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ABSTRACT

This thesis develops a method for automatically
selecting an optimun set of prime implicants of a Boolean
function, The optimization algorithm is based on a mini=
mum cost of mechanization of the simplified function, A
FORTRAN IV computer prozram to implement this approach was
written amd is included as part of this thesis, This pro-
gram was developed within the framework of an overall
theory for the automation of the design of switching net-
works, A programing structure as well as the theory for
the automation of design is ziven, Also included is an
outline of further areas of study which would be worth ex-

ploring as an extension of the present work,
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CHAPTER 1, INTRODUCTION

1,1 Thesis Definition

This thesis develops a detailed approach to the
problem of optimum selection of a set of prime implicants
for minimization of switching functions, The algorithm
developed allows considering a minimum cost optimization
with provision for non-uniform weighting, of the prime
implicants and the inclusion of multiple output functions,
The weighting used for the prime implicants is a cost
based on the number of logic gate inputs required to
mechanize the function, The computer program used to
accomplish this was structured to be part of a con-
tinuing development in other areas of automatic design
of switching networks, In Chapter Three an outline of
the areas recommended for further development are pre=-
sented,

The model used in this thesis and one which has been
extensively used in logic design is the two level AND-OR
logic model with a uniform cost per input for either of
the gate types, This model was highly developed for its
ease in solution.and because it very closely represented
the true design restrictions for some time, This was the
time when discrete elements were used for the logic (i,e,

gates were made up of individual diodes)., During this



earlier period, expensive amplifiers, composed of a
number of discrete components, had to be inserted at:er
every other state of passive circuitry to maintain wave
shape if high speeds (by prevalent standards) were to
be maintained with any reliability, With the advent of
integrated circuits, the practical limitations of two
levels has been virtually eliminated., Also, there is
at present a greater variety of gates avéilable which in
most cases provide a cost savings over exclusive use of
AND-OR gates, Another factor which affects logic design
is that memory units, or flip flops, used to be many times
the cost of a simple gate and therefore the procedure was
to minimize the memory states to an absolute minimum
independent of the gate structure and then minimize the
gates, However, with modern integrated circuits a flip-
flop including some built-in gatinz or other complex
functions may be purchased for a price comparable with a
few individual gates. For this reason designs of non-
minimum states are sometimes less expensive because of an
associated simpler gating requirement,

The two level AND-OR gating structure, however,
still has the real advantage of being one of the most
natural and easiest to understand and work with on a

manual design basis, For the same reasons it is best



adapted to teaching switching theory, Additionally, there
are well developed and relatively fool-proof minimization
procedures for this model, These procedures include
mappinz and the method known as the Quine-lcCluskey
method, A historical review of the developments in this

area are gilven in the next section,
1.2 Historical Review

The starting point for most of the early work in
switching networks was the Algebra of Classes set up as
a formal deductive system (Boolean Algebra), Iiany alter=-
nate postulate sets have been proposed, One vhich was
well developed is attributed(l) to Z, V, Huntington in
an article published in 1904 "Sets of Independent Post=
ulates for the Algebra of Logic."(z) The algebra itself
was named after George Boole who published two papers on

3.(3 & 4)

it; one in 1848 and another in 185 A major

development of the application of this algebra to switching

(5)

circuits has been attributed to C, &, Shannon for his
paper on YA Symbolic Analysis of Relay Switching
Circuits"(s) which was published in 1938, The postulates
of this development were shown to be derivable from a sub-

set of the calculus of propositions which in turn was de-

veloped from the algebra originated by George Eoole,
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Later, Shannon developed his ideas further and published
a paper "The Synthesis of Two Terminal Switching Circuits!
in 1949.(7) In 1951 a chart or tabular method was pub-
lished for simplification of Boolean functions, This

(8)

method became known as the Harvard lethod, This was
followed by a systematic algebraic method for simplifi=-
cation of Boolean functions by W, V. Quine in 1952 and
later improved upon.(9 & 10)
 While the postulates of Boolean algebra in a mathe=-
matical sense were presented over a hundred years ago and
well formulated sixty-five years ago, it is still the
basis for virtually all works in switching theory and is
included as a2 starting point for almost every text on
the subject, The method which forms the basis for the
two level AID-OR minimization section of this thesis wes
presented by &, J, lMcCluskey as his doctoral thesis in
Electrical Engineering at Massachusetts Institute of

(11 & 12)  0pis work was an ime

Technology in June 1956,
provement on Quine's earlier work and the method has

come to be knowmn as the Quine-McCluskey method; it is now
considered the classical approach to the problem of two
level AND=OR simplification throush the use of Boolean

Algebra, The key equation on which this method is based

is given below as equation 1,



(1) XY + XY = X

Basically the method consists of first expanding
all terms to a sum of terms of their lowest level
"minterms" and then systematically using equation 1 to
simplify the result,

Since these early developments, there have been
a number of papers on the subject of optimizing the
selection of the prime implicants develoﬁgd by the
Quine-}McCluskey method, As noted by F. Luccio, these in-
clude two later papers by I, B, Pyne and E, J. McCluskey
published in 1961 and ].962;(]‘3 & 14) also, two papers by

J. F. Gimpel, one in 1954 and the other in 1965(15 & 16)

and Luccio's paper in 1966.(17>
The advantages of the method presented in this thesis
include the fact that certain large problems, including
variable cost of the different prime implicants and
multiple outputs may be solved by relatively straight-
forward methods yielding the optimum or near optimum
solution, The optimization alzorithm developed for this
thesis can be set to give the absolute optimum solution
by use of a method of testing all solutions for minimum
cost, For small size problems this would be provided

automatically, For problems of any significant size the

all combination approach becomes less desirable from the



standpoint of computer time used, The increase in
required computer time is very rapid as the number of
nonessential prime implicants is increased, being similar
to a factorial type of function, The program is currently
written to consider all combinations of solution for a
maximum of ten nonessential prime implicants, For
sizes above this the weighting algorithm selects the
combinations to be considered, The final.solution printed
is the best solution upon completion of the extent of
analysis specified by the user,

There are also graphical methods to solve the two
level ARD=CR minimization problem, The method in common

(18)

use was published by E, W, Veitch in its basic form

and later in the currently more popular improved form by

M., Karnaugh.(lg)

These graphical methods tend to replace
well defined routines with wvisual insight and are there=-
fore not as directly applicable to automatic solution by

a digital computer,
1.3 Scope of Thesis

This thesis develops an algorithm for the optimum
selection of prime implicants of a Boolean function, The
optimization algorithm is based on a minimum cost of

mechanization of the simplified function, The results of



a number of sample problems are discussed, giving the
stronz features and limitatlons of the approach, This
subject matter is covered in Chapter Two, Chapter Three
presents an outline of other areas recommended for future
development, Chapter Four discusses the conclusions
derived from the present investization, The program
presented was developed for this thesis as an original
program, Appendix I provides a flow char; of the program

and Appendix II provides a detailed computer listing of

the program,



CHAPTZR 2, OPTIMUM SELECTION OF PRIME IMPLICANTS OF
BOOLEAN FUIICTIONS
The method used in selection of the prime implicants
is given below, This is followed by a description of the
program used in solving the AllD-OR combinational logic
problem with uniform cost vper input, The flow charts for

the program are included in Appendix I,
2.1 Optimized Prime Implicant Selection Method

The method used is the Quine=-iicCluskey method with
an additional algorithm for optimized selection of non-
essential prime implicants and special features to match
the RIT 360 computer configuration, A number of pro=-
visions are incorporated for ease and naturalness of job
entry, Details of the prosram and its use are described
in section 2,3, A number of sample problems and their
results are given in section 2,4,

The prime implicants are first determined by the
Quine-i‘cCluskey method as described in Cadwell.<5) After
determination of the prime implicants, the essential prime
implicants are selected, Essential prime implicants are
ones which are required because they are the only ones
that contain a particular minterm, The optimum (minimum

cost) set of the remaining prime implicants necessary to



specify the required function is then selected, This ig
accomplished by weighting the prime implicants in roughly
the order of their probability of being included in an
optimun solution, The most probable are then considered
first in a search for solutions which continues until a
user defined number of correct solutions has been achieved
by the computer, The best is then printed as the required
solution, The user may specify the number of prime impli-
cants to be considered in combination and the weighting

factor to be used for the prime implicant orderinz,
2,2 Special Program Features

There are incorporated in the prozram a number of
features including a storage saving techniqie for
FORTRAN programs using octal coding of lozical data, In
BASIC FORTRAN IV which is used on the RIT 360 computer
four bytes of information are required to store the state
of a variable as 0 or 1, Four bytes is one computer word,
Even in the full FORTRAN Ei employing logical wvariables
one byte is required for the storage of the equivalent
information, By using the integer format and codinz the
information in octal, the prozram used stores the state
of up to eighteen literals, plus some additional infor=-

mation, in one word, This saves memory and allows a

10



higher theoretical limit on the size of problems to be
run, A description of the program's data input routine
which includes the above encodinz method is given below

in section 2,3.1.
2.3 Program Description

The program is broken down into a number of
functional areas., The first is the progra:m entry section,
In this section the basic information which has to be
entered into the computer and the method used to encode
it is described, In the next section the prime implicant
development 1is presented, and the final section describes
the method used in making an optimum selection of the

prime implicants,
2.3.1 Data Entry

The program is described starting with the data
entry, The first deck of cards is the computer system
cards and the progzram deck which are provided the user
as a package, Next come the data cards which are des=

cribed in order of entry as follows:

11



Table 1

1st Data Card Entries

Column Entry

1 Blank if only one problem

is to be run or if this 1is
the last problem, A 1l is

entered if another problem
is to be run

2-5 Machine Type Specification;
Enter a 1 in column 5 for a
combinational logic design
problem,

Hote: All columns not indicated should be left
blank, All entries must be right justified in
columns indicated, These notes apply to all
card entries,

12



Table 2

2nd Data Card Entries

Column Entry

1-5 No, of literals_used per
minterm (i.e, ABCDEF contains
six literals), A maximun of
eighteen may be specified,

6-10 llo, of outputs in the problem,
A maximum of six are.allowed,
(i.e. a number 1-6 must be
entered in column 10),

11-13 Output Definition:

Enter a 1 in each of the
columns associated with a
desired output,

Column 11 Full development
of prime implicants,

12 Listing of prime
implicants,

13 Listing of essen=
tial prime implicants,

13




The optimized prime implicant selection, the number
of gate input lines and a listing of the input is provided
automatically,

The third and succeeding data cards define the logic
to be simplified, Provision is made for entering optional
("don't care") as well as required terms, Also, a multi-
plicity of input terms may be entered by a single state-
ment, This is accomplished by leaving literals blank
when all combinations of the literal are to be entered
(i,e, AbbD enters ABCD, ABCD, ABCD and ABCD). When a term
is to be specified for more than one output, all or any
subset of the outputs may be specified on one card,
Remaininzy outputs would be specified on additional cards
as desired, The format for card three and all remaining

cards is as follows:

14



Table 3

3rd Data Card Entries

Column Entry

1 Enter a 1 if another card fol-
lows, Leave Column one blank
if this is the last card of
data set three,

2 Column two is left blank for
clarity in readinz the printed
data on the punched card,

3 Leave blank if this is a re-
quired term, Enter a minus
sign if it is an optional term,

Next N columns | For each literal enter a 1 if
it is the true form, a 2 if in
the negated form and a 3 if
blank, Note: N is the num=-
ber entered in Columns l=5 of
Card two,

Vext column Leave blank,

Next Ii columns | Znter the numbers of the out-
puts associzated with this term,
Note: M is the number entered
in Column ten of Card two, If
only one output is used it need
not be indiceted (i.,e, if M is
1, these columns would be left
blank as an opntional entry).

As an example, if ABCDZ was a required term for outputs
two and three, the card format would be "1bb1l2212b23,%
The first 1 denotes another card is to follow,

As the input is read in, the first card causes the

15



AND-OR logic simplification routine to be entered, The’
second card sets up the indices used in reading the
succeeding data cards, Each succeeding data card is read
into a one card buffer, This input is then reduced to
one number (computer word) per minterm, These numbers
are generated by entering the octal equivalent of each
literal, a literal at a time, into a tempqrary buffer,
Considering the part of the input denoting the literals,
if the iEQ literal is 1 (a true valued literal) the octal

value of Z(i"l)

is added to each number in the temporary
storage, f it is a 2 (a nesated literal) nothing is
added, I1f it is a 3 (an all combinations specification)
a new number 1is created for each number aquady in storage
which is that number plus the octal wvalue of Z(i-l). The
sign of the number(s) is plus for a required term and
minus for an optional term, The number of ones in the
literal of each term is entered as the two most signifi-
cant digits, The octal equivalent of the sum of the
weighted output numbers is the least significant two
digits, Hach outout is weizhted as zero if not applic-

as Z(n-l)

able and if applicable, where n is the output

number, 7The resulting integer has the following structure:

16



T oxx xxmxux xx
Sign ————4 I t & __Output information
o, of 1's Literal information
Figure 1
Word Format
The temporary buffer is overlapped on the upper 512 words
of the main buffer allowinz a maximum of nine blanks to be
inserted in a term, After each input card is processed
all the resulting minterms in temporary storage are trans-
ferred to the main storage, If there are more than one
thousand minterms, storage buffers would normally be ex=
ceeded during problem solution; therefore the solution is
terminated at the input phase in this case,

Upon completion of reading the problem description
the main register is sorted in order of the number of
literals in the true state for each minterm, Those with
the least number are entered first, A standard sort ap=
proach would be to scan the register, select the least
value, put it in the next position of a second buffer
until all wvalues were in ascendinz order, For n terms
in the register there would be required a number of com=
parisons equal to the combinations of n terms taken two
at a time, or E(ﬁffj? = kn(n=1) comparisons would be
required, To improve the speed, a high speed binary sort

. - . . . n .
is used which requires a maximum of ni -» comparisons

17



where "i" is the smallest intezer for which ZiZn. For

a hundred minterms the respective number of comparisons
required for the two approaches would be 4,950 and 650
respectively, The ratio between the two methods would
increase for a greater number of minterms and decrease

for a smaller number, While an indication of the relative
ratio of computer time involved, this ratio is not a true
ratio of computer speed due to the fact the second ap-
proach does require more indexinz and memory transfers per
comparison, To save time in computinz the number of ones
in a minterm on each comparison, the stoéége number as
described above is sorted directly in ascending order.

The two most significant digits of this number contain

the number of ones in the minterm and therefore when
sorted in order provide the required ordering except for
sign, One final ordering is then required to interpose

the negative numbers within the positive numbers,
2,3.2 Prine Implicant Development

The ordered group of minterms resulting from the
completed sort is denoted the first or starting level
of the reduction, This level is divided into blocks con-
taininz a common number of ones in their minterms, 3y

noting the position in the above ordering where the

18



number composed of the first two digits changes value,
the blocks are determined, The locations are saved at
the upper end of the main register as pointers to the
block changes, Each term is then compared with all terms
of the next higher block, Those differing by a binary
nunber are entered in the next level, Where two numbers
differ by a binary number 23 tne literals .in the ;R
position can be reduced by the relation XI + XI = X

where X represents all literals other than the LEE and 1

represents the iEQ. The numeric value of X is entered
in the block of the next level, Where not all of the
outputs are common between the two terms XI and XI, only
the common outputs are entered in the two least signifi-
cant positions of the number denoting X in the next level,
If all outputs match, both terms I and XI in the current
level are flagzed, For level two throuzh six a second
integzer number is associated with each reduced set of
minterms, This number is denoted a tag and is divided
into five 2 digit partitions in which the literal that
was removed at each level is stored, If there are more
than six levels in the reduction, additional tag words
are added as required, In making comparisons for entry

into levels three and up, the tags must be the same in

addition to the entries differing by a binary number,

19



It may be noted that this requirement assures the previ=
ously removed literals are identical as a requirement of
the comparison (i,e, that the X in X1 and X1 are the same).
After all possible reductions are made, the full de=~
velopment of the reduction process is printed if requested,
Storage is then compressed by removing all flagzed entries
except those of the first level, The nonflagged entries
are the prime implicants and are printed if requested by
the user, For an optimum selection of prime implicants
each minterm is scanned, If a minterm is contained in
only one prime implicant with a common output, that prime
implicant is flagged as an essential prime implicant,
Also all the required minterms included in any essential

prime implicants are flazged for all common outonuts,
2,3,3 Optimum Prime Implicant Selection

In the next step all the minterms flagged on each of
their outputs are deleted from storage, Ilf there are no
remaininz minterms the essential prime implicants are
printed as the final solution, If there are remaining
minterms all essential prime implicants are grouped in
a separate section of storage, The remaining prime impli-
cants are assigned a weighting of one for each output of

each of the remaining minterms which it contains plus an

20



additional weight of four if the minterm for that output
is contained in only one other prime implicant, This
weighting has a tendency to indicate the relative proba=-
bility that a prime implicant would be included in an
optimum solution, The four weight may be optionally
assigned a value other than four by the user, The prime
implicants are then sorted in order of this weighting

with the highest weighted entered first, Each of the
prime implicants is then tested one at a time to see

if they include all the remaining minterms, If there

is one or more, the one requiring the least number of

gate inputs is selected as the optimum, If not, all
combinations of the prime implicants taken two at a time
are tested to see if the remaining minterms are included
in the other, Assuming thirty remaining prime implicants,
435 pairs would have to be considered and each pair tested
to see 1f it contained all of the prime implicants., VWith
the procedure used, the computer time has been reduced by
effectively making the 435 scans of the remaining minterms
changing a single prime implicant at a time rather than

a pair of prime implicants, However, the consideration of
more minterms in combination would generally not be prac=-
tical from the standpoint of computer time, Therefore,

only the first thirty are considered two at a time, The

21



maximum number of prime implicants considered three at a
time is fifteen; four at a time is twelve; five, six,
seven, eight, nine, or ten at a time is ten, After a
solution has been achieved each solution is weighted:
one for each literal in each prime implicant (equivalent
of one AND gate input) and one for each output it is used
in (equivalent of one OR gate input), This solution is
compared against any previous solution and the solution
with the minimum number of gate inputs (minimum weighting)
is selected and saved, If twenty five or more solutions
have been achieved the best is printed as the optimum
solution, If less than twenty five solutions have been
achieved the first prime implicant is selected as a re-
quired prime implicant, It is then treated as an
essential prime implicant and the process repeated, If
there are ten or less prime implicants the absolute best
solution is guaranteed, as all possible combinations
would have been considered, The 25 solution rule applies
after the specified combinations are done, _
To enable use of this algorithm in varying situ-
ations, optional entries for the number of solutions and
number of items to be considered at a time may be entered

on Zard 2 as follows:

22



Table &

Additional Data Card 2 Entries

Column Entry

16-20 The number of solutions to
be sought (25 is the de=-
fault option if left blank),
Allowable maximum is 99,

The maximum number of
prime implicants for Wwhich
all combinations are taken
¥ at a time,

X Default option

21-25 2 30
26-30 3 15
31-35 4 12
35-40 5 10
£1a45 6 10
46-50 7 10
51=-55 8 10
56-60 o 10
61-65 10 10
66-70 Weight factor for

prime implicants 4

lote: entries must be right justified,

The weizhting function for ordering of the prime impli-
cants may be varied from the standard, The extra weight
for prime implicants where only two include a minterm may
be changed to any value 0-9% by enterinz the value in
columns 6%=70 on Card 2, The default option is four, If
any of the options of Table 4 are used, all must be

specified even if they are the same as the default option,

23



Additional work with this algorithm showed the initial
estimates used for the standard numbers of combinations
that could be practicably tested were overly optimistic;
therefore, standard conditions should be used only for
short problems, Some time indications and special cases
are given at the end of Section 2,4 "Program Results',

There are several special means to request specific
job functions by changing the number of solutions, For
large problems that would require too much computer time,
the user may specify a negative numbeir of solutions, This
will enable the user to receive the prime implicant de-
velopmient, prime implicant listinz and essential prime
implicant listing, It would allow an orderly progression
to the ne:xt problem and use the minimum amoént of comnuter
time rather than simply putting a time limit on the job,
The number zero should not be specified for the number of
solutions, Any number of solutions less than ten limits
the search at the first set of combinations of pirime im-
plicants from all prime implicants to one more than is
specified for the second set (Columns 21-25, Card 2) as
shovm in Table 4,

The next section zives the results of a number of
sample problems programed and a detailed example of the

method used,
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2,4 Program Results

Methods used and the results achieved are illustrated
through the use of eight sample problems, These are de=
scribed and actual output illustrated in the following

sections.
2,4.1 Problem 1

Problem 1 is a basic problem which illustrates the
problem specification, type of results provided by the
program, encoding methods used and the problem solution
method, The problem is stated as follows:

Find the optimum AJ'D=-OR mechanization for

(2) A = X Rofa%uYs + H1Tigls + ¥3¥s
with the added provision the condition X3Xs5 can not occur
(i.e. X3%5 is an optional term),

The mechanization for A as stated in Equation 2
would require a five input AND gate to form the first
term, a three input AID gate for the second term and a
two input AlID gate for the third, All would then be OR
connected with a three input CX zate to form A, As may
be seen from the above example one AIlD gate input is re-
quired for cach variable in a term and one OR gate for
each term, The total number of inputs is thirteen, The

object of the analysis is to reduce the mechanization
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cost by reducing the number of inputs required, With
this relatively simple example a reduction could be ef-
fected throuzh the use of Boolean Algebra, However, with
this approacih it is generally difficult to achileve an
optimun solution or to know how near optimum the solution
ls, This first problem illustrates the Quine-lcCluskey
method as a systematic approach to finding a solution,

The input data for an automatic analysis of this
problem has a one entered in column five of the first
card, This specifies the problem type, Item one of
Fizure 2 shows the computer acknowledgment of this speci-
fication,

The input data for the second card includes the
number of literals (five) entered in column‘five and
the number of outputs {(one) entered in column ten, Ones
were entered in columns eleven, twelve, and thirteen to
acquire a full set of computexr output, The numbar of
solutions to be considered before selecting the best and
the number of terms to be considered in combination were
not specified, The program therefore automatically
selected the default options, This is showvm as item two
of Figure 2,

The data of Equation 2 is specified to the computer

program for cach of the terms as shown in Table 5. A one
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is entered for each literal in the true state, a two for
a literal in the false (negated) state and a three for a

literal that is absent (optional),

Table 5

Input Variables Problem 1

Entry
Status of Term Term Card Column
— S 1 2 3 4 5 6 7
Required Term | X1dpi3iisilg] 1 1 2 2 11
Required Term X1%3%5 1 1 3 2 3 2
Optional Term {95 1 - 3 3 1 3 2
Required Term A3is 3 3 1 3 1

1t may be noted the optional (negative) term could

have been omitted and a logically correct expression
would have resulted; however, this tyne of term is used
by the program to enable a reduction where possible but
excluded vhere additional hardware would be required

for its inclusion, It is thus used to advantage in
simplifying the hardware mechanization, The ones in
column one denote another entry follows, The blank in
colum one of the last card denotes the last entry, The
minus sign in column two denotes the optional entry, As
is scen, the equation and optional terms may be entered
in any order, The number of output lines is equal to the

nunber of equations, Item three of Figure 2 shows ac-
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knowledgement of the data entry for the one equation, As
only one equation was used the output or equation number
was not entered, This 1s shown by the last two digits
being zero for each entry, The program as encoded has
provision for a maximum of six outputs which may be
optimized simultaneously, Most automated methods pub=-
lished are limited to optimizing the equat}ons one at a
time and do not mechanize for an overzll minimal hard-
ware solution with maximum effective sharing of com=
ponents, The program will select a nonminimum solution
for any equation if it can more than offset the difference
in hardware cost with a savingz in the hardware used for
another equation, another output network, or group of
equations by sharing components,

The first step in the optimization is to expand the
terms of Equation 2 into their minterms (primary terms).
This is accomplished through repeated application of the
Boolean Algebra identity of equation,

(3) X= XA+ XA

This identity is used until all literals are present
for each term, This is what is called a minterm, The
first term X3XpX3X4X5 is already in this format, The

second term is expanded as follows?
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(4) X1%X3%5 = X1X9X3¥s5 + X1XpX3Xs

(5) X1X9%3X5 = X1X9X3X4Xs + X XoX3X4Xs5
(6) Xl.)-(223}-{5 = X17(2'}_{3XA'>_{5 + Xl.)-(2.>-(3.}-{425

The two remaining input terms Xj§5 (optional term) and
X3X5 would be expanded in a like manner, Upon completion
of the exXpansion the terms resulting are sorted in the
order of number of nonnegated literals they containj also,
they are flagzed when optional, For use in the computer
input each minterm is encoded by assigning it an octal
value détermined, as shown, in Zquation 7,

(7)Y Vm = % Si 24

AT

Where

WL is the number of literals in each minterm

= 0 if the logical value of ¥Xi is negative

N On
e

'_h
il

1 if the lozical wvalue of Xi is true

For example, the value of the first term
V(X1 R9Z3RHsg) = 2%42342% = 25, or 31 base 8. The ad-
vantage in the use of base 8 is that minterms may be
constructed directly from the octal value by noting the

weighting of each literal as shown in Figure 3 below,
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Literal VWeighting

For example, 31 above would have the minterm constructed
by 1 siving X3%pX; and the 3 giving X5X, or X5¥sX3XoXy.
The first level of the prime implicant development is the
ordered list of minterms, This list is given in Figure &
for problem one, The first column has stars which are
flags used in the prime implicant development as explained
later, The second column contains a letter‘”O" to denote
those minterms which are optional (i.,e, an expansion of
the optional term entered), The next column contains the
octal value of the minterms, The last column contains the
equation or output network number, For this problem there
was only one outnut, so 2ll the values are one,

It may be noted the minterms are grouped, This
groupingz is by the number of nonnegated literals in each,
For example, the first is "1" wvhich is 25§4§3ﬁle and
"4 which is 25§4X3§2i1, both of which have one nonnezated
literal, The next term, which is of the following group

is "3" yhich is §524§3K2X1 and has two nonnegated literals,
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PRIME IMPLICANT CEVELCPMENT

LEVEL 1

* 1 1

*C 4 1

* 3 1

*C 5 1

*C 6 1

* 11 1

*C 14 1

* 24 1

*C 7 1

* 13 1

*x( 19 1
%0 16 1

% 26 1 |
* 31 1 :
* 34 1 '
£C 17 1 ;
* 21 1

* 35 1

* 36 1

% 37 1

Figure 4

Prime Implicant Development
Problem 1 Level 1
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Referring to Equation 1 it is obvious the reduction
method used is applicable only when the number of literals
of the two terms to be combined differ by one nonnegated
literal, By the above grouping these terms would always
be in adjacent groups, It is, therefore, necessary to
search only the next group for possible reductions if one
starts with the first, The procedure then, is to start
with the first term of the first group and compare it to
each term of the next group for a possible reduction by
Equation 1, Where there is a reduction the reduced result
is noted in the next level of the reduction, as shown in
Figure 5, 1In the first group, for example, the following

reduction is possible,

.

(8) 1+ 3= 7(5247(3?2}(1 + ?)-(5-)34)_(3X2X1
- R Faky
=1

The above expression is tagged with a 2 denoting the
second literal was removed from the terms, This result is
shown in the first line of results in Figure 5, It may be
noted that a simplification of the type used in this
method is possible if, and only if, the terms differ by
one literal only being negated in one term and not in the
other, By use of the encoding as shown in Figure 3, this

condition occurs when the encoded wvalue of the terms
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differs by a power of 2, Our reduction procedure is then
simplified to taking each term one at a time and comparing
it to each term of the next group to determine if it
differs by a power of 2, For example, the first term of
Figure 4 has a value of 1, Comparing it with the terms of
the next group it is seen that it differs by a power of 2

with the followinz octal numbers,

Table 6

Table of Differences of Minterms

Octal Power of 2
Term Difference|of Difference
3 2 1
5 4 2
11 10 3

For the encoding system used it may be noted, as
showvn in Fisure 3, that the literal represented as a
difference is X3 where 1 is one greater than the nower
of 2 of the difference, The literal by which the term
is reduced is called the "tag"' and is shown in the last
column of Figure 5, The results shown in Table 6 are
given in the first three lines of the computer output
in Figure 5, The remainder of the first group of

Figure 5 is completed by comparing the term §5§4X3E2§1
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as represented by the ogtal term 4 with the terms of the
second group in Figure 4, Each succeedinsy group of the
second level is likewise formed by comparing the terms of
the equivalent group in the first level one at a time with
all the terms of the next group in the fixst level, Both
terms in the first level for which there is a comparison
differing by a power of 2 are starred (flagged) if, and
only if, on that comparison all of the same outputs are
included in both, 1If one term contains outputs not in-
cluded in the other, only the common outputs are noted in
the second level and the terms in the first level are not
starred based on that comparison, In Figure 5, output for
level 2, the first column is the flag denoting a com=-
parison in the next level for those cases where the term
is starred, The starring of a term flags it as a term that
is included in a term of a hicher level of the develop-
ment,

The terms of the higher levels have fewer literals
and require less gate inputs to mechanize; therefore they
would be used rather than the starred terms in any optimum
solution, for this reason the starred terms are removed
from consideration as part of the final solution as they
are flagged,

The fact that a term was derived from optional
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minterms is not noted as this information will not be used
until comnletion of all of the levels and is available in
the level one outpnut data storage area in the computer,
Therefore, the "O's" of the second column of Figure &4 are
not included in any of the remaining levels, The next
column is the code of the literels of the reduced term,
Throughout, this data is in octal form, The octal en-
coding provides the convenience that each digit represents
exactly three literals as shown in Fisure 3, The last
column is the tag (number of the literal which was re-
duced from the term).

The third level of the prime implicant development
is derived in a similar manner, The one exception is
that, in addition to differing by a power of two, terms
must have the same tagz to be reduced and entered in the
next level, As was seen in the method of encoding and
illustreted in Fizure 3, the fact that two terms differ
by a power of two denotes that one literal appears in
the nezated form in one term and in the nonnegated form
in the other, However, if the tag indicates there are
different literals removed from previous reductions, there
would be in the original minterms of the derivation other
differing literals and the basic reduction as given in

Equation 1 would not be applicable, Hence, the tag must
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match in the reduction process,

As an example, the first term "1 1 2" (§5§4§3X1,

output 1, tag X9) of level two differs by a power of two

with "5 1 2@ (§5§4X3X1, output 1, taz Xp) and "11 1 2%

(§5X4X3X1, output 1, tag X,) of the second group, yielding

"1 1 2 3"
"1 o1 2 4m

0]

tively, Th
is completed

below,

(E5§4X1, output 1, taszs
(§533X1, output 1, tasgs
reduction for the first

in a similar manner and

38

Xy and X3) and
Xy and X4) respec-
group of level three

is given in Table 7



Table 7

Reductions Forming First Group of Level 3

lst Group 2nd Group
Level 2 Level 2 Result
1 1 2 5 1 2 1 1 23
1 1 2 11 1 2 1 1 24
1 1 3 3 1 3 1 1 .32+
1 1 3 11 1 3 1 1 34
1 1 & 3 1 &4 1 1 42+
1 1 4 5 1 4 1 1 43+
4 1 1 6 1 1 4 1 12
4 1 1 14 1 1 4 1 14
4 1 1 24 1 1 4 1 15
4 1 2 5 1 2 4 1 21+
4 1 2 14 1 2 4 1 24
L1 2 26 1 2 4 1 25
4 1 4 51 4 4 1 41+
4 1 4 5 1 4 4 1 42+
4 1 4 26 1 &4 4 1 45
& 1 5 5 1 5 4 1 51+
4 1 5 6 1 5 4 1 52+
L& 1 5 14 1 5 & 1 5S4+

It may be noted that the first and third terms are

the same except for the order of the tags, The order of
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the tagesed literals is the order in which literals are
removed, As the order in which literals are removed in
the reductlon is of no importance to the result, these two
terms are identical, There are a number of other terms
which are also ccmmon in Table 7, The set of unique terms
vwhich are entered in level three, Figure 6, are indicated
by a plus in Table 7,

One method of reducing the results of the algorithm
to the unique terms would be to start with the total list
for each group and compare each term with all succeeding
terms and eliminate all but one in the case of identical
terms, However, this would require storing all of the
terms and making %(nz-n) comparisons, where n is the num=
ber of terms in the group, Also, the individual compari-
sons are relatively complex, entailing a comparison which
would in effect unscramble the order of the tag or compare
separately on each literal of the tag, The computer time
is reduced and the need for storing all terms is elimi-
nated by the algorithm used., With this algorithm the tag
is tested for literals in ascending order, rizht to left,
If a term does not fulfill this specification it is
dropped upon generation, eliminating the need of buffer
storaze and a lenzthy set of comparisons, The wvalidity of

this approach is shown below, In level two, where there
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is only one taz, all terms are unique and are retained, '
For level three there are two literals which have been
removed as common, Considering two generalized terms for

which a reduction is possible we have

Yy Xy Y .
1 i 2 tag XJ
Yy X3 Yo tag Xy,

where Y; represents all the literals with g subscript
greater than 1 and Y9 all the literals with a subscript
less than i, The above terms reduce to

Y1 Yo tag Xj Xi.

It is noted, however, that the above terms being
present implies that both the Xj and Zj literals are pre-
sent with each of the terms Y3 X; Yo and Y3 ;i Yo and
therefore there would also be in level two terms of the

form Y3 ij Y4 tag Xj

vS

Y3 X5 Y4 tag is
where the combined literals of Y3 and Y4 are the same as
those of Y3 and Y9, These terms reduce to

Y3 Yg tag X3 Xj or, equivalently,

Y1 Yo tag X3 X5,
From this it is to be seen that for level three the basic
alzgorithm will always yield pairs of equivalent terms, By

the algorithm used, the term with the higher subscripted

literal on the left (taz in ascending order, right to
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left) is selected, For the kEBR level there are (L-1)
literals in the tag, which is represented as Z, Two
terms of the kEDR level which are of the form that can be

reduced for the (k+1l) level are

Y1 X3y Yo tag <
Y1 %3 Y2 tag 2. This reduces to
Y1 Yo tag Z X3, Now, ,if i is a sub=-

script of smaller numerical value than any subscript of
the (k=1) literals of Z, the subscripts will be in ascend-
ing order, right to left, since Z from the previous steps
was in ascending order, In this case the term will be
retained, In the case where 1 is numerically greater than
the smallest subscript in Z, the smallest subscript is de=-
noted j. As in the argument for the case of two terms,
the possibility of a reduction for the litecral Xy in a
previous level implies that both the Xj and Ej literals

are present with cach of the terms

Y1 %3 Yo tag 2
and Y, X Yo tag Z and thereforec there

would also be in the hEQ level two terms of the form

Yy X5 Y4 tag 2!
Y3 X5 Yq4 tag 2%, vhere Z' contains

all the literals of Z, except Xj is included and Xj is

nr

not, These two terms reduce to Y3 Y4 tag 2! £y
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As the literals of the tag 2! Xj

Z Xj, and the combined remainin: literals of Y3 Y4 are

are the same as tag

the same as the combined remaining literals of Y; Y,
the two (k+l) level reduced terms Y; Yy tag Z Xj and
Y3 Y4 tag 2! Xj are equivalent, 3y the above argument it
is showvn that for any term with the tag subscripts not in
ascending order there will be an equivalent term with the
tag subscripts in ascending order, Therefore, terms,
where the tag subscripts are not in ascending order, may
be deleted without further evaluation,

The remainder of level three and levels four and
five are developed in a like manner, The starred terms in
Figures 4, 5, and 6 are the terms which are wholly in-

.

cluded in a reduction, resulting in a term on the next
level, The unstarred terms which remain include, there=-
fore, all of the original minterms and are denoted the
prime implicents, In Problem 1 these terms are:

11 1 5 3 in level three, 1 1 4 3 2 in level four,
and 4 1 5 4 2 1 in level five, As described in the
input data, the user may optionally select a prime impli-
cant listinz as part of the output from the computer,
This includes all the information as shown in Figure 7
for Problem 1, Included is all of the information for
level one on the minterms, as shown in Figure 4, and a

listinz of the prime implicants,
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A prime implicant is termed an essential prime impli-
cant when it is the only one in which a required minterm
is included, Such a prime implicant must, of course, be
included as part of the solution in order to include the
required minterm, To determine the essential prime impli-
cants each minterm is tested asainst all prime implicants
for its inclusion in prime implicants, If.it is included
in two or more prime implicants it does not require an
essential prime implicant for its inclusion, If there is
only one prime implicant in which it is included, that
prime implicant is an essential prime implicant, In this
case, all minterms which are included in this prime im-
plicant are excluded from the test for further essential
~prime implicants by the computer program, If such a min-
term were included in only this prime implicant it would
indicate that this prime implicant was essential for more
than one minterm; however, it is still an essential prime
implicant, If an excluded minterm were included in an=-
other prime implicant it would be included in at least
two prime implicants and, therefore, would not require an
essential prime implicant to include it, In either case
there is no loss in excluding the other minterms included
in essential prime implicants from further testing to save

computer time, If a minterm is not included in any prime
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implicant (unstarred in level one) it is treated as an
essential prime implicant, The essential prime impli-
cants for Problem 1 are shown in Figure 8, The literals
are denoted by the numbers 1, 2, and 3 as shown in

Table 8 below,

Table 8

Essential Prime Implicant Codes

Literal Code Meaning
1 Literal included in ne=-
gated form (i,e, ;).
2 Literal included in non-
negated form (i,e, Xji).
3 Literal not included,
Cutput Code Meaning
1 Not included for this
output,
2 Included as part of
this output,
3 Essential for this
output,

The literals are in the format X5X4X3X9X;. There is
only one output for the network of this problemj in all
cases the essential prime implicants for this output are
coded "3" (essential for this output), Other outputs,
had there been any, would have been listed in ascending
order from right to left,

The listing of the essential prime implicants is an
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optional listing which the user may select upon problem
entry, For this problem all the minterms are included

in the essential prime implicants and therefore a listing
of essential prime implicants is the problem solution,
When this occurs, the computer program states the fact
and gives the listing of the essential prime implicants
as shown in Figure 9. This solution to the problem is

represented in literal form as
(9) A = X5¥p + X3 + X4X9¥1.

This form requires two AND gate inputs for the first term
and three for the third, plus three OR gate inputs, for a
total of eight gate inputs as compared to the original
form of the problem which required thirteen, It may be
noted the second term, being a single term, does not re=-
quire-an AllD gate input but may be wired direct to an OR
gate input, The solution as determined by the computer
is a minimum solution, When all the prime implicants are
required as essential the solution is, of course, also

the minimum cost solution,
2.4,2 Problem 2

Problem 2 provides a case where the desired network

includes terms other than essential prime implicants,
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Problem 2 is to find the optimum AND-OR mechanization of

Equation 10,
(10) A = X X%y + X1¥oX3 + T1XoX3Xy

The data input and computer acknowledgement is as ex=-
plained in Section 2,3,1, Data Entry, and is illustrated
for Problem 1, Section 2,4,1, The computexr acknowledge=-
ment for Problem 2 is shown in Figure 10, The prime im-
plicant development and prime implicant listingz are shown
in Figures 11 and 12 respectively, It may be noted that
because there is no reduction possible past the second
level the prime implicant development and prime implicant
listing are the same, The essential prime implicants are
shown in Fisure 13, The solution to Problem 2 is showm
in Figure 14, The problem solution is provided separately
by network output, First, the prime implicants that are
incluced exclusive of the essential prime implicants are
given, For Problém 2 there is one 1311 (X3XpXj). Also,
the number of literals in the term (LIT 3), weight (WT 5),
and output status (OUTPUT 2) is given, The weight is the
welghting of the prime implicant, In this case a weight-
ing of five was used, As described in Section 2,3,3,
Optimum Prime Implicant Selection, a weight of one 1is

assigned for the single minterm not included in the
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essential prime implicants and an additional weight of
four because there were only two prime implicants that
included this minterm, The output code 2 denotes that
the prime implicant is included in this output network
but is not an essential prime implicant, All the literal
and output codes used in the final solution are the same
as those detailed for the essential prime jmplicants in
Table 8, The order of the literals is from rizht to left
(i,e. X4X3X9¥ ), the same as for the essential prime im-
plicants, The essential prime implicants 1131 (X4X3Xy)
and 3212 (X3X9X1) are given next, along with their out-
put code of 3 denoting they are essential for this out=-
put network, For the case of a network requiring a
single output, the output coding is somewhat redundant

as the titles and grouping would provide the same infor-
mation; however, where a network has multiple outputs,
this information gives the status of each prime implicant
in reference to each output network, This is better seen
and is explained in detail in the next sample problem,
For the programins; convenience of using one less print
format, the output information is printed for the single
output network as well as for multiple output networks,

The problem solution is
(11) A = X4X9X) + KgX3Xp + X3XpXy.
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The number of AND zate inputs required are three for esach
of the three terms, or nine, The nunber of OR gate in-
puts required is one for sach term, or three, for a total
of twelve gate inputs, For the case where a solution
contained a term with a single literal, the correct
solution would be indicated; however, the AND gate input
count would be one greater than required since this single
term could be connected direct to the OR gate inputs,
Also, for the case where the solution is one term, the OR
gate would not be requirad,

The computer e2lso states the total number of
solutions found and which one was best, As the total
number of solutions was less than the twenty five re-
questad by the default option (see Figure 10, Problem 2
Specification), it is known the search was exhausted and
the solution is optimum, For the case where the number of
nonessantial prime implicants is less than the number of
" terms taken in combination, this test is conclusive, For
a large problem, all of the combinations specified may
have been tested and the number of solutions still bes less
than the number specified; in this case a solution is
printed but the fact the number of solutions was not
achieved would not indicate an exhaustive sesarch of all

combinations, The solution number for the best solution
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is given as an aid to the user in getting a feel for when
he is over or under specifying for lonz problems and for
what weighting factors would seem to best fit his problem,
This is an optional part of the input, as specified in

Section 2,3,3, Optimum Prime Implicant Selection,

2,4,3 Problem 3

Problem 3 is solution of a network requiring two out-
puts, In the case of a multiple output network an overall
minimum cost solution is sought: that is, the cost of
generating each output may not necessarily be minimun if
the added cost is more than offset by savings in making
part of the network more usable in generating one or more
of the other output functions, This approach is, of
course, the optimum approach as compared to simply using
those sections of the network, when available, which
happen to exist for another output function, Problem 3 is

to find the optimum AND-OR mechanization of Equation 12

and 13,
(12) Al = X %384 + X1XoX3¥Xy + X2X3%y4
(13) Ag = X9X3Xy + X143¥4 + X1¥2X3X4

The data input and computer acknowledsement is as ex-
I D 2d g

plained in Section 2,3,1, Data Entry, and is illustrated
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for Problem 1, The computer acknowledgement is shown in
Figure 15, A difference which may be noted is the print-
ing of the associated outputs with each term, For example,
the first term, 2322 (E1§3§4), is followed by 010, The
first zero is a separator; the one denotes it is associ-
ated with with the first output network, or Equation 12;
the next zero may be regarded as a blank, %ndicating this
term is specified for only one of the outputs, The prime
implicant development and prime implicant listing are
given in Figures 16 and 17 respectively, The output
column is the second numeric column, It is coded the same
as the literals, as shown in Figure 3 for the literals,
That is, each output is assigned a value ¢ as determined

by Equation 14,
N0 .
(14) ¢ =5 s12%1
i=1

Where MO is the number of outputs

i = 0 if the term is not included
in the ith output

5i =1 if the term is included in
the ith output

As with the literals, the result is expressed in octal,
For Problem 3, which has two outputs, terms included in
the first output only are coded oné, terms included in

the second only are coded two, and terms included in both
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Prime Implicant Listing
Problem 3
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are coded three, A brief summary of the computer print-
out is now given, The codings used for input and output
acknowledgement are outlined in Tables 1 through 4, The
literal and output codes for the prime implicant develop=-
ment and prime implicant listing are outlined in Figure 3,
The tag is simply the literals that have been removed from
the terms by repeated application of Equatjon 1, The
prime implicants for the multiple output case are devel-
oped as for the single output exceot, when all the outputs
are not included in the various terms of a reduction, only
those outputs common to all terms are listed for the re=-
duced term,

The essential prime implicants for Problem 3 are
listed in Figure 18 and the final solution in Figure 19,
In each of these listings there is one column for each
output, The columns for the outputs are listed from right
to left and coded as outlined in Table 8, For the final
solution, the first output network includes one prime
implicant which is not of the class of essential prime
implicants for the first output network, This is the
prime implicant 1213 (X4X3X9). The literal cost is given
as zero since the AND gating for the generation of this
term is also used in the second output network, The prime

implicant was weighted one because it contained one min-
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 ESSENTIAL PRIMETIMPLICANTS

LITERALS auyTPUTS
1332 31
1131 13
1213 32
3212 13

Figure 18

Essential Prime Implicants
Problem 3
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Figure 19

Problem 3 Solution
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term for one output that was not included in the essential
prime implicants, plus an additional four because there
was only one other prime implicant that also included this
minterm, The output code 22 denotes the prime implicant
could be used in either of the two output networks., The
essential prime implicants for the first output networks
are 1131 (§4E3E1) and 3212 (X3§2X1), both of which are
applicable only to the first output network, For the
second output network there are just two essential prime
implicants, 1332 (¥4i1) and 1213 (Z4¥3X,), of which the
| former is applicable only to the second output network and
the lattexr is included in both, As noted earlier, this
was the term which was included at no additional cost for
the literals (AD inputs) in the first output network,

The equation form of the solution is as follows:

(15) Al = i[!_}{g}(z + -7.4:3—:1 + ‘113-122}(1
(16) Ap = }_‘{4}{1 + -‘24}(322

The number of sate inputs 1is sixteen as compared to twenty
three for mechanization of the equations as stated in the
input form (Zquations 12 and 13). This solution was the
first of three possible solutions as noted in Figure 19,

It is also known to be the best possible solution for the

seme reasons given in Section 2,4,2 for Problem 2,
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2.,4,4 Problem &4

Problem 4 is part of a test of the operation of the
program, It is the same as Problem 3 except the third
input is entered separately for ecach of the output net-
works, This problem checks the program's ability to
combine like entries, encoding them with the various
output networks they may be associated with whether or
not they were separately specified in the problem input,
The problem specification, prime implicant listing, and
problem solution are given in Figures 20, 21, and 22 re-
spectively. The prime implicant develooment and essential
prime implicant list were not requested and were therefore
omitted from the computer output, As they should be; the
prime implicant listing and problem solution are identical

with those of Problem 3,
2,4,5 Problem 5

Problem 5 tests the feature which allows minterms to
be entered any number of times, as long as the specifi-~
cations are consistent, The input specification is like
Problem 3, except the last term is redundant since it is
included as part of the third term, The input specifi-
cation is shown in Figure 23, the prime implicant develop-

ment and essential prime implicants in Figure 24, and the
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Prime Implicant Listing
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T PROBLEM SOLUTION

OuUTPUT NO. 1

PRIMF IMPLICANT LIT WY OUTPUT
1213 0 5 22
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1332 31
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Figure 22

Problem 4 Solution
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Figure 25

Problem 5 Solution
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problem solution in Figure 25, The prime implicant
listing was not requested and was therefore omitted from
the computer output, The development and solution are

identical to Problem 3, as they should be,
2,4,6, Problem 6

Problem 6 is the same as problem 5 except that the
last term, which was redundant in Problem 5 has been
specified as an optional term, This creates a conflicting
specification for the part of term three that includes the
last term, The entry and results of Problem 6 are shown
in Figure 26, The duplicate minterm entry for which there
is a conflicting specification is entered on the last
line, The two least significant digits givé the octal
value of the output network (i,e, 02 denotes the second
output network and 03 both the first and second output
networks), The next six digits are the octal value of the
literals, The wvalue 5 denotes §4X§§2X1. The most sig=
nificant places are the number of true literals in base
ten numbers (i,e, 2 denotes two true literals, X3 and X1).
The sign denotes whether the minterm is required or
optional; a negative sign denotes an optional minterm,

The last term, -1212020 (X1E2X3§4 output 2), specified as

an optional term, yielded the first term listed of the
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duplicate minterms, The third term, 3212012 (§2X3§4 out-
outs 1 and 2), yielded the second minterm listed (§4X3ﬁ2X1
outputs 1 and 2), The term XpX3X, from Equation 1 is seen
to be composed of the two minterms, §1§2X324 and X122X3§4.
The optional specification of the last entry for the min-
term X1¥pX3X, on output 2 is in conflict with the specifi-
cation of the third term which states both minterms
2122X3ﬁ4 and X1§2X324 are required terms for both outputs,
As a specification that a term is both optional and re-
quired is inconsistent, the duplicate minterm entry is

noted to the user and the problem run is terminated,
2,4,7 Problem 7

Problem 7 consists of a test on the maximum number
of allowable all combination literals (literals entered
with a code 3), Each term with k such entries is composed
of 2K minterms, For example, if four literals are used
the entry of 1332 (Klfg) is in fact representative of the
four minterms X1%2:..3..4, X1X95354, X1:2%3%4, and X19XsZ4.
If more than a thousand minterms are used there is a good
possibility of storaze space ih the computer being ex-
ceeded, Ten all combination literals would result
in 210 or 1024 minterms and are therefore excluded with a
note printed to the user that more than nine all combi-

nation literals have been used, Figure 27 provides an
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AUTOMATED LOGIC DESIGN PROGRAM
-AND-OR MINIMIZATION BASED ON A UNIFORM COST PER INPUT
INPUT DATA
NO. LITFRALS= 11
NO. OQUTPUTS= 1
NO. SOLUTTONS T BE CONSINDFRED= 25
NO. OF PRIME [MPLICANTS TAKEN IN COMBINATIONS OF
2 3 4 5 6 7 8 9 10

30 15 12 10 10 10 10 10 10
VARITABLF

3333111111100

1333333433200
MORE THAN 9 ALL COMBINATION LITERALS USFD

Figure 27

Problem 7 Entry and Result
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example of this type of output,

2.4,8 Problem 8

Problem 8 provides an example of an entry with more
than a thousand minterms, If more than a thousand min-
terms are entered, the computer program notifies the user,
Figure 28 provides an example of the computer orintout for
Problem 8, This problem size restriction is a practical
limit based on the memory limits of the computer used, By
use of larger amounts of computer memory there is no theo-
retical limit to the size of job which can be run, While
there is no theoretical limit, there is a practical limit
in the amount of computer time used, This is more of a
limiting factor than the memory size, The amount of time
used for all the problems shown in this report combined
was only one minute and fifty eisht seconds, including
link editing and onrintout, Compilation and printing of
the computer listing as shown in the appendix took nine
minutes and twenty eight seconds, This, of course, could
be reduced considerably by use of an object deck of the
final program, With larger problems, containing more
prime implicants, the time for a solution increases very
rapidly since the number of combinations to be analyzed

tends to grow in a factorial type expansion to the limits

specified by the number of nonessential prime implicants
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NO. OUTPUTS= 1 ‘
NO. SOLUTIONS TO PE CONSIDFRED= 25 :
NO. OF PRIME TMPLICANTS TAKEN_IN COMBINATIONS OF
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Figure 28

Problem 8
Entry and Result
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and the combinations in which they are considered,

For analysis of each output network of each solution,
the same basic approach used in the process of finding the
solution is repeated, except only strings of the prime
implicants knovm to be in the overall solution are in-
cluded, This process is used to provide the minimum cost
circuit, which includes the sharinz of hagdware, not only
for what may already exist, but rather developing the
Ccircuitry so the cost is minimum, considering all outputs,

As was noted earlier, if the problem is of a size
where all combinations are not tested the solution
printed is the best of those tested, In the case of
multiple outputs, at each comparison during the prime
implicant development terms reduced for some outputs, but
not all, are left for further consideration (not fla=zzed),
It is therefore possible to have included in the final
solution a term that would be included in another term
(not really a prime implicant). Such terms should be
removed by wvisual scanning of the solution by the user,
Where equivalent terms are in the range of the combina=
tions used for the problem the computer will automatically
select the best solution avoiding this problem,

Considering the number of prime implicants taken in

combination, it would be at least as many as defined in
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conjunction with table 4 if a lower X is not given an
ootional value less than a higher X, Basically, at each
X level the number of prime imvlicants considered is that
specified (ie, at the third X level, ¥=3, using the
default option of 15,each of the first 15 prime implicants
would be considered in turn with all unique combinations
of two other terms, where the other two may include orime
implicants above the 1552 based on the lower X level
specifications).

As an example of a longer oproblem, a problem with
seven literals and 34 prime implicants, including five
essential orime implicants, was run with a reduced search,
The prozram was stopped by the operator with an elapsed
time of one hour, six and a half minutes, By use of
printout at selected steps, it was found that the computer
had proceeded correctly to the first solution and was in
the process of analyzing this solution, While the long
time could possibly be attributed to an undetected
programing '"bug", a consideration of the amount of
computation indicates a time limitation,

A significant improvement in the running time for
larger problems would be achieved if the prime implicants
and the minterms were stored in an expanded form for the

last section of the program, subroutine OPTMPI, Also, if
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a separate list of the minterms not included by the
current group of test solution bprime imvlicants was main-
tained, the running time would be reduced, With this
method, as each combination is analyzed, only the one new
prime implicant normally used to replace one of the pre-
vious ones need be tested to see if it includes the still
missing minterms, .

The present method looks at each new set of prime
implicants separately to see if they include the required
minterms, The minterms and prime implicants are stored
in a compact format which requires expansion for conven-
ient operation. Due to the above considerations, more
than an order of magnitude tire savinzs would be anticie-
pated for the shorter approach on large problems, While
the theoretical maximum size problem that could be run
with a given size memory would be reduced, due to the

Xtra storacze required, the upper practical limit would
be increased, For very short problems or problems
requesting only prime implicant listings there would be
no significant difference from the present prozram, In
the next chapter a further development of the overall
design problem is treated on a broad basis and a sample

machine design problem is presented,
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CHAPTER 3, FURTHER DEVELOPMENT OF THE AUTOMATIC
DESIGN PROBLEM

In the course of the thesis work an integrated
approach to the development of automatic design techniques
in the field of switching networks was developed to a
limited extent, This is a program in which computer aided
desizn would be carried to higher level fynctions and
total devices, The approach proposed is a hierarchy of
supervisor routines which would call basic optimization
prozrams similar to the AND-OR minimization program of
this thesis, The modules of this program are envisioned
as containing models including all the significant real
life problems of design so as to require a minimum of user
interpretation of the results,

Designs which include all of the applicable real life
problems, such as variations of temperature, power supply
voltage, circuit loadins, stray capacitance, deterministic
noise (predictable undesired short term pulses), statis-
tical noise, etc,, are by their nature many times more
difficult - if not impossible - to solve by a single al-
gorithm, The practical approach to this problem is to
consider the many developed approaches to the design,
evaluate the classes which are most likely to lead to a

solution, and search these, selecting the best, These are
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the steps in a good manual design, With an automated de-
sign these same steps can be performed much faster without
the problems of clerical error, The resulting computer
aided design would therefore be developed at a lower cost
and be basically error free, Due to the higher speed of
automated design more possible approaches may be consid-
ered, oroviding for still sreater economies, It would in
this way be practical to develop more svecialized and im-
proved techniques for various classes of problems due to
the wide usage such a program would have, When the person
developing the program is not very certain of the best
approaches, the program itself may be equipped with memory
of past experience in finding optimum solutions along
various routes, This information is used to self-modify
the program to guide in its future approaches to solutions
of similar problems, However, if this approach is used in
lieu of a direct approach where one exists, a less than
optimum search will zenerally result, This was pointed

(20)

out by M, Minsky who discussed the shortcomings of the

"Logic Theory" orogram of Newell, Shaw and Simon(ZI’ 22)

(23)
(24)

in the lizht of the criticism by Wang
It was pointed out by I, A, Breuer and E, J, Mc-
Cluskey(zs) that this topic, effective automatic gener-

ation of logic, is one of the major classes of automated
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computer design which remains unsolved, Due to the
enormous scope of this project it is part of this thesis
to set up a program of a continuing nature which can be
further developed in future investisations, In the next
section, the program structure is discussed and in the

section following a sample design problem is presented,
3.1 Program Structure

The program is planned around a hierarchy of speci-
fications which are to be implimented by a set of library
programs, These programs are in turn designed to search
for an optimized solution in their specific areas, after
which control is resturned to the higher level routines,
The hizher level routines are given the capability to call
on the desizn level routines iteratively or in combination
changing the specification, in order to set an optimized
solution in cases where trade off is necessary and solu=-
tion of the equations involved simultaneously is not
practical, The "Machine Type Specification" is the
highest level and is used to call the basic routines
involved in the problem solution, This specification
states the type of unit that is to be designed, Second-

ary specifications are used for such items as the input

interface, output interface, items which directly affect
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the logic design but are not part of it (lumped cost
items), the general specification of what the machine

is to do with the input, etc, A description of these
specifications follows, with their program implementation

implied in Figures 29 and 30 and in Section 3,1,9,
3.1.1 Machine Type Specification

The type of machine to be designed is specified,
This specification states whether it is primarily a com-
puter main frame, medium size computer in total, desk
top computer, card reader or punch, magnetic tape trans-
port, disk memory, core memory, drum storage unit, paper
tape reader or punch, data buffer, data transmission or
terminal device, cash register, etc, The basic approach
to design and the decisions to be considered would, of
course, vary widely within the above types of machines,
To handle this problem a supervisory routine is called by
the entry of the code that describes the machine, The
supervisory routine in turn calls other routines which are
common to the various types of devices, This provision
saves computer memory and allows a modular approach to

building and addition to the overall program,
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3.,1,2 Input Interface Specification

This includes, unless optional, the coding specifi-
cations; voltage levels; drive capability; timing; rise
and fall times; required "don't care" timing zones and
predicted input error rate, The required items to be
provided as input specifications will be determined by
the supervisory routine, It is to be noted that this is
an automatic lozic design program and would, for example,
consider twelve parallel lines from the read head on a
card reader as an input, It does not consider the de=-
tailed mechanical design of the card transport even though
it is part of the system, As this prozram contains ex-
tensive cost effectiveness provisions, other electronic
devices such as magnetic tape read amplifiers are handled
in a manner similar to the logic units, Mechanical and
other units are handled as lumped cost units (i,e, several
alternate electro-mechanical card read heads could be
automatically considered as to their overall effectiveness
on system performance and cost, including optimizinsz the
logic design for each, However, their individual designs

would not be developed by the computer program),
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3.1,3 Output Interface Specification

This includes, unless optional, the coding specifi-
cations of the output device; voltaze levels, drive re-
quirements, timing, rise and fall times, allowable '"don't
care" timing zones, and numbers of lines, Required error

rates are covered as part of the General Specifications

of item five,
3.1.,4 Lumped Cost Items

There are items which have a very direct affect on
the logic design but are not logic elements, Examples of
this are magnetic read and write heads and power supplies,
For example, by using different types of logic the amount
of power used and the cost of the power supply is greatly
affected, Alternately, under different power drains and
power supply tolerances the maximum reliable speed of the
same logic elements will vary considerably, The specifi-
cations of the lumped cost items to be considered are
called from a library by entering their identification
number, These specifications, along with the General
Specification, are used to determine an optimized unit

selection and to optimize the mode of use,
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3.1.5 General Specification

The General Specification basically states what the
machine being designed is to do with the input before
putting its results on the output lines, This is accom=
plished by providing the General Specification program a
list of inputs of alpha-numeric symbols, special charac-
ters and commands for the machine being deéigned. It is
to be noted that commands are specified to the program by
their library number, When there are specific input-out-
put specifications (items 3,1.2 and 3,1.3) associated with
a command line, reference to these specifications is in-
cluded here, As an example of a command specification,
consider the case of specifying the command of multipli-
cation, Assume the CGeneral Specification code for the
class of multiplications to be considered in our example
has a library number 0L, Also assume that it is desired
to provide as a built in function the multiplication of
the contents of register 02 by the contents of register
Ol with the results placed in 02, Assume registers Ol
and 02 are registers previously requested to be imple=-
mented as output registers, Giving the command "x0l, 02,
0L, 02, YYY" is all that is necessary to provide for the
design of this function, YYY 1is a command identification

number, The library program X0l will automatically
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provide all additional information to upgrade the logic’
control of register Ol and 02 from output regzisters to
arithmetic registers or provide a more desirable alternate,
The type of arithmetic, error checking, error correction,
precision, associated index resgisters and control logic

are also automatically provided by the library progzram,

The overall accuracy of computation is also entered as

part of the Ceneral Specification, This may be overridden

for any specific command where it would be desired,
3,1,6 Detailed Specification

Two items are specified as detailed specifications,
Those are speed and reliability. Cenerally, there is a
minimum speed requirement, This in turn determines the
types of lozic most anpropriate and whether parallel or
serial operations as well as, to a certain extent, whether
synchronous or asynchronous operations are optimum, Very
frequently, improved capability (speed) above the minimum
gpecified is worth something but the percent increase in
value per percent increase in speed will vary depending on
application, In our example problem of Section 3,2, in
the COMPUTE mode 0,2 seconds is just about as fast as a
person can operate the keys, Therefore, 1f a person hits

a divide key and it took 0,2 seconds before the answer was
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on the screen this would be satisfactory and going faster
would be of no value, In the RUN mode, however, a whole
series of arithmetic operations is most probably going to
be performed before a display pause or DATA entry command
is reached; therefore, an increase in speed would be of
value, This increase in value is specified by stating

the percent of increase in value that would result for a
specific increase in speed, Provision is made for twenty
specification points with either linear or logrithmetic
interpolation between specification points, As an example
it could be specified that a twenty five percent increase
in speed is worth ten percent, fifty percent in speed,
fifteen percent, and two hundred percent in speed, twenty
percent in value with linear interpolation between points,
The design program in this case would coantinue to increase
the speed until the increase in cost equaled the above
cost effectiveness specification curve, See Fizure 31 for

an example specification,
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In the above example, the desizn would be implemented
for approximately &5 operations per minute Based on the
speed of the slowest operation, As different operations
may increase the value of the machine differently for the
same increase in speed, and as it is not always the slowest
that should be the determining factor, provision is to be
made to weight the different operations., All operations
are grouped by the YYY command identification number pro-
vided by the user in the General Specification, &Zach YYY
number may be given a different cost vs, speed specifi-
cation and thereby each group of operations may be effec-
tively weighted as determined by a market analysis, The

reliability may be specified as an overall mean time
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between failure and/or as a probability or error on a
single operation, Increased value from improving the
reliability over the minimum specified is handled as a
percentage in the same way as for the value of increased
speed, The probability of error specification for a

single operation may also be defined by the YYY coding,

3.1,7 Particular Specification

Here, items particular to a specific machine, such as
options, are considered, To consider a built-in square=
root operation to add value to one machine may be of so
little value it would not be worth considering, However,
in the case of our example computer of Section 3,2 the
manufacturer may like to know how much this feature would
add to the cost either as a model modification or as a
plug=in unit, In the case of the plug-in unit he probably
would like to know how much cost is added to units where
the plug~-in is not supplied, The particular specification
is also used to provide marketing data on price vs, ex-
pected sales volume and manufacturins costs vs, volume,
This volume data is specified similar to the way added
value of the speed-cost data is specified, All cost data

would be considered as a unit and a design implemented for
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the combination that produces the greatest value over cost
(profit) for the total production, Additionally, this
specification is used to provide cost data on items of
fixed cost or those of only minor importance in the logic
design, such as paintinz costs, packaging costs, etc, If
any cost is significantly affected by the lozic design it
is provided in the lumped cost library and an appropriate
optimization of logic to minimize the total cost is

effected,
3.1.8 Output Specification

The program will provide the following information as
requested:

»

¥ Statement as to the feasibility of
meeting the specifications using com=-
ponents currently in the library

* Cost per Unit

* Projected Volume

* Total Cost

% Sales Value

* Projected Profit

* Materials List (parts used and item costs)

* Manufacturing Costs

% Reliability Data (overall and for all
operations specified separately)

% Speed (for all classes of operations)
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* Logic List (logic expressions defining
the design)

* Connection/Wirinz List

* Simulated }Machine Program
This prozram will allow testing the
machine on another comnuter before
manufacture to get a feel for its
actual use,

* Any or all of the above may be pro-
vided for any of the options considered,

3,1L.2 Program Outline

A completely modularized program approach is used
because of its ease in expansion and development in future
investizations, While a completely modularized prozram
offers flexibility in development and ease of expansion,
it also necessitates the user knowing the routines avail=
able and how to call them in detail if this function were
not handled by a supervisory routine, The supervisory
routine is determined by the user's machine type specifi-
cation, This is done by entearing a code which corresponds
to a machine type, This code is also the library number
of the suvpervisor that will process the program, The
supervisor will call the approoriate input routines, com-
ponent selection routines, lozic development and minimi-
zation routines and the output routines, In cases where

a routine is very simuple, it will be incorporated directly
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into the supervisor, The overall prozram flow chart is
shown in Figure 29, It may also be noted that the more
complex supervisors will call upon other suoervisory
routines, A secondary calling arrangement is within the
specific sub-program that does the callins, In such cases
control is returned to the routine that did the calling
rather than the main orogram,

In addition to specifying the machine type, the user
may wish to further specify the type of problem, Consider
the case of a combinational logic design problem, The
problem could be one of simplifying an expression in terms
of the least number of input lines for AND/OR logic, or it
could be to find a minimum cost set of lozic from a
selected library of logic elements compatibie with the
equipment this item of lozic is to be part of, Or, the
problem may be to find the minimum cost logic design to
meet a certain specified speed requirement, To allow this
further definition of the problem the first data card con-
tains a number of entries, The first column is the contin-
uation instruction, A blank denotes this is the last
problem, A "1" denotes another problem will follow, The
next four columns are the library number of the machine
specification, The types of machines to be implemented

are assigned a library number at the time it is decided
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to incorporate a class of machine in the prozram,., This:
arrangement allows unlimited expansion of the system withe-
out modifying the previous structure, The machine types

to be assigned code numbers at this time are given below,

Table 9

fachine Types

Code Type of llachine

Combinational Logic Circuit Design
Sequential Lozic Circuit Desizn
Desk Top Type Computers

Data Buffers

Paper Tape Readers and Punches
Card Readers and Punches

Core Memories

Magnetic Tape Units

Disk Memories

Data Terminals

Medium Size Computers

RroOoOwv~NoOTuLiPwrE

e

Succeeding five column numbers denote sub-classification
of the problem specification library, So that the user
does not have to know or make a specification for options
in which he is not interested, a standardizations of
options is adopted, In this standardization a blank
number denotes the program is to perform the design in

the simplest way possible for this level and any remaining
sub=levels of the specification, A "1" will always denote
the most general solution (lowest cost solution) out of

all possible solutions the program is set up to consider,
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In the design of combinational logic a "O" or blank
secondary code denotes a logic minimization for two level
AND/OR logic with either gate type having its cost direct-
ly proportional to its number of inputs. Code "1" denotes
the entire combinational library would be searched for a
minimum cost mechanization meeting the circuit specifi-
cation, Code "2'" denotes KAIND/IOR type }ogic having its
cost directly proportional to its number of inputs, It is
intended that codes "O" and "2" are for student use or
what might be classified as a theoretical circuit specifi-
cation, Code '"3" and up are the production codes and
specify libraries with information on propagation delay,
rise and fall times, speed, reliability, drive capability
and input loadinz, Variations of these parémeters as a
function of circuit loading, operating temperature, stray
capacitance and power supply specification are included,
Also costs of assembly, interconnection and test are in-
cluded, Required don't care or '"dead" times will auto=
matically be calculated and integrated into meeting the
overall specification. Codes "3" and up are based on var=
ious groupings of compatible manufacturer's logic lines
which would include various combinations of number of in-
puts and number of gates for NAND/HOR, AND/OR, EXCLUSIVE

OR, INVERTERS, etc, Flip=flops, shift registers and other
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devices with memory will be considered under the sequen=
tial circuit supervisory routines,

The program mechanization for the combinational logic
design approach is shown in Figzure 30, It is to be noted
that if another prozram calls the combinational sub=-
program the calling program will automatically supply all
the necessary specifications without any additional re-
quirement on the part of the user, Even when the loszic
code is not code "1" a calling program may in sequence
request a number of combinational logic design sub-program
codes and then select the desigzn which gives the best
results, A sample problem was developasd to test the pro=-
gram after it had been exnanded and to indicate the type
of problems to be considered, A description of this

sample problem is presented in the followinz section,
3.2 Development of Semple Computer Design Problem

A sample computer specification was developed which
would enable testing of the overall prozram after its
major core sections have been written and are operative,
This specification also illustrates the capabilities in=-
tended for the overall program, For our example, the
case of a manufacturer who would like to have designed a

seneral purpose desk top calculator-computer is considered,
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The computer is to be able to add, subtract, multiply
and divide as direct key entry operations, It is also to
include program capability so that any ot