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Abstract—The volume of data that planetary rovers and their
instrument payloads can produce will continue to outpace

available deep space communication bandwidth. Future ex-

ploration rovers will require science autonomy systems that

interpret collected data in order to selectively compress ob-

servations, summarize results, and respond to new discover-
ies. We present a method that uses a probabilistic fusion of

data from multiple sensor sources for onboard segmentation,

detection and classification of geological properties. Field

experiments performed in the Atacama desert in Chile show

the system’s performance versus ground truth on the specific
problem of automatic rock identification.
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1. INTRODUCTION

“Science autonomy” broadly describes a robotic vehicle’s
ability to analyze the scientific content of its observations and

use this information to take intelligent actions. This onboard

science data understanding is important for efficient alloca-

tion of a rover’s time and bandwidth resources. Advances in

rover navigation are increasing traverse range at a rate much
faster than the increase in communications bandwidth [2].

Thus, much of the terrain the rover observes on a long tra-

verse might never be examined by scientists. Onboard data

understanding ensures that the rover reports the most inter-

esting and valuable data. Our research objective is to develop
a coherent framework for science autonomy that supports sci-

ence during rover traverse and survey. In the scenario we are

developing, the rover identifies significant observations from

initial data collection and decides whether to perform follow-
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up measurements or instead continue with other tasks. Af-
ter collecting data, the rover can then determine how much

of its limited communications bandwidth to devote to trans-

mitting each data product. Science data understanding also

allows the rover to convey some important information (such

as statistical summaries of terrain features) in a compact form
[12]. Achieving these goals requires two key functionalities:

the ability to identify targets of scientific significance and the

capacity to plan and modify behavior based on science infor-

mation. This paper addresses the first property.

Our initial research has focused on analyzing rocks in desert

environments. Rocks have characteristics that make them an

informative test case for autonomous science. They are rich

science targets that contain useful information across a wide

range of sensing modes. Autonomous rock analysis is easy
to evaluate because the targets are discrete units that have

measurable physical properties and occupy precise locations.

Rocks are plentiful in terrestrial test environments and di-

rectly relevant to remote planetary geology. Unfortunately,
rocks—like most features of geological interest—are difficult

to find and classify with a priori designer knowledge. While

one would like to identify features by specifying their phys-

ical properties, field conditions with sensor noise, variable

lighting, and ambiguous terrain make these properties diffi-
cult to extract.

We believe a machine learning approach—where science

targets are specified in terms of examples rather than

properties—will yield reliable detection and classification
performance. This paper begins with a detailed explanation of

such a system. Then we discuss its performance with data ob-

tained during a rover field experiment in the Atacama Desert

of Chile. Detection performance is compared both to ground

truth and to human performance on the same images. We find
a strategy employing supervised learning for feature detec-

tion and both supervised and unsupervised learning for fea-

ture classification to be effective for flexible and reliable on-

board data understanding.



Figure 1. Procedure for detection and analysis of science targets. A belief network detects science targets out of candidates

segmented from the original image. Then supervised and autonomous classification schemes categorize the geological features.



2. ROCK DETECTION AND CLASSIFICATION

Like many of the terrain features geologists find interesting,

rocks have no single distinguishing signature for the stan-

dard sensors available to explorer robots. Researchers have

tackled this difficult pattern recognition problem with a wide
range of approaches. One strategy uses stereo images to find

rocks based on their height above the ground plane [6]. This

depth information yields precise detections—any sufficiently

tall object is almost certainly a rock. Unfortunately stereo

often misses small or distant objects. A second method re-
duces rock detection to the simpler problem of finding shad-

ows. Given the relative position of the sun and the camera,

shadows suggest the location of rocks [8]. A third strategy

detects rocks directly in the image. This category includes

the intensity-based method of Castaño et al that looks for
closed shapes at varying resolutions with an edge detector

[3]. The Nomad explorer in Antarctica is another example—

it used color cues to segment meteorites from background ice

[11]. Finally, one can compensate for the shortcomings of

any one approach by using several simultaneously; Gor et al

use stereo for detecting large rocks and image intensity to

detect small rocks [7]. These diverse strategies rely on uni-

versal characteristics that distinguish the science targets from

their backgrounds. However, unstructured environments and

uncertain sensor data may demand distinctions too subtle to
specify in advance. Our intuitive notion of a “rock” describes

a range of observable phenomena that individual attributes

fail to capture. Rocks can be darker or lighter than the base

sediment. They can be rough or smooth, small or large, pro-

truding or embedded in the surface. The interactions between
these attributes—which together distinguish a science target

from its background—are difficult to capture a priori .

Given this difficulty we approach detection not as the uncon-
strained task of designing general detectors for each geolog-

ical feature but rather as a traditional classification problem

to be solved through supervised learning techniques. Exam-

ples chosen by an expert teach the science autonomy system

attribute relationships too subtle and specific for a human de-
signer to exploit. In our method the pre-labeled examples

train a belief network [9] that considers a probabilistic fusion

of information from stereo, shape, shading, color, and tex-

ture sources. The analysis of a scene proceeds through three

steps (Figure 1). The first step, segmentation, isolates poten-
tial science targets from the rover’s stream of sensor data. The

second step, detection, analyzes these candidates with a be-

lief network that distinguishes target from non-target regions.

The input to the belief network is an attribute vector that con-

tains color, texture, shape and stereo disparity information.
The output is a probability that each region is a science tar-

get. Finally the geological classification step classifies the ge-

ological features according to their observable attributes [2],

[6].

Segmentation

The segmentation step processes sensor data to identify ho-

mogeneous regions in the rover’s environment correspond-

ing to possible science targets. The segmentation stage is not

responsible for detecting targets but merely suggests candi-
date structures for further classification. This separation be-

tween segmentation and detection permits the science auton-

omy system to be quite permissive in the kinds of data it ac-

cepts as input. Any additional criteria, even from multiple

measurement sources, can add candidate regions for consider-
ation. The different sensors are processed separately to yield

several segmentations of the same scene (Figure 1). A feature

which is indistinguishable from the background in one chan-

nel might be clearly visible in another; as long as it is found

in at least one segmentation the result should be recognized
later in the detection stage. This approach is similar to the

“symmetric” detection scheme used by Gor et al [7] in that

it builds multiple object maps for each image. It is distinct,

however, in that we do not require the different segmentations

to be orthogonal—science targets may well appear in sev-
eral segmentations at once. Overlaps not eliminated by the

detection stage are in practice fairly easy to resolve. More-

over, removing the orthogonality constraint increases the de-

signer’s flexibility in choosing segmentation algorithms and

ultimately helps the rover’s chances of finding each terrain
feature.

Our rock segmentation, detection and classification system

begins with color images that segmentation splits into homo-

geneous pixel regions. First, each color channel from an im-
age is preprocessed with a simple Gaussian blur operation.

A region-merging algorithm shatters the original image into

a grid of 5 × 5 squares and iteratively joins them back into

regions of uniform properties (Figure 2). Their minimum
5 × 5 size is a reasonable compromise between a desire for

high resolution segmentations and the requirement that each

square be large enough to produce meaningful statistics about

its interior pixel values. At each iteration we calculate the

mean pixel values of all regions and merge neighbors whose
means fall within a certain threshold of each other. This pro-

cess repeats until no more merges occur. Finally we exclude

regions whose sizes fall outside a given size window. The ex-

periments that follow use a permissive window—every region

between 20 and 500 pixels is a potential rock.

We will see in the next section how rock classification ex-

ploits stereo information for later processing stages; stereo

disparity offers another possible segmentation channel. Al-

though segmentation of 3D data was not implemented for
the following experiments, k-means clustering has been suc-

cessfully employed to find rock shapes in stereo images [6].

These techniques generally involve fitting a ground plane to

the pixels and segmenting the resulting height map.



Figure 2. Segmentation of a sample image containing sev-

eral rocks.

Detection

The detection stage identifies science targets from among the

segmented regions by extracting a real-valued attribute vec-
tor from each candidate and labeling it with a Bayesian belief

network [9]. For our application belief networks offer sev-

eral advantages over other classifier techniques. First, they

solve the problem of missing data that can occur when fusing

multiple sensors with varying fields of view. In the case of ab-
sent data, such as a stereo mismatch or an undeployed sensor,

the network provides posterior probabilities that are appro-

priate for the available information. Thus there is no penalty

for training the network with time-consuming, seldom-used

instruments like spectrometers. Another advantage to the
Bayesian approach is that the explicit classification probabil-

ities offer a principled way to tune the precision of the net-

work. This accommodates the various performance standards

that different science target detection applications require.

For example, a first pass detector might use a lenient proba-
bility threshold to avoid missing any desirable science targets.

After locating a high-value candidate for further inspection,

the rover might deploy additional sensors and verify its deci-

sion using a stricter standard. By tuning a single value—the

probability threshold for considering a target – an operator

can elicit both high-precision and high-recall behaviors from
a single network. A last advantage of belief networks is their

computational efficiency relative to non-parametric classifier

schemes like k-nearest-neighbor [1].

For a given attribute vector X = {x1, x2, ...xn}, the network
computes the probability P (C|X) that the region is of class

C. A naive Bayes approach, where all attributes are consid-

ered to be independent, yields the following decomposition:

P (C|X) = αP (C)P (x1|C)P (x2|C)...P (xn|C)

where P (C) is the prior probability of the class and α is a nor-

malizing constant. This formulation corresponds to a simple

Bayes network with arcs running from the class node to each

independent attribute. Although the naive Bayes strategy of-

fers the advantage of simplicity, its conditional independence
assumption is violated when there are correlations between

some of the candidates’ attributes. Because of this our im-

plementation favors a more fully-connected Bayes network.

The additional arcs in such a network represent relationships

of conditional dependence to be reflected in the final proba-
bility calculation. For example, if x1 were conditioned upon

the value of x2,

P (C|X) = P (C)P (x1|C, x2)P (x2|C)...P (xn|C)

Techniques such as belief propagation can calculate this joint
probability even in cases where one or more attributes are

unknown [9].

There are many ways one might represent the conditional

probability distributions. For the rock detection task we quan-
tize each attribute and use tables to count the number of times

associated values appear. This is a non-parametric represen-

tation, requiring more training data than a more constrained

parametric distribution function [1]. Nevertheless, the tab-
ular distributions are more flexible and yield superior per-

formance for the detection tasks we have tried. Smoothing

techniques can also be used to fill out tabular probability dis-

tributions; Parzen density estimation facilitated autonomous

meteorite classification for the Nomad antarctic explorer [10].
In the next section we describe geological classification tech-

niques which exploit the same probability relationships but

use Gaussian probability density functions that can be set

with far fewer examples.

We extract attributes for each region from the interior pixels

and the pixels immediately surrounding the image. An ex-

ample appears in Figure 3 - note that the region’s border ap-

pears somewhat aliased because it is composed from original

5× 5 pixel blocks merged during segmentation. The attribute
set extracted from each image region contains the following

measurements:

Perimeter: The ratio of the region’s squared perimeter to its



pixel area. Non-rock artifacts often have long, spidery shapes

while rocks tend to be more convex and ellipsoidal.

Relative Color: The absolute value of the difference in mean

pixel hue, saturation, and intensity between the interior of

the region and the context region. Fisher distance (which

weights the score according to the variance of each sample)

performed better as a difference metric than a simple compar-
ison of means.

Relative Color Variance: The absolute value of the differ-

ence between the pixel variance of the interior region and

the pixel variance of the context region. This functions as
a simple measure of texture, helping to detect situations like

a smooth rock sitting in rough, high-variance gravel or a pit-

ted rock on a smooth background.

Height Above the Ground Plane: While small rocks are
generally below the noise threshold for our stereo system,

height is a valuable attribute for detecting large rocks and ex-

cluding large non-rock regions.

Texture: We use a fractal dimension measure [4] of a binary
intensity map to describe the detail of each region as resolu-

tion is increased. The result is an efficiently-computed value

that corresponds somewhat to our intuitive notion of surface

roughness. Like color variance, this helps to detect rocks in

those cases where their roughness differs substantially from
the background sediment.

Intensity Gradient: Rocks are three-dimensional protru-

sions that exhibit shading when illuminated by sunlight. We
use least-squares regression to find the magnitude of the in-

tensity gradient over the pixel surface of each region in the

image, giving the overall strength of its shading.

Physical Location: While not implemented in the current
field test, future versions will include an estimate of the rock’s

position in the world. A region’s location should not affect its

classification as a rock, but it should play into the autonomous

geological classification—a familiar looking rock can still be

geologically interesting if it is found in an unexpected place.

Absolute Color: Another attribute that informs geologi-

cal classification. We exclude it from the attribute set for

rock/non-rock classification in order to maintain generality.

Two additional attributes do not directly affect a region’s

chances of being a science target or its geological classifica-

tion. Nevertheless, we include them due to their strong condi-
tional dependence relationships with the other attributes. By

considering these dependencies the Bayes network computes

a more accurate posterior probability:

Absolute Range: Many of the differences between rocks and

non-rocks become less apparent as range increases. In partic-

ular, texture is more difficult to see even when there are many

pixels representing the distant region.

Pixel Area: There are varying degrees of conditional depen-

dence between most observed attributes and the regions’ pixel

area. These dependencies are due to the way regions are rep-

resented as a finite number of pixel “samples.” For exam-

ple, normalized perimeter is generally small for regions of
small pixel area because rough borders become less notice-

able when the number of pixels used to describe them de-

creases. Similarly, texture is hard to recognize with few pixel

samples.

Figure 3. Attributes are extracted from the region and its

immediate neighborhood.

The topologies of the networks used by the rock detector for

detection and geological classification appear in Figure 4. In
the detection step the belief network uses the attribute vector

to calculate the probability of a region’s belonging to each of

five classes: rocks, uniform patches of soil, sky, shadows cast

on the ground, and a final “everything else” class for regions

that do not fit neatly into one of the other categories. The
“everything else” class contains ambiguous candidates like a

region comprising a small part of a larger rock or one that

includes both a rock and a small patch of sediment. While we

constrain our system to seeing just these five kinds of objects

in the world, one could expand the set to include other kinds
of geological features. The number and breadth of classes is

limited only by their degree of separation in attribute space

and the amount of training data available.

Geological Classification

After the detection stage discovers a science target the two

geological classification modules classify it according to both
predefined and synthesized categories. Here our classification

method is similar to the one first suggested by Castaño et al.

[2]. Predefined geological types are chosen at the outset by
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an expert. Autonomous classes, on the other hand, come from

an unsupervised clustering algorithm that runs whenever the

rover collects new data. Multiple classifications give opera-
tors a rich palette of options for defining the rover’s behavior.

For instance, they could instruct the rover to focus only on

novel outliers that have a low probability of being generated

by any autonomous cluster. This way the rover could find the

most interesting science targets in areas that operators had not
yet seen. Alternatively, operators could instruct the rover to

examine a single representative example of each geological

type that it sees. A third alternative would be to search only

for a specific predefined geological type and to ignore every-

thing else. Operators can choose the mix of these behaviors
that is most appropriate for the rover’s mission.

Geological classification differs in several ways from the ini-

tial detection step discussed above. One difference is the

input attribute vector—because geological classification is
only interested in properties of the science target itself, rel-

ative measures of the region’s properties versus its back-

ground are ignored. Another difference is the representation

of the conditional probability densities; geological classifica-

tion models classes utilize Gaussian probability density func-
tions. This permits the use of the EM algorithm [5] to find

efficient maximum-likelihood estimates during autonomous

clustering. Moreover, Gaussian PDFs are more effective with

sparse training data. They allow both the rover and remote

experts to create a geological class with just a few examples.

We use a cross-validation procedure to choose the best num-

ber of autonomous geological classes that explain a given

dataset. Before field operations, a geologist estimates the ap-
propriate number of clusters i in terms of its own separate

probability density, P (Mi(X)), where Mi(X) is a model

that fits a list of observed targets X to i distinct classes. If

only a handful of geological classes are interesting, this prob-

ability density might favor low single-digit values of clus-
ters. If there are many different classes of interest or the

operator wishes the rover to make fine distinctions between

autonomous classes, the expected number of clusters could

be much higher. During a traverse, the rover divides its set

of observations into a training set T and a validation set V .
Then it performs expectation-maximization clustering on the

training half using various numbers of clusters, yielding mod-

els M1(T ), M2(T ), ...Mn(T ). The prior probability of each

number of clusters, together with the likelihood of the vali-

dation half given that model, describes the comparative prob-
abilities that each number of clusters generated the observed

data.

P (Mi(X)) = P (Mi))P (V |Mi(T ))

After calculating the best number of clusters, the algorithm

clusters the data one last time and re-labels any previously-

observed rocks according to their new class membership
probabilities. There exist other non-probabilistic methods for

classification and clustering, but the explicit uncertainty in the

classification can be used to help the scientists calibrate their

reliance on the results or to inform onboard planners. More-

over, low probability densities indicate the interesting outliers

that have little in common with other observations.

3. EXPERIMENTAL METHOD

In this section we examine a field test performed in the At-

acama desert in Chile. The Atacama is a common place for

testing exploration robots because of its resemblance to Mars.

In particular, its central arid region is practically devoid of
macroscopic life. These factors make it an appropriate place

to evaluate the rock detection system. The following exper-

iment was designed to test the utility of the described rock

detection strategy in the uncertain lighting and terrain condi-

tions found in the field. In particular we hoped to evaluate the
rock detector against a human’s own identifications given the

same image data.

The rover platform is “Zoë,” an exploration robot built at the

Carnegie Mellon Robotics Institute (Figure 5). Zoë is a so-
lar powered robot developed for long-duration autonomous

traverse. The sensor utilized for the experiment was a 30

centimeter baseline stereo pair of CCD cameras mounted on

pan-tilt actuator at 2 meters height. These cameras captured

1280×960 full color images. Their 21.1◦×15.9◦ field of view
provides an angular resolution similar to the human eye and

the Pancams used in the Mars Exploration Rover missions.

Figure 5. Zoë in the Atacama Desert of Chile.

A hill strewn with rocks of various sizes was chosen for the

test. Data collection occurred at two locations: a training set

captured at the base of the hill and a test set captured at its
peak. At each site the rover used its stereo imaging suite to

capture partial panoramas comprising 180 degrees of azimuth

and 40 degrees of elevation. The segmentation outputs from

the first panorama were labeled manually and used to train

the region classifier. Then, the fully-trained classification al-
gorithm detected rocks in the second panorama.

The detection procedure for a typical test image appears in



Figure 1. This scene contains rocks of various sizes, albe-

dos and textures. Some of the smallest segmented regions

are ignored because they fall underneath the minimum size
threshold for our analysis. The detection stage processes the

remaining regions and classifies some of them as rocks.

We evaluated these autonomous detections against the loca-

tions of real rocks in the image set. Because manually iden-
tifying every rock would be infeasible and error-prone, we

labeled a random sample of 50 rocks from each image. Soft-

ware for manual rock selection displayed each test image and

prompted the user with a random location in the scene. The

user would draw a bounding box around the true rock clos-
est to the random prompt point. This defined not just the real

science targets but also “no-rock regions,” circular areas cen-

tered on the prompt point within which there were no science

targets (Figure 6). Thus the labeling operation resulted in

rock, no-rock, and uncoded areas. In accordance with our
detector’s size window, we restricted the our definition of a

rock to those that had a short axis longer than 20 pixels. Not

only are the smallest rocks less informative science targets,

but they are often ambiguous even to a human observer.

prompt point

non−rock area

closest rock

other rock

other rock

manually−drawn bounding box

Figure 6. Method for coding test images.

We employed two different evaluation methods to test dif-
ferent aspects of the autonomous detection (Figure 7). The

first method evaluates the detector’s performance at locating

rocks in the scene, an ability that facilitates tasks like targeted

sensor deployment, rock distribution analysis and selective

data return. To calculate this performance score we checked
that the center of each detected bounding box intersected a

manually-drawn true rock region. If the center fell within the

bounding box of a true rock that was not yet accounted for

the detection was a true positive. We labeled regions with

centers falling in non-rock regions false positives, and dis-
carded regions whose centers fell outside coded areas. A

stricter evaluation method tested the detector’s performance

at localizing the exact outline of the targets. This ability is

important for attribute extraction and geological classifica-

tion. Here we checked the bounding boxes of autonomously-

detected regions against the manually-drawn bounding boxes
by considering the ratio of their intersection to their union.

An intersection area that comprised 50% of the union area

was sufficient to consider the detected region well-localized

(Figure 7).

feature localizationfeature finding

actual rock

detected target

50% Total Area

Figure 7. Lenient and strict evaluation strategies.

The 30 images in the test set together contained a total of

1078 coded rocks that varied in size, color, range, and illumi-
nation. We evaluated the detector on the entire test set (which

contained image regions over 20 × 20 pixels in size) and the

subset containing only large features (regions over 75 × 75
pixels in size, of which there were 68 in the data set). Figure
8 shows typical near- and far-field images with templates that

illustrate these sizes.

4. RESULTS

Figures 9—12 illustrate the detector’s performance on the test

data. Varying the prior probability for the “rock” class results
in different performance characteristics. Precision, the frac-

tion of detected targets in coded regions that correspond to ac-

tual rocks, is in general inversely related to recall, the fraction

of actual targets that are found. Figure 9 illustrates detection

precision for varying choices of the class prior. As the prior
probability increases a greater number of uncertain regions

are classed as science targets and precision drops. Figure 10

shows the recall rate for each prior probability. Note that the

detector never found all of the science targets, even for the

case where the prior was set to 1. The reason for this is that
the evaluation measures not simply region classification but

rather the overall system’s ability to find and recognize rocks

in the original images. A rock that does not appear in the seg-

mentation stage has no chance of being classified later. Fig-

ure 11 illustrates the superior recall performance for science
targets over 75 pixels in size. Precision was also improved

for large regions; in every median case 100% of the detected

regions corresponded to real rocks.



Figure 8. Typical near- and far-field images from the test data set.



Finally, Figure 12 illustrates the fraction of detected targets

that were well-localized given different choices for the prior.

While we did not attempt a quantitative evaluation of geolog-

ical classification, both supervised and autonomous classifi-

cation showed reasonable results for the tested images. The

example of Figure 1 shows a supervised classification based

on albedo. Three predefined categories were generated by
grouping rocks of like albedos from a different image. Then

the classifier applied these user-defined categories to classify

the rocks in the test case. Representative samples of each

class are shown in the diagram. Note that high-, medium-,

and low-albedo rocks are accurately classified. Curiously, the
autonomous geological classification clusters the test set into

similar categories. We believe this is due to the limitations of

the attribute set used for geological classification. There was

little color or texture data in the test scenes; this resulted in

classifications that favored size and albedo characteristics.
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Figure 9. Detection precision—the fraction of detected tar-

gets corresponding to actual rocks. Median rates appear along

with boxes illustrating the extent of second and third quar-
tiles. Notches in the boxes show intervals of 95% confidence

for the median.

5. CONCLUSIONS

This experiment constitutes a preliminary test of the pre-

sented algorithms for automatic detection and classification

of geological features of interest. A comprehensive evalua-

tion will involve a larger data set representing diverse geolog-
ical regions. Nevertheless, this first test is sufficient to suggest

some initial conclusions. It reinforces the notion that while

detection and localization performance are related it is possi-

ble to get the former without the latter. The evaluated system

detects rocks well, making it a suitable candidate for tasks
like locating science targets and pointing instruments. How-

ever, poor localization performance suggests that its geologi-

cal classifications will contain some inaccuracy. These classi-
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Figure 10. Detection recall—the fraction of manually-

labeled rocks that were found by the detection algorithm.
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Figure 11. Detection recall for the subset of science targets

that were over 75 pixels in size.

fications might still be useful for recognizing outliers or per-
forming general representative sampling, but precise small-

scale maps of rock distributions would require improvements

in the segmentation portion of the algorithm.

Both detection and localization performance vary with re-
spect to the pixel size of the region under consideration. As

a result, small rocks are noticeably more difficult to detect

and classify than large ones. Accuracy also drops for regions

in the extreme far-field. This suggests one could gain a sub-

stantial accuracy boost by considering only the science tar-
gets above a certain pixel size. It also implies that active

perception may play an important role in detecting science

targets. After locating a possible target, the rover could zoom
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Figure 12. Localization performance—the fraction of

accurately-detected science targets that meet the localization

criteria of Figure 7.

in a camera, target a spectrometer or try some other means

of gathering more information and increasing detection accu-
racy.

We believe the “detection as classification” strategy holds

unique advantages for finding science targets. It can draw

on multiple segmentation methods and fuse information from
multiple sensors when available. It can adapt to different

terrain by exploiting attribute relationships specific to a new

training set. Finally, it expresses its final decision through an

explicit probability value. While there are predictable sce-
narios for which this example performs suboptimally, results

suggest that the method as a whole is sound and that perfor-

mance will improve as refinements are made to its component

parts. Nevertheless it is unlikely in the near term that this

—or any other detection technique—would approach 100%
recall for all science targets of interest. Thus, quantitative

evaluaiton will remain an important aspect of future science

autonomy research. Through regular evaluation we can track

progress while maintaining reasonable expectations for the

system’s field performance.

There are several avenues for further improvement in the

example system presented here. Accurate segmentation of

stereo disparity data is one obvious way to improve localiza-

tion accuracy. Another important advance will be the inclu-
sion of other science targets into the detection and classifica-

tion scheme. While this paper focuses solely on rocks, the

system itself should generalize to other features of scientific

interest like soil patches, gravel beds, and salt deposits. This

should be verified experimentally. Similarly, the attribute set
for geological classification should be expanded to include

more sophisticated measures of angularity and texture. Fi-

nally we hope to integrate the science autonomy system dis-

cussed in this paper with a planner that will use this data

to plan experiments and command the rover. Together these

modules would constitute a comprehensive science autonomy
system that not only detects likely targets but also plans ap-

propriate experiments “on the fly.” Such a system will be

important to exploit the extended traverse range of future ex-

ploration robots.
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