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Abstract

Background: Modic changes (MCs) are the most prevalent classification system for

describing magnetic resonance imaging (MRI) signal intensity changes in the verte-

brae. However, there is a growing need for novel quantitative and standardized

methods of characterizing these anomalies, particularly for lesions of transitional or

mixed nature, due to the lack of conclusive evidence of their associations with low

back pain. This retrospective imaging study aims to develop an interpretable deep

learning-based detection tool for voxel-wise mapping of MCs.

Methods: Seventy-five lumbar spine MRI exams that presented with acute-to-

chronic low back pain, radiculopathy, and other symptoms of the lumbar spine were

enrolled. The pipeline consists of two deep convolutional neural networks to gener-

ate an interpretable voxel-wise Modic map. First, an autoencoder was trained to

segment vertebral bodies from T1-weighted sagittal lumbar spine images. Next, two

radiologists segmented and labeled MCs from a combined T1- and T2-weighted

assessment to serve as ground truth for training a second autoencoder that performs

segmentation of MCs. The voxels in the detected regions were then categorized to

the appropriate Modic type using a rule-based signal intensity algorithm. Post hoc,

three radiologists independently graded a second dataset with the aid of the model

predictions in an artificial (AI)-assisted experiment.

Results: The model successfully identified the presence of changes in 85.7% of

samples in the unseen test set with a sensitivity of 0.71 (±0.072), specificity of 0.95

(±0.022), and Cohen's kappa score of 0.63. In the AI-assisted experiment, the agree-

ment between the junior radiologist and the senior neuroradiologist significantly

improved from Cohen's kappa score of 0.52 to 0.58 (p < 0.05).

Conclusions: This deep learning-based approach demonstrates substantial agreement

with radiologists and may serve as a tool to improve inter-rater reliability in the

assessment of MCs.
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1 | INTRODUCTION

Low back pain (LBP) is the leading cause of disability globally,

accounting for 60.1 million disability-adjusted life-years in 2015.1,2

While the nociceptive source in the vast majority of LBP cases cannot

be identified,2,3 there has been a growing collection of evidence

showing that properties of vertebral endplates are closely linked to

intervertebral disc degeneration and LBP.4–7 Modic changes (MCs)

are the most commonly used classification system for describing

changes in endplate-adjacent vertebral bone marrow.8 Despite its

prevalence, the association of MCs with LBP is inconsistent.5,9–11

Hypothesized to cause LBP through structural and inflammatory

changes in the bony structures of the spine,12–14 MCs are defined as

signal variations seen in the combined assessment of T1-weighted and

T2-weighted magnetic resonance imaging (MRI).8 Bone marrow

edema-like changes or fibrovascular changes appear distinctly

hypointense on T1-weighted images and hyperintense on T2-weighted

images (Modic type 1).10,15 Meanwhile, conversion of red hematopoi-

etic bone marrow to yellow fatty marrow is hyperintense on T1 MRI

and iso- to hyperintense in fat saturated T2 and non-fat saturated T2

sequences, respectively (Modic type 2). And lastly, sclerotic bone

appears hypointense in both sequences (Modic type 3).

Thus, the semiquantitative nature of the MC classification system is

highly susceptible to variability in non-standardized imaging. Fields et al.,

detailed how evaluation of MCs is prone to inter-rater variability through

a wide range of factors related to equipment and image acquisition

parameters.15 Magnetic field strength, in particular, has been shown to

have significant effects on the prevalence of MCs, with type 2 changes

being easily distinguishable in low-field MRI and type 1 changes visual-

ized more easily in high-field MRI.16 Pulse sequence design and parame-

ters can also effectively influence image quality, signal-to-noise, fat

suppression, and, importantly, tissue contrast. Due to a lack of systemic

standardization in spine imaging, it is pivotal to adapt grading procedures

with objective and quantitative methodologies.

Several quantitative approaches have been recently applied to the

assessment of vertebral changes. Specialized pulse sequences, such as

chemical shift encoding-based water-fat imaging,17 magnetic resonance

spectroscopy,18 diffusion, and perfusion,19 can provide additional infor-

mation on tissue composition. Post-acquisition, Wang et al. extracted

morphological and signal intensity-based metrics from contours of MCs,

reporting improved inter- and intra-rater agreement as compared to unas-

sisted MC classification.20 However, a limitation with these approaches is

the need for manual demarcation of MCs, which may be labor-intensive.

Data-driven strategies to address these drawbacks have emerged

from the recent surge of development in deep learning (DL) and con-

volutional neural networks. Notable applications to spinal imaging

analysis include automated segmentation of spinal structures,21–23

detection of spinal anomalies,24–26 and predictive modeling of spinal

surgery outcomes.27,28 Automated endplate assessments have seen

relative success, as well. Jamaludin et al. have shown that endplate

defects can be detected from MRI using convolutional neural net-

works with approximately 83.7% and 86.9% accuracy in their test set

for upper and lower endplates, respectively.29 While these efforts

automate spinal analysis to near human-performance, there remain

opportunities to translate such models into clinical utility.

The adoption of a DL model into widespread use to address inconsis-

tencies of the assessment and reporting of MCs hinges on its interpret-

ability. Our study aims to (1) develop a DL-based automatic contouring

method to identify MCs in vertebral bodies, (2) classify these changes as

Modic types 1, 2, or 3 (MC 1/2/3) on a voxel-wise level, thereby provid-

ing granular, quantitative information about the vertebral bodies as a

Modic map, and (3) use the automatic detection as an aid to radiologists

to demonstrate capability to improve agreement and pave the way for

more consistent evaluations of the relationship between MCs and LBP.

2 | MATERIALS AND METHODS

This retrospective, single-center study was approved by the local Institu-

tional Review Board, and the informed consent requirement was waived.

2.1 | Dataset and annotations

Seventy-five exams with the following inclusion and exclusion criteria

were sampled at random from lumbar spine MRIs acquired between

2008 and 2019 at our institution. Inclusion: patients aged 19 years or

older presenting with acute-to-chronic LBP, radiculopathy, and other

symptoms of the lumbar spine including numbness, tingling, weakness,

dysesthesia, and tightness. Exclusion: (1) vertebral fractures, (2) post-

operative changes, (3) extensive hardware, (4) primary tumors, (5) meta-

static spinal disease, (6) infection, and (7) transitional anatomy. Imaging

was performed on GE Signa HDxt 1.5 T and GE Discovery MR750

3.0 T (GE Healthcare, Milwaukee, WI) with acquisition details of the rel-

evant T1-weighted sagittal and T2-weighted sagittal sequences provided

in Table 1. All images were deidentified for this study.

To serve as ground truth for the DL components, vertebral bodies

with visible MCs were segmented for these changes (Type 1, 2, and 3)

by a board-certified neuroradiologist (C. C. with over 25 years of

experience) and a musculoskeletal junior radiologist (U. U. B. with

3 years of experience) after initial adjudication for calibration on

15 exams not included in the study cohort. To promote further stan-

dardization between grading assessments, MCs with diameter less

than 5 mm were excluded and mixed MCs were annotated as the pre-

dominant type. All manual annotations were performed using the

medical imaging platform, MD.ai (MD.ai, New York, NY).
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2.2 | Image analysis

This Modic mapping scheme consists of three stages, as depicted in

Figure 1: (1) segmentation and localization of the vertebral bodies,

(2) binary detection and segmentation of signal variabilities character-

istic of MCs, and (3) voxel-wise classification of the detected regions

to classify Modic type.

2.2.1 | Image alignment

As MCs are characterized by local signal variations in both T1- and T2-

weighted images, these images were aligned with image position coor-

dinates prior to processing. The rigid alignment was performed by first

matching positions of each sagittal slice of the T2-weighted images to

the T1-weighted images in the frontal axis. Then, T2-weighted slices

were rotated, translated, and scaled to the dimensions of their

corresponding T1 counterpart. Finally, each slice was similarly translated

and scaled to harmonize in-plane resolution using bicubic interpolation.

2.2.2 | Vertebral body localization

Our first goalwas to isolate vertebral bodies to fixate on image features per-

taining to the vertebral body and endplates. To achieve this, we developed

and trained a preliminary V-Net convolutional neural network30 for seman-

tic segmentation. A research associate (G. I.) manually segmented vertebral

bodies from T1-weighted images in a subset of 40 exams. TheseMRIs were

randomly split into training (n= 20), validation (n= 17), and test (n= 3) sets

and then separated into 2D slices. The V-Net was trained on a single

NVIDIA TITAN X GPU using Tensorflow v1.14 with the following hyper-

parameters: batch size = 3; optimizer = Adam; learning rate = 1e�4; loss

function=Dice (Equation (1)); dropout rate= 0.8. Post-training, the perfor-

mance of the segmentation model was assessed using the Dice coefficient

overlap between the manual and predicted segmentations. To evaluate

inter-rater variability, a second research associate (K. T. G.) manually seg-

mented vertebral bodies from a subset of five exams.

Dice loss¼
2
PN

i
pigi

PN

i
p2i þ

PN

i
g2i

, ð1Þ

where N is the total number of voxels, pi � P represents voxel values

of the prediction, and gi �G represents voxel values of the ground

truth.

We utilized this model to segment vertebral bodies of the 75

lumbar spine MRI exams in the dataset. The individual vertebral bodies

TABLE 1 Summary of the range of acquisition parameters from
dataset curated from clinical magnetic resonance imaging (MRI) exams

T1-weighted T2-weighted

Field strength (T) 1.5, 3.0 1.5, 3.0

Matrix 256 � 256–512 � 512 256 � 256–512 � 512

Field-of-view (cm) 24.0–37.0 24.0–37.0

Slice thickness (mm) 3.0–4.0 3.0–4.0

Pixel bandwidth (Hz) 88.8–250.0 81.4–325.5

Repetition time (ms) 377–975 2430–6307

Echo time (ms) 6.8–31.8 26.1–107.8

Flip angle (�) 90–180 90–160

F IGURE 1 Schematic of the full Modic mapping approach. Vertebral bodies are first segmented and extracted from T1-weighted magnetic
resonance imaging (MRI), allowing extraction of the bodies on the T1 and aligned T2 images. Next, a binary segmentation network localizes and
detects regions of Modic changes (MCs). Lastly, each voxel of the detected regions is classified to a Modic type using a nearest neighbor
algorithm and T1 and T2 z-scores to form a Modic map.
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in the inferred masks were identified using 3D connected component

labeling, in which segmented masks joined within a six-connected

neighborhood were given a unique label. The masked vertebral body

masks were then zero-padded to a standardized size of 100 � 100.

2.2.3 | Modic detection and segmentation

MC detection was achieved using a second segmentation neural net-

work that utilized these localized vertebral bodies and the radiologist-

annotated MCs. In each exam, we used z-score standardization to

convert each voxel to the number of standard deviations from the

mean signal intensity in the segmented vertebral bodies. Next, the

100 � 100 vertebral body masks were applied to the T1-weighted

and aligned T2-weighted images and these images were stacked, pro-

ducing input images of dimensions 100 � 100 � 2. Binary radiologist-

annotated MC segmentations (presence vs. absence of MCs) were

similarly masked. The 75 exams, consisting of 1872 vertebral body

image-Modic segmentation pairs, were randomly split into training

(n = 50), validation (n = 15), and test (n = 10) sets. Figure 2 portrays

the demographic distribution of the data splits.

We developed and modified the 2D V-Net for MC segmentation.

The network consists of two branches, each with four levels. The

encoder branch is responsible for compressing the input to an abstract

latent space of representative features. At each level, convolutional

layers (1, 2, 3, and 3 layers in the respective levels) extract features

with 32 kernels of size 5 � 5 and stride 1 followed by downsampling

with a 2 � 2 kernel with stride 2. The subsequent decoder branch

deconvolves the latent space back to the input's original dimension

and passes the array through a combined cross-entropy and Dice loss

layer with sigmoid activation to ultimately produce probabilistic seg-

mentation masks for MCs. Hyperparameters for training include:

batch size = 128; optimizer = Adam; learning rate = 1e�4; loss

function = weighted cross entropy and Dice (Equation (2)); loss

weights = 20:1 (foreground:background); dropout = 0.2. Training was

deemed complete after a designated 15 validation cycles without

improvement (500 iterations per cycle).

Combined loss¼ λ Cross entropy lossð ÞþDice loss, ð2Þ

where λ is a weighting coefficient set to 0.1, and

Cross entropy loss¼�
XN

i¼1

gi log pið Þþ 1�gið Þlog 1�pið Þ: ð3Þ

2.2.4 | Voxel-wise Modic change mapping

With a trained model for Modic segmentation, we then utilized a

nearest-neighbor algorithm to classify each voxel in the detected MCs

into one of three types. Again, we utilized the training set; each voxel

in the regions annotated by the radiologist was characterized by its T1

z-score and T2 z-score and then grouped into the appropriate MC

group. The centroid of the [T1 z-score, T2 z-score] clusters was com-

puted. To classify the test set and exams in inference, each voxel in

detected MCs was similarly characterized by [T1 z-score, T2 z-score]

then categorized by the nearest cluster centroid neighbor. This ulti-

mately produced voxel-wise Modic maps.

2.3 | Statistical analysis

We created a rule-based algorithm that produces binary labels of each

MC in upper and lower vertebral bodies to assess the effectiveness of

this scheme as compared to human performance and past works.

Upper and lower sections were approximated by finding the convex

F IGURE 2 Distribution of subject demographics, including (A)
age, (B) BMI, (C) gender, and (D) race, of the 75 magnetic resonance

imaging (MRI) exams after randomly splitting into training (n = 50),
validation (n = 15), and test sets (n = 10)
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hull of the vertebral body mask and bisecting them along the long axis.

Thus, each bisection was described with three binary labels, rep-

resenting the presence or absence of voxels characteristic of Modic

types 1, 2, and 3, respectively. Sensitivity, specificity, and Cohen's

kappa score (κ) were computed to evaluate the overall Modic detec-

tion performance, and the subsequent classification.

F IGURE 3 Experimental setup of the AI-assisted assessments in the labeling platform, MD.ai. Three readers graded an independently curated
dataset (n = 20). Using the trained Modic mapping schema, predictions for Modic changes (MCs) were generated in the same dataset, and after a
4-week washout period, readers 2 and 3 re-graded these exams with the assistance of the model predictions.

F IGURE 4 Post hoc analysis of vertebral body segmentation of the test set. (A) Bland–Altman plot indicates the average difference in
vertebral body volume between model prediction and ground truth was 0.28 cm3. The gray areas portray the 95% confidence intervals. (B) The
correlation plot of vertebral body volume has an intercept of 14.8 cm3, demonstrating a measurement bias, and R-value of 0.94.
(C) Representative example of vertebral body segmentation contours on T1-weighted image
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2.3.1 | AI-assisted experiment

A second dataset (n = 20) was curated to explore the effect of inter-

rater agreement of Modic grading with the aid of this Modic mapping

pipeline. A senior neuroradiologist (C. C., over 25 years of experience),

a senior musculoskeletal radiologist (T. M. L., over 25 years of experi-

ence), and a junior radiologist in-training (U. U. B., 3 years of experi-

ence) graded these exams independently. Inter-rater reliability was

assessed using Cohen's kappa coefficient. After a 4-week washout

period, the musculoskeletal radiologist and junior radiologist re-graded

the same dataset, with the aid of Modic maps generated from our

developed pipeline. Agreement was reassessed to measure differ-

ences with the initial trial using Cohen's kappa score and the

McNemar's test, with the neuroradiologist established as the baseline.

The experimental setup is summarized in Figure 3.

3 | RESULTS

3.1 | Vertebral body localization

Training the vertebral body segmentation network was completed in

approximately 10 h with 20 000 iterations. Evaluated with the unseen

test set, the model achieved 0.882 ± 0.018 Dice overlap with the gro-

und truth segmentations. This performance is comparable to the

inter-rater Dice overlap between two research associates, which was

reported as 0.927 ± 0.011.

Post hoc analysis of vertebral body segmentation was performed

(Figure 4). The mean volumetric error of the model prediction was

0.28 cm3 per vertebral body, approximately 1.1% of the average ver-

tebral volume. Manually segmented ground truth and model predic-

tions were well correlated with an R-value of 0.94 and p-value <0.001

using Pearson correlation.

3.2 | Modic detection and segmentation

The Modic detection model, after training for 11 500 iterations, suc-

cessfully identified the presence or absence of changes in 85.7% of

samples in the unseen test set. Sensitivity and specificity of the model

were computed and summarized in Table 2, resulting in 0.71 (±0.072)

and 0.95 (±0.022), respectively. Cohen's kappa score was similarly

computed against the radiologist-annotated ground truth as 0.63,

interpreted as substantial agreement.

3.3 | Voxel-wise Modic change mapping

Figure 5 shows the [T1 z-score, T2 z-score] voxel-wise characterization

of MCs in the training set. Cluster centroids of Modic 1, 2, and 3 were

centered at [0.23 (±0.73), 1.20 (±1.16)], [1.04 (±1.00), 0.37 (±0.85)],

and [�0.53 (±0.41), �0.52 (±0.85)], respectively, corresponding

well with the qualitative classification system defined by hyper- and

hypo-intensities. Labeling of upper and lower vertebral bodies using

the rule-based classification system resulted in sensitivities of [0.67

(±0.113), 0.67 (±0.102), and 0.44 (±0.324)] and specificities of [0.87

(±0.030), 0.89 (±0.028), and 0.83 (±0.032)] for Modic types 1, 2, and

3, respectively, as seen in Table 2. The overall prevalence of MCs in

the test set was 0.27 in the ground truth and, correspondingly, 0.23

in the model predictions. Further stratification of MC prevalence is

described in Figure 6. In Figure 7, representative examples of Modic

maps are shown with their corresponding T1 and T2 images.

3.4 | AI-assisted experiment

Inter-rater agreement was initially assessed with an independently

curated dataset (n = 20) (Table 3). Between the three radiologists, the

TABLE 2 Performance of the full pipeline on the unseen test set

Sensitivity (95% CI) Specificity (95% CI)

Overall 0.71 (±0.072) 0.95 (±0.022)

MC 1 0.67 (±0.113) 0.87 (±0.030)

MC 2 0.67 (±0.102) 0.89 (±0.028)

MC 3 0.44 (±0.324) 0.83 (±0.032)

Abbreviations: CI, 95% confidence interval; MC, Modic change.

F IGURE 5 Paired T1 and T2 z-score coordinates of each voxel
within Modic changes in the training set. These centroid coordinates
align well with the qualitative Modic grading system and its
corresponding variations in signal intensity (e.g., Modic type 1 is
hyperintense in T2-weighted imaging, Modic type 2 is hyperintense in
T1-weighted imaging). Detected Modic changes in the test set were
classified on a voxel-by-voxel basis using a nearest neighbor algorithm
to these cluster centroids.
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F IGURE 6 Representative examples of
the model inputs (T1 and T2 images),
radiologist-annotated ground truth
segmentations, and the predicted Modic
maps. The mapping technique is
advantageous for visualizing heterogeneity
and transitional pathology. Notably, in the
top row, the model detects Modic change
(MC) 3-like characteristics in the anterior

inferior endplate. In the second row, a small
MC 1 region in the anterior superior
endplate, unnoticed by the radiologist, was
annotated by the automatic model.

F IGURE 7 Prevalence of Modic
changes (MCs) in the ground truth and
prediction of the test set, stratified by
vertebral body level. The two distributions
share similarities, with the highest number
of MCs in the lower lumbar region (L4-S1).
The prevalence is further apportioned by
the relative ratios of each Modic type. The
model tends to overestimate MC 3s due to
low representation in the ground truth and
inductive bias.
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two senior readers (reader 1 [C. C.] and reader 2 [T. M. L.]) were in the

most agreement, with a Cohen's kappa score κ = 0.63. The junior radi-

ologist (reader 3 [U. U. B.]) had moderate agreement, κ = 0.52, with

reader 1 and, κ = 0.45, with reader 2.

With the assistance of the model prediction, agreement of reader

3 with reader 1 significantly improved to κ = 0.58 (p < 0.05). Agree-

ment between readers 3 and 2 increased to κ = 0.48, though this

result was insignificant by the McNemar's test. Meanwhile, reliability

between readers 1 and 2 decreased slightly to κ = 0.62, again, with-

out statistical significance.

4 | DISCUSSION

This study used DL-based models to automatically localize and map

MCs in vertebral bodies. Overall, these results demonstrate substan-

tial agreement of the detection model with radiologist-annotated

grading and a novel Modic mapping technique that provides grading

assistance when incorporated into a radiology workflow. A design goal

of this schema is to provide clinical utility through objective and inter-

pretable models. We aimed to achieve this in two ways.

The first pertains to reducing and streamlining the semiquantita-

tive Modic classification system into a data-driven, yet easily under-

stood multistep algorithm. To limit the effective field-of-view to

regions of the vertebral bone, rather than confounding structures such

as the neighboring intervertebral discs, foramen, or spinal cord, we

performed vertebral body segmentation using the V-Net,30 a widely

used encoder-decoder for biomedical image segmentation. This is par-

ticularly important when considering intervertebral disc degeneration

due to the strong correlation between presence of the two anoma-

lies.31,32 The performance of this model is consistent with previous

works in spinal segmentation21,23 and conveys to users of this tool

which regions were evaluated by the subsequent Modic detection

tool. Similarly, the rule-based classification system proposed here,

based on T1 and T2 z-scores, intuitively follows the semiquantitative

blueprint originally proposed by Modic et al.8 Ultimately, the availabil-

ity of intermediary results and interfaces for the pipeline's decision-

making process may build confidence toward the adoption of such

methodologies into clinical settings.

The second strategy adopted in this approach capitalizes on the

ability of Modic maps to describe heterogeneous tissues. Systematic

reviews of works involving MCs note inconsistencies in reporting pro-

cedures.10,15 In both research studies and in clinical practice, MCs are

dictated as isolated, homogeneous lesions when they are often con-

glomerated and characterized by spatial heterogeneity. Past literature

suggested that MRI changes may progress from Modic type 1 to type

2 to type 3 in a linear fashion,33 though recent studies have demon-

strated that pathologies are often reversible.34 Not only can MCs be

transitional, it has been reported that 27.2% of MCs are regarded as

mixed, comprising of characteristics of multiple Modic types.35 Cap-

turing the granularity of mixed MCs is challenging for the human eye,

yet neural networks have proven capable of identifying detailed tex-

tural and shape features from medical imaging.36,37 In this work, we

chose to implement a voxel-wise MC segmentation method over a

classification model due to the key capability of visualizing the hetero-

geneity of mixed MCs. In addition, the segmentation methodology

offers higher degree of supervision, where each voxel in an image is

attributed with a label. This granular supervision retains context of the

neighboring tissue and improves label specificity. Further works using

this approach can unravel attributes of progressive or transitional

MCs that may interact with LBP, as heterogeneous tissues are often

correlated with degeneration.

Performance of the vertebral body segmentation and MC detec-

tion components reached or neared human reliabilities. Error analysis

showed predictive inaccuracies in the lateral-most slices where partial

volume effects tend to impact the delineation of bone from surround-

ing tissues. The performance metric is artificially deflated as the

research associate manually segmented complete vertebral bodies

while the model would be apt to predict all instances of bone, some of

which were only partially visible in the prescribed field of view. In the

MC detection component, the distribution of predicted MCs across

the lumbar vertebras was predominantly in the L4-S1 range (74.4%),

which matches well with the radiologist annotations (78.8%) and past

work (75.5%).35 Detection of MCs in L1 was notably underestimated

by the model. We speculate this is due to signal loss at the periphery

of the coil. Voxel-wise classification of MCs yielded high predictive

value of Modic types 1 and 2, arguably the two groups most impor-

tant to classify due to their prevalence35,38 and the strong association

of MC 1 with nonspecific LBP.39,40 Notably, the models are trained

and evaluated on a dataset with a wide arrangement of acquisition

parameters to capture the variability in non-standardized imaging

procedures.

In the pilot AI-assisted experiment, we found that the additional

utility of the model predictions improved agreement of the junior radi-

ologist with the senior radiologists (Δκ = +0.06 and Δκ = +0.03 with

reader 1 and reader 2, respectively). However, agreement did not

improve, but rather slightly decreased (Δκ = �0.01 with reader 1), for

reassessment by reader 2. This is likely explained by the differences in

training and preferences between neuroradiology and musculoskeletal

radiology. The participating readers reported that a key advantage of

the tool was its utility as “attention focuses,” which may have contrib-

uted to boosting agreement between reader 3 with reader 1.

TABLE 3 Cohen's kappa coefficients
between three readers in AI-assisted
experiment

Initial agreement (κ) Post-AI-assist experiment (κ) Δκ p-value

Readers 1 and 2 0.63 0.62 �0.01 NS

Readers 1 and 3 0.52 0.58 +0.06 <0.05

Readers 2 and 3 0.45 0.48 +0.03 NS

Abbreviation: NS, not significant.
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The technologies developed in this study can be applied in vari-

ous ways. With further development, this tool could potentially assist

training efforts of junior radiologists by highlighting complex cases

which depict the nuances of heterogeneous spinal pathologies. Fur-

thermore, because this model was trained using non-standardized

clinical data, the AI-assist tool can be adapted to a continuous learning

paradigm to improve model generalizability and utility without the

need for additional data curation. Specifically, this model demon-

strates the capability to predict transitional and heterogenous MCs

which have been hypothesized to be associated with LBP. Using this

tool, more data can be gathered on these changes to make consistent

associations with LBP and help pave the path to elucidate the mecha-

nisms of nonspecific LBP.

While our results demonstrate that DL-based approaches can

contribute to identifying MCs, there are several notable limitations.

First, despite the quantitative nature of this methodology, data-driven

techniques are still biased by its training data and annotators. Two

participants of the AI-assisted experiment were responsible for label-

ing the training data, which may have biased the agreement metrics

against other readers. For these reasons, this algorithm is not intended

to be a standalone fully diagnostic tool. Second, relatedly, we

acknowledge that the exams used in this study are from a single insti-

tution, and the model is not validated with multi-institutional testing.

Lastly, our results are limited by the small sample size with poor repre-

sentation of Modic type 3. Modic type 3 is described by signal void in

both T1- and T2-weighted images, which makes it difficult to grade

and susceptible to errors in cases with low signal-to-noise ratio. This

is impactful in the nearest neighbor component of the pipeline, which

is notably sensitive. Fortunately, several collaborative efforts are in-

progress to amass additional data from other institutions with wider

variability in imaging equipment and acquisition parameters. We also

aim to extend this work by exploring domain adaptation strategies to

improve generalizability and performing longitudinal analysis to fur-

ther investigate transitional pathologies.

5 | CONCLUSION

In this work, we present a novel DL-based approach to localize and

segment MCs, with results that demonstrate high agreement with

radiologist grading. The introduction of this fully automatic, quantita-

tive mapping technique may increase inter-rater reliability and ulti-

mately improve robustness in understanding the associations of MCs

with LBP and spinal degeneration.
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