local buckling
instabilities which can produce large displacements at relatively
low forces, acting as a multiplicative factor for the efficiency.

Automatic design under force-based input/output. The strategy
employed to find the most effective structure under displacement-
based input/output conditions can be extended to the case of a
force-based input. To illustrate this, we consider, as a human-
designed reference configuration, one of the metamaterial
machines provided in ref. 36 reproducing the pliers, the most
common traditional hand tool used to hold objects. The
mechanical movement of the pliers consists of a pair of levers
joined at a pivot point with short jaws on one side and longer
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Fig. 1 Schematic of automatic structure generation. a The initial triangular lattice configuration RIS. b The optimized structure obtained with DEM and its

modeled response upon input displacement. c The same structure movement simulated by FEM. The colormap displays the Von Mises stress.

0

25

20

15

10

5

–5

–10

–15

–20

–25

–70 –60

η = 66% η = 241%

η = 240%η = 67%

–50 –40 –30 –20 –10

mm

a b

c d

Human design Machine design

mm

0

25

20

15

10

5

–5

–10

–15

–20

–25

–70 –60 –50 –40 –30 –20 –10

mm

mm

Fig. 2 Automatic design achieves efficient anti-parallel movement. Comparison of (a) human-designed and (b) machine-designed structures for FEM

simulated and (c, d) the corresponding 3D printed realizations. The color represents the Von Mises stress with the same colorbar as in Fig. 1c. Red (green)

arrows indicate the direction of the desired input tinp (output tout). Resulting efficiencies are reported in each panel. For movement visualization see

Supplementary Movie 2.
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Fig. 3 Scaling of the algorithm. a Total execution time, in hours, versus number of bonds of a series of six increasingly large regular lattices. Empty large

circles display the median execution time. Small gray dots show the raw data over 100 independent simulations. The red line is a linear fit in logarithmic
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Fig. 4 Lattice geometry and buckling effects. a example of actuators with orthogonal input–output movement, obtained starting from a triangular (top)

and amorphous (bottom) lattices. b The same as (a) but with a larger displacement of input nodes. Red (green) arrows indicate the direction of the desired

input tinp (output tout). c Efficiency as a function of the input displacement for the same two actuators in (a),(b). Error bars are standard deviations.

d Efficiency distribution for 100 generated actuators using triangular or amorphous lattices. Arrows report the average efficiency for the two cases.
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handles on the other one. The metamaterial machine proposed by
Ion et al. consists of different unit cells which are softer near the
fulcrum, to achieve more flexibility, and more rigid in the rest of
the structure36. Pressing the handles (double anti-parallel input
point application) results in the closure of the jaws to hold
the object (double anti-parallel output) symmetrically along the
y-axis passing through the fulcrum.

We tune our method to reach a target force-based efficiency, by
applying constant input forces on two sets of handles nodes and
measuring the force on a set of gauge springs, placed in contact
with the gripping jaw nodes. The efficiency is then defined as in
Eq. ((3)).

We implement DEM simulations on the human-designed
pliers with suitable parameters that allow mechanical response
within the linear elastic regime, choosing a relatively high gauge
spring stiffness (kext = 10.0) and a relatively small input force
(Fext = 0.01). The goal is to achieve a large output force in
response to a small input force. The force-based efficiency
reached with these parameters is 22%. In order to visualize the
real space displacements, we perform simulations also with a
softer gauge spring (i.e. kext = 0.01, see Fig. 5a). Next, we run our
method to automatically generate a pair of pliers with the same
input parameters as the human-designed pliers (kext = 10.0 and
Fext = 0.01) but with improved efficiency in terms of force
propagation. In practice, we request that the force-based

efficiency is more than double of the human-designed one
(ηf = 50%). Given the symmetry of the system along the line
passing trough fulcrum, we simulate only the upper half of
the system and subsequently mirror the structure in the bottom
half. The starting structure is the rectangular fully connected
network of beams with an area containing the human
solution. During the minimization, the position of the pivot
node is kept constant and the same is done for the y coordinates
of all the nodes in the symmetry line. The result is shown in
Fig. 5b, where again we set kext = 0.01 to visualize the real space
displacements.

We also investigate how the choice of Fext and kext affects the
resulting force-based efficiency. Fig. 5c reports the variation of the
efficiency ηf as a function of the output spring stiffness for fixed
Fext = 0.01 below and above our selected value of kext = 10 for
both the human and machine-generated structures reported in
panel a and b. For a given input force we observe a saturation for
large output spring stiffness values, with similar trend for both the
solutions. The estimate of the variation of the force-based
efficiency as a function of input force for both the human and
machine-generated pliers mechanism is reported in Fig. 5c. For
input forces in the range 10−4–10−2 the trend is constant for the
human pliers and slightly increasing for the machine design,
where we observe a decrease in the efficiency going above
Fext = 10−2, due to buckling effects.
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Fig. 5 Machine-designed pliers achieve higher force-based efficiency than human-designed ones. a Human-designed pliers and corresponding and (b)

automatic-designed ones obtained with DEM simulations. The machine-designed configuration is compared with the human configuration for Fext = 0.01

and kext = 10.0. To be able to visualize the displacements, we report both structures minimized with same input force Fext = 0.01 but with lower output

spring stiffness kext = 0.01. Elements are colored according to their displacement magnitude with respect to the rest configuration underlined in gray. The

input (output) nodes are marked with bigger circles on the right (left) of the frozen pivot point (mark at the center). The blowups of the lower input and

output nodes highlight the displacement field. Red (green) arrows indicate the direction of the desired input tinp (output tout). c Variation of the force-based

efficiency as a function of the output spring stiffness kext for fixed value of Fext = 0.01 and (d) as a function of the desired input force Fext for fixed value of
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Efficiency is predicted by machine learning. The large set of
metamaterial configurations we obtain offer a possibility for
further insight when regarded as a dataset to be inquired. In this
setting, one can naturally pose several questions related to how
changes in structure relate to changes in efficiency. Here we assess
whether static images of the configurations can be used to infer
their efficiencies without the need of performing DEM or FEM
simulations. To respond to this question, we train a Convolu-
tional Neural Network (CNN) to perform image regression, that
is, to predict the efficiency of a configuration from an image of its
layout. Notice how this differs from the more standard use of
CNN for image classification. Using a large number of config-
urations (N ≃ 106), we achieve an accuracy of R2 = 0.966, see
Fig. 6a, c and “Methods” for details.

New structures can be generated through machine learning.
We take our ML-framework one step further and ask whether we
can use our CNN model to generate new configurations from
scratch by substituting the spring-mass model efficiency estima-
tion step with predictions from the CNN model. In other words,
we use the same Monte Carlo strategy described above but, at
each step, instead of measuring the efficiency of the proposed
configuration with DEM or FEM, we estimate it with the CNN
model. Interestingly, the procedure is successful and we are able
to generate new, efficient configurations with an approximately
100-fold speed up with respect to the DEM model. We notice,
however, that we still need the DEM to train the CNN, hence a
true speed up could be obtained only by suitable combinations of
DEM and CNN. The CNN-generated configurations have a dis-
tribution of efficiency similar to that of the metropolis-generated
ones, see Fig. 6b. To ensure that the obtained configurations are
different from the ones used to train the CNN, we measure the
minimal distance between each ML-generated configuration and
all the configurations used during training, and find that the
typical distance is of around 65 bonds.

Functional regions can be identified with machine learning.
The CNN model is trained using spatial information (images of
structures) and functional information (efficiency values). These
two sources of information get effectively coupled in the trained
CNN model and can be further exploited to identify functionally
relevant regions. The gist of our method consists in feeding
slightly perturbed images of a structure to the CNN, see Methods
for details.

Fig. 7 shows an example of a configuration, highlighting the
regions that according to the CNN would lead to significant
changes in efficiency when adding (Fig. 7a) or removing (Fig. 7b)
a bond. To confirm that these are indeed functionally relevant
regions of the structure, we perform an analogous computation
with the DEM model and show the results in Fig. 7c, d. Visual
comparison with Fig. 7a, b shows that the CNN model can
identify the key functional regions of the structure. We system-
atically quantify this effect over fifty independent runs, and find a
high correlation between changes in efficiency predicted by the
CNN and the DEM model (see Fig. 7i). In this example, the CNN
model is tested with structures which are not part of the training
data, but are nonetheless generated with the same underlying
lattice, and are thus to some extent similar to the training data.

In the second example displayed in Fig. 7e–h, we go one step
further and ask whether the same CNN model can identify
functional regions when shown structures generated with larger
sized lattices. In particular, the CNN model is trained with
structures of a 172 bonds lattice, but it is later used to identify
functional regions in structures generated with a 694 bonds
lattice. Fig. 7e–h shows a structure on the 694-bond lattice: the
CNN model correctly identifies the bottom left region as leading
to lower efficiency when bonds are added to the structure. While,
as expected, the correlation between the predicted and actual
changes in efficiency is considerably lower than in the first
example, there is a systematic bias towards positive values of R,
which in some cases reaches values as high as 0.4 (Fig. 7j), which
is remarkable for a prediction on a lattice that the CNN was not
exposed to during training.

It is worth noting that the DEM calculations in Fig. 7c, d, g, h
serve as ground truth to validate the method in this case, but they
are also computationally more costly when switching from a 172
to a 694 bonds lattice, see Fig. 3. Being able to identify
functionally relevant regions using a CNN model trained on
smaller, simpler lattices opens the door to a myriad of
possibilities, from lowering the rejection rate in the MC algorithm
to combining human and machine efforts into the generation of
hybrid structures.

Discussion
In this paper, we have proposed algorithms for the automatic
design of MMAs with a broad set of possible movements and
efficiency—exceeding those of human-designed solutions. In its
first implementation, the algorithm exploits a discrete elements
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model to obtain an approximation of the mechanical efficiency of
the structures which is then used to drive a Monte Carlo
search over the possible structures. FEM calculations are then
used to confirm the efficiency of the optimized structures that can
then be realized by 3D printing. Here we have concentrated on
two dimensional actuators but an extension to fully three
dimensional models is also possible using the same strategy
employed here.

It is interesting to compare our algorithm with previous
approaches that optimized allosteric effects in random spring
networks37–39. In contrast with these studies, we have con-
centrated in a system where angular bonds are included because
this is fundamental to be able to reproduce mechanical features of
real beams. Indeed the results of our discrete model compare well
with FEM calculations. Absence of angular bonds can lead to
floppy modes and loss of rigidity which are not present in real
beam lattices. Beside this important point, previous approa-
ches37–39 also differ from ours in several technical aspects of the
algorithm. The method proposed in Ref. 38 implements a
Metropolis Monte Carlo algorithm at constant temperature with
individual moves involving swapping of bonds so that the total
coordination number is preserved. Our model does not have soft
modes so we do not need to impose these restrictions which
allows us to explore a wider phase space. Furthermore, we use
simulated annealing which outperforms constant temperature
Metropolis when the goal is to find a global minimum of a
complex optimization problem. The algorithm presented in ref. 37

employs a sophisticated minimization strategy that is able to
identify the bond whose removal would be most effective in terms
of efficiency. When the efficiency landscape is complex; however,
the algorithm might in principle be trapped into local minima,
where no single bond removal would improve the efficiency.

Furthermore, we have employed deep neural networks to
predict the efficiency of the actuator from its structure. Once

properly trained, the neural network can be used to create new
structures without the need of performing DEM or FEM simu-
lations. The use of machine learning to assist the automatic
design of MMAs opens intriguing possibilities in terms of algo-
rithmic speed, because it could potentially allow to design larger
structures that can not be efficiently simulated by DEM. To this
end, we explored the potential of deep neural networks in pro-
viding mechanical information on a given structure. Once
trained, the network is able to identify from an image the regions
of a structure where modifications would lead to an increase or a
decrease in the efficiency. Identifying important functional
regions from a disordered structure was also the object of recent
investigations in the context of flow networks43.

In conclusions, our work represents the first step toward the
establishment of a reference library of elementary actuators (EA).
More complex actuators can be subsequently obtained by the
interlinking of multiple EA, with countless possibilities in terms
of applications and flexibility. For instance, the algorithms could
be useful to design moving parts in machines and robots, espe-
cially at small scales where the surface-to-volume ratio is very
large, thus leading to dominant friction and wear. Benefits spans
from the availability of ready-to-use EA, that will constitute a
reference to engineers and material scientists, to the possibility of
providing custom solutions for non-standard applications.

Methods
Triangular lattice based metamaterials. We consider a triangular lattice con-
figuration with coordinates RIS, which we can consider as the Inherent Structure44.
Such configuration (see Fig. 1a) is mechanically stable and consists of Nb beams of
length r = r0 connected to N nodes. The position of the i-th node is ri = (xi, yi),
{ri} = (r1, r2, . . , rN), and the distance between two nodes is rij = ∣rj − ri∣. We then
select two far-apart (group of) nodes i and j which represent input and output
regions, respectively, and we define two normalized vectors identifying their
desired direction tinp and tout.
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to identify functional regions of structures.
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Random lattice based metamaterials. Random metamaterial configurations are
obtained starting from random configurations of disks brought at mechanically
stable jamming point compressing the simulations box, as one standard protocol in
jamming algorithms. Afterwards the center of each pair of overlapping disks is
joined with a bond. As mentioned in ref. 37 this way of generating disordered
structures ensures networks with mechanical properties which are stable and well
understood.

Efficiency. The response of the metamaterial is monitored through its efficiency η,

η ¼
tout � ðrj � r0jÞ

tinp � ðri � r0iÞ
; ð1Þ

where (r0i and r0j) represent the original position of input and output nodes,
respectively, and the dot products are averaged over the number of input (i) and
output (j) nodes. One can envisage alternative definitions of efficiency, suitable to
enforce the desired response in terms of a specific requirements of the optimized
structure. We can provide two alternatives.

Direction-based efficiency: the search on metamaterial configurations is focused
on the maximization of the output displacement toward the desired direction. To
this purpose we generalize the dot product in Eq. ((1)) by a weight function
f ðγÞ ¼ ð2 cos ðγ=2Þn � 1Þ, n ≥ 2, where γ is the angle defined between the desired
output direction tout and the measured one. The resulting efficiency is

ηd ¼
jrj � r0jj f ðγÞ

tinp � ðri � r0iÞ
; ð2Þ

that for n ≫ 2 enforces the output motion along tout, while for n = 2 it is
f ðγÞ ¼ cosðγÞ, thus ηd = η.

Force-based efficiency: in this implementation, it is required that the exerted
force on the input nodes is efficiently propagated to the output nodes towards the
target direction. This is especially advisable when the actuator is expected to
integrate with other mechanical parts, forming a larger mechanism. In this case, we
apply a constant force on the input nodes, and we measure the force on the output
nodes by means of gauge springs, acting as dynamometers along the tout direction.
This corresponds to adding the energy term Einp = Fext[tinp ⋅ (ri − r0i)] to the input

nodes, and Eout ¼
1
2
kextðtout � ðrj � r0jÞÞ

2 to the output ones during energy

minimization, with Fext being the constant input force, and kext being the spring
constant of the output gauge springs. The force-based efficiency can then be
straightforwardly defined as

ηf ¼

P

jkextjrj � r0jjf ðγÞ
P

iFext

; ð3Þ

where the sum at the nominator is over the output nodes and the sum at the
denominator is over the input nodes.

Optimization. Once a suitable efficiency function is chosen, we maximize it by
minimizing the cost function Δ= − η. The minimization protocol makes use of the
Monte Carlo (MC) method combined with an optimization algorithm: at each
iteration step, from the present configuration with Δ = Δ0, a trial configuration is
obtained by removing or readding a randomly-selected beam. Input nodes and
output nodes are discarded from pruning, as well as the set of selected nodes
constrained against motion, i.e. frozen (see Fig. 1). We then displace the input
nodes in the tinp direction (or apply an external force to them in the case of ηf),
perform a FIRE optimization45, and by measuring the displacement of the output
nodes (or the force on them through the monitoring springs) we evaluate the
corresponding Δtrial. If Δtrial < Δ0 the removal/readding of the beam is accepted,

otherwise it is accepted with a probability P ¼ exp½�ðΔtrial � Δ
0Þ=T�, where T is a

parameter acting as temperature in the MC dynamics.
At the beginning of each minimization, in order to explore the complex

efficiency landscape46, we perform 100 (accepted) MC steps of annealing with T
linearly decreasing from T = 0.06 (which is the threshold to consistently get P ≃ 1)
to T = 0, and we subsequently let the algorithm evolve at the latter temperature.
The whole procedure has been repeated in several runs using different random-
number-generator seeds (see Supplementary Fig. 1).

It is worth to note that in a system with Nb beams, the configuration space
counts � 2Nb possible structures. In the example displayed in Fig. 1, Nb = 203
yields an extremely large number of configurations: 2203 ≃ 1061. Clearly, such an
exponential scaling with Nb severely limits the possibility of full exploration of the
configuration space, and thus very fast methods to predict the efficiency of the trial
structures are required. To maximize such exploration we have employed a
combination of three different methods acting at different approximation levels, as
described in the following.

Discrete element model. To obtain a fast and reliable estimation of the efficiency
of a given structure we have made use of a simplified discrete element model
(DEM) of the lattice, in which the total energy can be expressed as

E ¼
X

i

X

j > i
ϕ2ðrijÞ þ

X

i

X

j > i

X

k≠j
ϕ3ðrij; rik; θijkÞ; ð4Þ

where the pairwise term is a spring potential with rest length r0,

ϕ2ðrijÞ ¼ kðrij � r0Þ
2; ð5Þ

while the 3-body term introduces angular springs among the nearest-neighbor
beams connected to the same node,

ϕ3ðrij; rik; θijkÞ ¼ λ θijk � θ0ijk

h i2
ð6Þ

being θijk the angle formed by beams ij and ik, and θ0ijk the initial angle value in the

triangular lattice. Both ϕ2 and ϕ3 act among first neighbors only, with 3-body
neighbors dynamically recalculated at each step (see Supplementary Fig. 2). If not
stated differently, we have employed the following unit-less parameters: k = 5,
λ = 0.1, r0 = 1.

The minimization of E in the presence of frozen nodes (typically at the base of
the structure) and of displaced input nodes, allows us to predict the response of the
trial structure with a good compromise between speed and reliability. This will be
therefore our reference method for the seek of structures with the highest efficiency
(see Fig. 1b).

Finite element method. A realistic simulation of the mechanical response of a
structure subject to an external force can be obtained by the finite element method
(FEM). The method is based on a mesh representation of the object so that the
continuum boundary value problem is transformed into a system of algebraic
equations. The method is very accurate in the elastic regime, but works on the
timescale of several seconds for our reference system (and rapidly increasing with
the system size), and it is thus not suitable for the trial-error MC search of efficient
structures. Rather, FEM has been employed before 3D printing as a final validation
of the selected structures, generated through the more simplified and fast methods
described above.

3D models of simulated structures have been produced by extrusion of each
bond (see Fig. 1c). For FEM calculations we have employed COMSOL Multiphysics
and COMSOL with MATLAB through its structural mechanics module47. All
studies assume a linear elastic material with Young’s modulus and Poisson’s ratio
estimated experimentally for bulk samples of interest. Results are obtained using
Euler–Bernoulli beam elements and the in-built stationary studies calculation (a
quasi-static solver).

Machine learning. Deep learning model: we take Resnet50 architecture as imple-
mented in the python Keras library48 and repurpose it to perform regression
instead of classification by modifying the top layer with a single-unit dense layer.

Data preparation: we prepare 192 × 128 PNG images of structures obtained
during one thousand DEM-based simulations with the desired tout direction,
including both accepted and rejected configurations. The CNN model needs to be
able to recognize configurations that create a displacement in the desired direction,
but also those that move in the opposite direction and whose efficiency is formally
negative (to be able to avoid them during the Monte Carlo search). Since those
configurations occur very rarely, we increase its sampling by running an additional
one thousand DEM-based simulations aiming at the opposite − tout direction. In
total, we generate 1.163.733 images using the Python plotting library matplotlib.

Model training: we use a standard Adam optimizer and a mean squared error
loss function. 75% of the runs are used as training data, while the remaining 25%
are used for validation. We also implement a simple resampling strategy that
renders the distribution of efficiencies approximately uniform over the training
data. This mitigates the fact that, otherwise, the model predictions would be less
accurate for very high-efficiency configurations, since these are less commonly
found in our dataset. We train our modified Resnet50 CNN for 10 epochs in
batches of size 32.

Computational environment and model performance: we use a 16-core computer
equipped with a Tesla K20c GPU for the calculations shown in Fig. 6, and a Tesla
V100-SXM2 for those shown in Figs. 3, 7. We measure the performance of the
model using the R2 value of linear regression between actual and predicted
efficiency values.

Human designed structures and 3D printing. To provide a comparison of the
automatically designed MMAs with conventional solutions, human-designed
counterparts of the MMAs have been either created by us before running any
simulation or taken from the literature, as to avoid any possible bias on the
designer about the mechanisms leading to a high efficiency.

Samples are then produced by means of 3D printing, using the fused deposition
modeling technique. In this method, the final structure is produced by laying down
many successive thin layers of molten plastic. Each layer thickness is 0.8 ns, where
the nozzle size is ns = 0.4mm The material used is NinjaFlex, a formulated
thermoplastic polyurethane (TPU) material with super elastic properties.

Efficiency of 3D printed structures has been measured by manually moving the
actuator input nodes by 5 mm with the aid of a caliper, while keeping fixed the
bottom part holder. Images of the initial and the so displaced structure have then
been captured by a camera, and displacements of input and output nodes have
been measured by image processing. By applying Eq. ((2)) on the measured

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17947-2

8 NATURE COMMUNICATIONS |         (2020) 11:4162 | https://doi.org/10.1038/s41467-020-17947-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


displacements of input/output nodes, the efficiency ηd was calculated and reported
in Fig. 2 and Supplementary Fig. 1.

Construction of functional heatmaps. We construct functional heatmaps by
feeding perturbed images of structures to the CNN model. A functional heatmap
displays the predicted increase or decrease in the total efficiency when the structure
is locally modified. For any given image of a structure, we construct two functional
heatmaps: one that corresponds to the effects of adding bonds, and one that
corresponds to the effects of removing bonds. However, because the lattice of the
underlying training data and that of the structure under consideration might not
coincide, we follow a lattice-agnostic procedure, as follows:

● Slide a perturbation square of 10 × 10 pixels over the image. The perturbation
square is either all black (add) or all white (remove), depending on the heatmap
we are constructing. We slide the square by 10 pixels each time, to avoid
overlapping perturbations, but other more refined implementations are possible.

● In an image of 200 × 200 pixels, the 10 × 10 square can be placed in 400 different
positions resulting in 400 perturbed images.

● Feed the 400 perturbed images to the CNN model, and predict the efficiency of
the perturbed images.

● Subtract the predicted efficiency of the original image, obtaining the predicted
change in efficiency of the 400 perturbed images.

● Construct a 20 × 20 array of the changes in efficiency values, recovering the
position of the perturbation square.

● Zoom the image using cubic interpolation to obtain the final functional heatmap
of size 200 × 200 pixels.

Correlation between CNN and DEM functional heatmaps. We use the corre-
lation coefficient at the bond level as a simple measure of correlation between the
efficiency changes predicted by the CNN model and those predicted by the DEM
model, which act as ground truth. To infer efficiency change values at the bond
level from a functional heatmap, we integrate the efficiency change values of the
heatmap over the pixels that correspond to each bond. We define the correlation as
the R-value of a linear least-square regression model as implemented by the scipy.
stats.linregress python function.

Data availability
Raw data used to generate the results of this papers are available at https://zenodo.org/

record/3891249.

Code availability
The codes used in this paper are available for the exclusive purpose of undertaking

academic, governmental, or not-for-profit research. The main Metamech libraries can be

accessed at https://github.com/complexitybiosystems/metamech. Example datasets and

useful loader functions, to be used with the Metamech library are available at https://
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