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Abstract. Kidney segmentation in 3D CT images allows extracting use-
ful information for nephrologists. For practical use in clinical routine,
such an algorithm should be fast, automatic and robust to contrast-agent
enhancement and fields of view. By combining and refining state-of-the-
art techniques (random forests and template deformation), we demon-
strate the possibility of building an algorithm that meets these require-
ments. Kidneys are localized with random forests following a coarse-
to-fine strategy. Their initial positions detected with global contextual
information are refined with a cascade of local regression forests. A clas-
sification forest is then used to obtain a probabilistic segmentation of
both kidneys. The final segmentation is performed with an implicit tem-
plate deformation algorithm driven by these kidney probability maps.
Our method has been validated on a highly heterogeneous database of
233 CT scans from 89 patients. 80 % of the kidneys were accurately
detected and segmented (Dice coefficient > 0.90) in a few seconds per
volume.

1 Introduction

Segmentation of medical images is a key step to gathering anatomical informa-
tion for diagnosis or interventional planning. Renal volume and perfusion, which
can be extracted from CT images, are typical examples for nephrologists. How-
ever, it is often long and tedious for clinicians to segment 3D images. Automatic
and fast segmentation algorithms are thus needed for practical use. It is yet still
challenging to design an algorithm robust enough to noise, acquisition artifacts
or leakages in neighboring organs.

Several papers in the literature tackle the problem of kidney segmentation
in CT images. In [1] and [2], the authors used the Active Shape Model frame-
work to learn the kidney mean shape and principal modes of variation, in order
to constrain the segmentation. Recently Khalifa et al. [3] proposed a level-set
approach, based on a new force combining shape and intensity priors as well as
spatial interactions, which showed promising results. However, they were assessed
on small datasets (41, 17 and 20 volumes in [1], [2] and [3] respectively). More-
over, all these algorithms are either based on a manual initialization, or tested
on images already cropped around the kidney. A fully automatic method has
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already been introduced by Tsagaan et al. [4], but their detection of the region
of interest presents limitations. First, it relies on hard geometrical constraints,
which requires knowledge on the field of view. Then, a rough search is done by
template matching, which is not robust to pathologies or kidney orientation.

In this paper, we propose a fast and completely automatic method to detect
and segment both kidneys in any kind of CT image: acquired at different contrast
phases (or without contrast) with various fields of view, from both healthy sub-
jects and patients with kidney tumors. Kidneys’ positions are first detected with
regression forests following a coarse to fine strategy (Section 2). Then a two-step
segmentation is performed on cropped images around the kidneys (Section 3)
using (i) a random forest to estimate a probability map of each kidney and (ii)
a template deformation algorithm [5] to extract the kidney surface. Experiments
and results are detailed in Section 4.

2 Kidney Detection with Regression Forests

This section presents a fast and reliable estimation of the kidneys’ locations.
Various approaches for anatomy detection and localization have been proposed in
the literature (Section 2.1). We propose a regression-based method in two steps.
The whole image is first used to provide an estimate of the region of interest
(Section 2.2) which is then refined using local information only (Section 2.3).

2.1 Background on Organ Detection

Registration-based approaches using labeled atlases (e.g. [6]) have often been
used for this problem. However such approaches are subject to registration errors
due to inter individual variability. The robustness of the registration step can be
improved by using multi-atlas or multi-template techniques [7] but at the cost
of an increase in computation time.

More recently, supervised learning methods have been used for this detec-
tion problem to better take into account interindividual variability. Most clas-
sification-based detection algorithms consist in constructing a classifier whose
role is to predict from local features to which organ a voxel belongs (e.g. [8]).
However, by considering only local features, such approaches do not benefit from
anatomical contextual information. To overcome this shortcoming, Criminisi et
al. [9] used a generalization of Haar features that models contextual information.
Instead of classifying each voxel, some authors consider the detection problem as
finding a vector of parameters describing the organ locations. Such parameters
can describe contour line or surface of an organ [10] or more simply bounding
boxes around the different organs of interest [11]. The role of the classifier is
then to predict whether a set of parameters is correct or not. Zheng et al. [11]
used a greedy approach to avoid searching the whole parameter space, which is
intractable.

Zhou et al. [12] showed that finding a set of continuous parameters from an
image is by definition a multiple-output regression problem. More precisely, they
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proposed a boosting ridge regression to detect and localize the left ventricle in
cardiac ultrasound 2D images. Regression-based techniques do not require an
exhaustive search of parameters. Other regressors such as regression forests and
random ferns have also been proposed [13, 14].

In the following, we consider regression forests to simultaneously detect both
kidneys. Regression forests [15, 16] are particularly well adapted to this problem
in clinical routine since, thanks to their tree structures, they allow very fast test-
ing with nonlinear regression functions. Since there is no explicit regularization,
random forests require a large number of training samples to avoid overfitting
the training data. Here, this is not a limitation since the training samples are
the voxels of the training CT scans.

2.2 Coarse Localization of the Kidneys

We consider the detection step as the problem of finding bounding boxes around
both kidneys. First, we find a coarse positioning based on contextual information
adapting the approach proposed by Criminisi et al. [13]. Then, the position of
each box is refined based on local information.

Each bounding box is parameterized by a vector in R
6 (two points in 3D).

A random forest is trained on CT scans with known kidney bounding boxes
to predict for each voxel the relative position and size of the kidneys. Since
CT intensities (expressed in Hounsfield units) have direct physical meaning,
as explained in [13], the features used are the mean intensities over displaced,
asymmetric cuboidal regions. To allow a much faster training, we used residual
sum of squares (RSS) instead of the information gain for the node optimization
in the training stage. Note that optimizing the RSS comes to minimizing the
trace of the covariance matrix at each node instead of its determinant. We did
not notice any differences in term of prediction accuracies.

This step gives a first estimate of the kidneys’ positions and sizes. By con-
struction, the relative estimated position of the left and right kidneys are strongly
correlated. Such a correlation ensures coherent results but may not reflect the
whole possible interindividual variability. This might be critical when the num-
ber of subjects in the training set is low. To overcome this shortcoming, we
propose a refinement step of the bounding boxes that relaxes the correlation
between the two kidneys’ position.

2.3 Refinement of the Region of Interest

This step consists in refining the left and right kidneys’ positions based on local
information only. The constraints between the kidneys’ relative positions are
relaxed by treating both kidneys independently. For each kidney, a regression
forest is trained to predict, from every voxel located in its neighborhood, the
relative position of the kidney’s center.We used the same training set as in the
previous step. The features used for this step are, for each voxel, its intensity
and its gradient magnitude, as well its neighbors’.
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For testing, only the voxels in the neighborhood of the center of the bounding
box predicted by the first step are considered. As depicted in Figure 1.b, each
voxel v then votes for a location ĉv of the kidney’s center. For robustness sake,
the final location estimate is ĉ = argmin

c∈R3

∑K

v=1 ‖c − ĉv‖1 where (ĉv)1,K
are the K votes with the highest probability. The final bounding box is then
translated accordingly.

To ensure stability, this refinement step is constrained to very small displace-
ments and is iterated until convergence. This can be considered as a cascaded
pose regression similar to [17]. Illustration of the kidney detection is given in
Figure 1 and quantitative results are reported in Section 4.

(a) (b) (c)

Fig. 1. Illustration of the kidney detection on a CT volume. (a) Initial bounding boxes
detected using global contextual information. (b) Refinement step: voxels near the cen-
ter of the initial bounding box (red) vote for its new center, using only local information.
(c) Comparison between the initial (red) and refined (green) bounding box.

3 Kidney Segmentation

Even when the image is cropped to a region Ω around the kidney, its segmen-
tation remains a challenging task: (i) kidneys are composed of different tissues
(cortex, medulla, sinus) resulting in different image intensities, (ii) surrounding
organs may touch the kidney without a clear boundary, (iii) the contrast phase
of the CT image is unknown. For all these reasons, it is not possible to solely rely
on the image intensity, and we rather use it simultaneously with other features.

3.1 Probability Estimation via Random Forests

In addition to regression, random forests can also be used to perform classifica-
tion [15, 16]. We trained a random forest classifier to predict, for each voxel x
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of the previously detected bounding box, the probability P (x) of belonging to
a kidney. This random forest combines different image features: intensity and
first/second order derivatives of the voxel and its neighbors. Decision stumps
were used as weak classifiers and the impurity criterion was the Gini index [15,
16]. Such probability maps are shown in Figures 2.a and 2.c. Independently from
the contrast-phase, the whole kidney tissues are enhanced, whereas the confusing
adjacent structures are removed.

3.2 Initialization of the Segmentation

For the sake of robustness to interindividual variability and to pathologies, we
only assumed that kidneys have a bean shape that can be roughly approximated
by an ellipsoid. The segmentation algorithm is thus initialized with the ellipsoid
E = {x ∈ R

3 | (x−cE)
TM−1

E
(x−cE) = 1}, where cE =

∫

Ω
P (x) x dx denotes the

weighted barycenter and ME is proportional to the weighted covariance matrix
∫

Ω
P (x) (x− cE)(x− cE)

T dx.

3.3 Implicit Template Deformation

We followed the framework introduced in [5] to deform the ellipsoid E . A model-
based approach is here particularly suited because (i) kidneys usually have very
smooth shapes, (ii) we want the algorithm to reasonably extrapolate the bound-
ary when the probability map is uncertain. Hereafter we recall the main princi-
ples of the adapted model-based deformation algorithm.

Given a working image I : Ω → R and the initial ellipsoid E defined by an
implicit function φ, we find a transformation ψ : Ω → Ω such that the image
gradient flux across the surface of the deformed ellipsoid E(ψ) = (φ ◦ ψ)−1(0) is
maximum. Denoting ~n the normal vector, the segmentation energy is then

Es(ψ) =

∫

E(ψ)

−
〈

~∇I(x) , ~n(x)
〉

dx+ λR(ψ) , (1)

R(ψ) is a regularization term which prevents large deviations from the original
ellipsoid. The transformation is decomposed as ψ = L ◦ G where

– G is a global linear transformation, which may correct or adjust the center,
orientation and scales of the initial ellipsoid;

– L is a non-rigid local deformation, expressed using a displacement field u

such that L(x) = x + (u ∗ Kσ)(x). Kσ is a Gaussian kernel that provides
built-in smoothness, at a given scale σ.

This decomposition allows R to be pose-invariant and constrains only the non-
rigid deformation : R(ψ) = R(L) =

∫

Ω
‖L− Id‖2 =

∫

Ω
‖u ∗Kσ‖

2. Finally, using
Stokes formula, Es can be rewritten as

Es(ψ) = −

∫

Ω

H(φ ◦ L ◦ G) ∆I + λ

∫

Ω

‖u ∗Kσ‖
2 , (2)
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where H is the Heaviside function and ∆ is the Laplacian operator. This energy
is minimized, with respect to the parameters of G and each component of the
vector field u, through a gradient descent. Note that since the energy in (2) is
not convex, the resulting segmentation depends on the initialization. Hence, we
first apply this algorithm to the probability map (I = P ) in order to reach an
appropriate local minimum (e.g. no leaks in surrounding tissues). The segmenta-
tion is finally refined on the original CT volume, with a higher shape constraint
parameter λ and a finer scale σ (Figures 2.b and 2.d).

(a) (b) (c) (d)

Fig. 2. Illustration of the two-step kidney segmentation on two cases: (a-b) non-
contrasted volume of a healthy patient, (c-d) contrast-enhanced image of a kidney with
a tumor. The kidney probability maps (a) and (c) are learned with a random forest,
and used to coarsely segment the kidney (red) by deforming an initial ellipsoid (yellow).
The segmentation is then refined (green) using the original volumes (b) and (d).

4 Experiments and Results

The validation of our method was performed on a representative clinical dataset
of 233 CT volumes from 89 subjects including diseased patients. The scans were
contrast-enhanced or not and with various fields of view and spatial resolutions.
They have between 33 and 973 (mean: 260) 512 × 512 slices with slice (resp.
interslice) resolutions ranging from 0.5 to 1 mm (resp. 0.5 to 3.0 mm). 16%
of the kidneys were slighlty truncated, but were nevertheless included in the
evaluation to keep it clinically representative. The database was split into a
training set of 54 volumes from 26 randomly selected patients, and a testing set
composed of the other 179 volumes from 63 patients.

The proposed algorithm used 3 regression forests and 2 classification forests.
Each forest was composed of 7 trees with a maximum tree depth d = 15 and
a minimal node size n = 100. We did not notice a high sensitivity of the re-
sults to these parameters value. The whole training procedure lasts ∼ 5 hours.
Times are indicated for a C++ implementation (3.0 GHz dual-core, 4 Go RAM).
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Kidney Detection Detection errors were defined as the absolute difference be-
tween predicted and true wall positions averaged over all the bounding box sides.
The distance between the predicted bounding box center and the ground truth
was also used to assess the detection accuracy. These results are given in Table 1
and compared to those reported in [13]. The refinement step (Section 2.3), for a
low extra time cost, greatly increases the accuracy of the bounding box detection
(e.g. the median center error is divided by 3).

Table 1. Detection results reported as: Mean ± Standard-deviation (Median)

Detection Walls error (mm) Center error (mm) Time (s)
Left Right Left Right Left+Right

[13] 17± 17 (13) 19± 18 (12) – – –
Coarse 12± 7 (10) 13± 6 (11) 23± 14 (20) 26± 13 (23) 2.1± 0.5 (2.0)
Refined 7± 10 (5) 7± 6 (6) 11± 18 (6) 10± 12 (7) 2.8± 1.7 (2.4)

Automatic Segmentation The results of the automatic segmentation includ-
ing the detection step were compared to the ground truth using the Dice index.
Figure 3 shows the histograms of the scores for both kidneys. 80 % of the kidneys
were correctly detected and segmented (Dice > 0.90). The algorithm failed in
only 6% of the cases (Dice < 0.65). The total execution time is around 10 s.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

20%

40%

60%

80%

100%

Dice coefficient

Left Kidney

Right Kidney

Dice Left Right

1st quartile 0.93 0.93
median 0.96 0.96

3rd quartile 0.97 0.97
maximum 0.99 0.99

Fig. 3. Distribution of the Dice coefficient between the ground truth and the automat-
ically segmented kidneys. Red and blue lines show the cumulative distribution.

5 Conclusion

This paper presented a fully automatic method to detect and segment both
kidneys in any CT volume using random regression and classification forests.
Regression forests were used to estimate the kidneys’ positions. A classification
forest was then used to obtain a probability map of each kidney. The segmen-
tation was carried out with an implicit template deformation algorithm. The
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full automation and the execution time are compatible with clinical routine. Re-
sults show that our method provides an accurate segmentation in 80% of the
cases despite the highly heterogeneous database. Remaining cases were mostly
due to pathological kidneys not represented in the training set. Such cases could
be quickly corrected by the clinician, since the chosen model-based deformation
algorithm [5] allows user interactions. We also emphasize the generality of our
framework, that could be as future work extended to other organs.
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