
� 

Automatic Detection of Checkerboards on Blurred and Distorted Images 

Martin Rufli, Davide Scaramuzza, and Roland Siegwart 

Autonomous System Lab, ETH Zurich, Switzerland 

ruflim@ethz.ch, davide.scaramuzza@ieee.org, r.siegwart@ieee.org 

Abstract— Most of the existing camera calibration toolboxes 
require the observation of a checkerboard shown by the user 
at different positions and orientations. This paper presents 
an algorithm for the automatic detection of checkerboards, 
described by the position and the arrangement of their corners, 
in blurred and heavily distorted images. The method can be 
applied to both perspective and omnidirectional cameras. An 
existing corner detection method is evaluated and its strengths 
and shortcomings in detecting corners on blurred and distorted 
test image sets are analyzed. Starting from the results of 
this analysis, several improvements are proposed, implemented, 
and tested. We show that the proposed algorithm is able to 
consistently identify 80% of the corners on omnidirectional 
images of as low as VGA resolution and approaches 100% 
correct corner extraction at higher resolutions, outperforming 
the existing implementation significantly. The performance of 
the proposed method is demonstrated on several test image sets 
of various resolution, distortion, and blur, which are exemplary 
for different kinds of camera-mirror setups in use. 

I. INTRODUCTION 

Cameras can appear either with limited field of view 

(i.e. perspective cameras) or with wide field of view. Wide 

field of view cameras can be built by using fisheye lenses 

(e.g. Nikon or Sigma) [1] or by combining a standard 

perspective camera with a shaped mirror (i.e. catadioptric 

omnidirectional cameras, Fig. 1) [2]. 

Accurate camera calibration is necessary for any computer 

vision task requiring extracting metric information of the 

environment from 2D images, like in ego-motion estimation 

and structure from motion. All works on camera calibration 

can be classified into two different categories. The first one 

includes methods which exploit prior knowledge about the 

scene, such as the presence of calibration patterns (e.g. 

see [3], [4], [5], [6], [7]) or lines ([8] or [5], [9] for an 

overview). The second group covers techniques that do not 

use this knowledge; this includes calibration methods from 

pure rotation or planar motion of the camera [10], and 

self-calibration procedures, which are performed from point 

correspondences and epipolar constraint through minimizing 

an objective function [11], [12], [13]. 

In the last decade, several toolboxes have been imple-

mented, which allow any user to easily calibrate a camera 

(perspective, fisheye, or omnidirectional) by using a planar 

checkerboard as a calibration pattern (for perspective cam-

eras see as an example [14], for fisheye and omnidirectional 

cameras see [15], [16]). These toolboxes require the user 

to take several pictures of the pattern shown at a few 

This work was supported by European grant FP6-IST-1-045350 
Robots@Home R

Fig. 1. Left: hyperbolic mirror placed on a video camera. Top right: Philips 
SPC 300. Bottom right: Philips ToUCam Fun. 

different positions and orientations. Then, the user is asked 

to identify the corner points of the checkerboard, which are 

used as the only input to the calibration routine. The tooboxes 

given in [14] and [16] require the user to identify the four 

external corners of the checkerboard in every test image by 

manually clicking on them. The approximate locations of 

the remaining corners are then simply interpolated and a 

Harris corner finder is employed in the vicinity to refine 

their position. The toolbox given in [15], which is designed 

for fisheye and catadioptric central omnidirectional cameras, 

conversely requires the user to click on all corners of the 

checkerboard. Indeed, this toolbox makes no assumption 

about the shape of the lens or the mirror, thus the positions 

of the remaining corners cannot be interpolated from four 

points. The positions of the clicked points are also refined by 

a Harris corner finder. In the light of the above elaboration, 

it was decided to design an automatic checkerboard extractor 

which could be easily implemented into any and all of the 

above mentioned toolboxes. Such an add-on dramatically de-

creases calibration time and increases user experience, while 

at the same time preserving high calibration accuracy and 

the correspondence between the same corners over all test 

images. In order to be useful, such an extraction algorithm 

needs to work with images of low resolution cameras (at 

least down to VGA, still widely in use), high distortion (as 

introduced by omnidirectional cameras) and blur, stemming 

from the fact that for catadioptric cameras usually not the 

whole mirror can be made to lie in focus. For this purpose, 

the checkerboard extraction algorithm by Vezhnevets [17], 

although developed for planar cameras, was found to yield 

a good starting point. 



A. Contribution and Outline 

The main contribution of this paper is a novel heuristic to 

detect checkerboards in blurred and highly distorted images. 

In particular, we show that through this heuristic the detec-

tion rate of a standard checkerboard detection algorithm[17] 

increases from 20% up to 80%, reaching almost 100% 

using high quality cameras. Furthermore, the code is freely 

available online, both in its source form and incorporated 

into our camera calibration toolbox. To our knowledge this 

is the only such implementation readily available [15]. 

This document is organized as follows. In Section II, the 

important steps of an existing corner extraction algorithm 

[17] are described and its strengths and shortcomings con-

cerning the given task are elaborated. In Section III we 

propose and discuss several steps for increasing the code’s 

performance. Section IV compares the performance of the 

improved algorithm against both the performance of the 

existing implementation and manual selection of corners. 

II. THE ALGORITHM BY VEZHNEVETS 

OpenCV [18] is an open source computer vision library 

initially developed by Intel. It features algorithms for many 

vision applications and is in particular equipped with a 

checkerboard corner extraction functionality developed by 

Vladimir Vezhnevets [17]. The function identifies single 

black checkers of a checkerboard and then tries to merge 

them back into the original pattern. As a region based method 

it has the advantage of being much more robust to noise and 

blur than a line based method would be. What follows is a 

step-by-step analysis of the important parts of this algorithm. 

In Section III, we will adapt it to our needs. 

A. The Steps of the Algorithm 

1) Algorithm Input: Input to the algorithm is an image 

containing a black-and-white checkerboard of a given size. If 

a color image is provided, a greyscale conversion is executed 

thereafter. Then, the algorithm continues with a thresholding 

step. 

2) Adaptive Threshold: Binary thresholding is well suited 

to separate black from white checkers under most circum-

stances. The algorithm supports adaptive thresholding, which 

binarizes the image locally according to a given mask size 

and method and generally delivers higher level segmentation 

results for non-uniformly lit images. Two kernel implemen-

tations are available: “mean” and “Gaussian”. In the original 

approach “mean” is used, which requires considerably less 

computational power and is thus well suited for the checker-

board detection from a video stream, where execution time 

is critical. The checkers in the thresholded black-and-white 

image tend to be grown together due to blur, noise and/or 

too coarse sampling. For correct identification, they need to 

be separated. An erosion step is applied. 

3) Erosion: The inclusion of an erosion step (by using a 

3x3 “rect” kernel, see Fig. 5 right) is the main ingenious idea 

behind Vezhnevets’ implementation. In this way it is possible 

to separate the checkerboard at the corners and obtain a set 

of black quadrangles (four-sided polygons). The contours 

Fig. 2. Left: After adaptive thresholding and one erosion step (run one). 
Right: After adaptive thresholding and two erosion steps (run two). 

Fig. 3. Left: All found quadrangles after run one. Right: All found 
quadrangles after run two. 

of these quadrangles are then easily found with a binary 

contour finder. If no pattern is found during the next steps, 

it can be assumed that the checkers are still grown together. 

Therefore erosion is gradually increased and the following 

steps repeated. Fig. 2 illustrates how the checkers shrink and 

then separate from their neighbors. 

4) Quadrangle Generation: A binary contour finder then 

tries to find closed contours and upon success, tries to fit 

a quadrangle onto it by gradually approximating a polygon. 

Notice how after the first erosion run (Fig. 3 left) only two 

checkers are properly separated and hence only two quads are 

found. After two erosion steps (Fig. 3 right) the majority of 

quadrangles, but not all of them, are found. By applying even 

more erosion steps, the pattern starts to partially dissolve, 

resulting in non-detection of some (small) checkers. 

5) Quadrangle Linking: Quadrangles are then linked ac-

cording to the following heuristic: 

For every corner of every found quadrangle compute the • 

distance to every corner of every other quadrangle. Store 

the smallest such distance and the respective corner and 

quadrangle ID. 

Check whether this distance is smaller than the smallest • 

edge length of both quadrangles. This is intended to 

make sure, that no quadrangle gets linked to quadran- 

gles too far away. 

If these tests are passed, then the two corners are linked • 

and the extracted corner position is set to the arithmetic 

mean of their former positions. 

The extracted corners finally form a pattern described 

through their position and neighborhood relation with respect 

to the other corners. 

6) Further Steps: From all erosion runs, the algorithm 

then selects the corner pattern with the highest number of 

found corners. No information exchange between different 



Fig. 4. All found corners after run two. 

erosion runs is performed. It is thus assumed that in a single 

given run every checker is theoretically identifiable. In case 

the largest pattern features too many corners (i.e. due to an 

erroneously identified checker because of glare), the ones 

which result in the smallest convex hull are selected . 

B. Limitations 

The OpenCV corner finding algorithm was designed for 

real-time calibration of regular cameras. Focus was laid on 

fast execution times, hence the use of a “mean” instead 

of a “Gaussian” mask during the adaptive threshold step. 

Furthermore, the algorithm only returns a pattern if the 

complete checkerboard was successfully detected, ignoring 

the fact that for calibration purposes it is often enough 

to correctly identify a significant portion of the corners. 

As will be shown in section IV, the algorithm ceases to 

function properly with any combination of low resolution 

(VGA), blurred, and distorted images. Therefore it is of 

limited use for omnidirectional camera calibration, and thus 

for implementation into such toolboxes. 

III. IMPROVEMENTS TO THE CODE 

A. Adaptation of Erosion Kernels 

For features of large size in comparison to the kernel used, 

erosion appears to affect all border pixels uniformly. Upon 

closer inspection, however, corners tend to get rounded, the 

exact amount depending on the orientation of the checker 

and the type of kernel used. This starts to have a signifi-

cant effect on the checkers if they become of comparable 

size as the kernels themselves; a condition which is often 

fulfilled for omni-images taken with VGA resolution. Even 

though the smallest possible symmetric erosion kernel (a 3x3 

maximum filter) was used in the original implementation, 

some improvements can nonetheless be achieved: the kernel 

size cannot be made smaller than 3x3, but its shape may be 

altered. For a symmetric 3x3 kernel it is possible to construct 

two shapes, namely “cross” and “rect” as depicted in Fig. 

5. Alternating between the two has the effect of preserving 

the aspect ratio of (small) checkers independent of their 

orientation, i.e. it allows for uniform “shrinking”. 

Fig. 5. Left: 3x3 “Cross” kernel. Right: 3x3 “Rect” kernel. 

Fig. 6. New heuristic for corner linking: If the two candidate corners 
(red dots) lie on the same side of each of the four straights (i.e. inside the 
semitransparent yellow area), they are successfully matched. 

B. New Heuristic for Quadrangle Linking 

In the original implementation, correctly identified black 

checkers are connected over their corners according to 

the heuristic as described in Section II-A.5. It was found 

to work well for high resolution and mostly undistorted 

images of checkerboards. For distortions as introduced by 

omnidirectional cameras, however, not necessarily the closest 

corner should be matched to a given corner, as Fig. 6 

illustrates. Correct corner matching is of utmost importance; 

mismatches disturb the structure of the extracted pattern and 

therefore invalidate all further steps. Our proposition for a 

solution of this issue comes in the form of an enhanced 

heuristic which can be geometrically verified to work even 

under severe distortions: 

For every corner of every found quadrangle compute the • 

distance to every corner of every other quadrangle and 

check whether the distance is shorter than the shortest 

edge length of both of the two involved quadrangles. 

If true, accept the two corners as a candidate neighbor 

pair. 

For each candidate pair, focus on the quadrangles they • 

belong to and draw two straight lines passing through 

the midsections of the respective quadrangle edges (see 

Fig. 6). 

If the candidate corner and the source corner are on the • 

same side of every of the four straight lines drawn this 

way (this corresponds to the yellow shaded area in Fig. 

6), then the corners are successfully matched. 

C. Adaptive Quadrangle Linking Distance 

As mentioned in Section II-A.5, quadrangles only get 

linked if their corners are less than a certain distance 

apart. In the original implementation, inaccurately, the 

shortest edge length of the two involved quadrangles was 

chosen for this distance limit. If the checkers are large w.r.t 

erosion, the error introduced is small. But for low resolution 



Fig. 7. Visualization of “matching over different dilation runs” procedure. 
Top: reference pattern (light green). Clearly the bottom checkers have not 
been identified. Middle: red quadrangles indicate candidate checkers found 
in another erosion run. Bottom: addition of some of these candidates to the 
reference pattern (bold red quadrangles). 

images, erosion has a large effect on the overall size of the 

quadrangle, which may result in a drastic reduction of the 

smallest edge length. Therefore the distance measure was 

adapted to incorporate the effect of erosion: 

dlimit = shortest edge length + 2 · erosion, (1) 

where the factor two is due to the erosion acting on both 

quadrangles. 

D. Linking of Quadrangles over Multiple Erosion Runs 

Through the mirror of an omnidirectional camera, blur is 

radially unevenly spread: depending on the focal distance 

of the camera, either points toward the center or toward the 

border of the image tend to be more blurred. Because of this 

anisotropy, not all quadrangles are separated during the same 

erosion run. Some of them may even only start to separate 

when smaller ones have already completely disappeared. 

Therefore the problem may be encountered that even though 

many quadrangles are successfully identified spread over 

multiple iterations, not all of them appear in a single one. We 

therefore tried to match patterns of found quadrangles over 

different erosion runs, by combining partial into complete 

results. The algorithm was thus expanded as follows: the 

pattern, where most quadrangles had been found is selected 

as “reference pattern”. In a second (new) part, all previously 

found quadrangles of all erosion runs are tried to be matched 

to the border of the above defined reference pattern. Upon 

successful match, the reference pattern is updated to include 

the new quadrangle and the whole process is repeated until 

no more additions are reported. Fig. 7 visualizes this second 

part in a sequence of images. 

E. Adaptation of the Polygonal Approximation Level 

As described in Section II-A.4, extracted contours are sent 

to a polygonal approximator, which tries to fit quadrangles 

onto them. Depending on how much the approximated poly-

gon is allowed to deviate from the true contour (deviation 

threshold), due to blur connected checkers are sometimes 

mistakenly approximated as a single quadrangle, which 

again disturbs the resulting pattern. Decreasing the deviation 

threshold leads to the identification of a substantially smaller 

amount of quadrangles. At the same time, false positives 

detection is reduced as well. Therefore we decided to restrict 

the approximation of contours to a conservative level (i.e. 

select a low deviation threshold) in the first part of the 

algorithm, practically guaranteeing the extraction of correct 

quadrangles at the price of the number of found objects. 

The now smaller reference pattern is then introduced into 

the new part two of the algorithm (see Section III-D), where 

the polygonal approximation threshold is again increased. 

The idea is then to try matching quadrangles found during 

the most strongly eroded run to the reference pattern first 

(i.e. introducing runs in reverse order), as there the chance 

of separated checkers is highest. Addition of heavily eroded 

quadrangles to the reference structure decreases corner lo-

calization, however. With this adaptation, correct pattern 

extraction is therefore favored over corner accuracy. 

F. Relative Importance 

The adaptation of the erosion kernels and especially 

the introduction of a new linking heuristic were found 

to be the most important enhancements. They both deal 

with the changes to the checker pattern as introduced by 

omnidirectional camera distortions, while at the same time 

preserving the detection rate of the original implementation 

for regular images. The other improvements only start having 

a significant effect on very low resolution and blurred images 

(see Section IV-B). 

IV. TEST IMAGE ANALYSIS 

In this section, 6 test image sets containing 10 images 

each are analyzed. Typical camera-mirror setups of various 

quality have been considered. The number of found corners 

per image and the corner localization accuracy is compared 

between the original OpenCV implementation and our pro-

posed method. First, however, prerequisites for successful 

corner extraction are discussed. 

A. Prerequisites 

Corner extraction using both OpenCV and our method 

is dependent on a black and white checkerboard of any 

reasonable size (sizes of 5x6 and 6x7 inner corners have 

been shown to work well), with a white border around it 

of at least one checker width (see Fig. 8). If you plan 

on using the algorithm in cases of extreme back light or 

overhead lighting, consider using a checkerboard with an 

even wider white border. Additionally, use a camera with as 

high a resolution as possible, try to minimize overall blur, but 

especially around small checkers and make sure that none of 

the checkers touch the border or got occluded. 

B. Results 

For an overview of the test image sets chosen, refer to 

Table I. Sets no. 1-3 have been taken with a Sony XCD-

SX910 camera (high resolution) combined with a hyperbolic 

mirror; sets no. 4 and 5 with a Philips ToUCam Fun camera 



Fig. 8. A 7x6 inner corner checkerboard with a white border of exactly 
one checker width. 

TABLE I 

TEST IMAGE SETS 

Fig. 9. Calibration images which best reflect the average performance of 
the algorithm for test set 1. Left: OpenCV. Right: our approach. 

TABLE IV 

TEST IMAGE SET 3 

Img. set Resolution Blur Brightness Camera-mirror shape Method OpenCV Our method 

Set 1 1280x960 no daylight hyperbolic, central 
Set 2 1280x960 no reduced iris hyperbolic, central Mean 

Set 3 1280x960 yes daylight hyperbolic, central Min 

Set 4 640x480 no daylight Christmas ball, non-central Max 

Set 5 640x480 no daylight spherical, central 
Set 6 640x480 yes daylight spherical, central 

Number of found corners Number of found corners 
11.4 of 30 29.7 of 30 

3 28 
21 30 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.48 0.62 

(low resolution, large depth of field, Fig. 1 bottom) combined 

with a Christmas ball and a spherical mirror respectively; set 

no. 6 with a Philips SPC 300 camera (low resolution, narrow 

depth of field, Fig. 1 top) combined with a spherical mirror. 

For set no. 4, we used a Christmas ball in order to show that 

our method also works for other concave mirrors. 

For sets no. 1, 2, 4, and 5 (no blur) corner inaccuracy 

is measured with respect to a reference extraction (manual 

preselection followed by a Harris corner extraction in the 

selected area). For sets no. 3 and 6 (blur), manual corner 

selection alone is defined as reference. Images displaying 

the average number of found corners for test sets no. 1 and 

6 are depicted in order to convey a feeling for the relative 

performance between the two implementations at different 

test conditions (Fig. 9 and 10). 

TABLE II 

TEST IMAGE SET 1 

Method OpenCV Our method 

Number of found corners Number of found corners 
Mean 37.2 of 42 42 of 42 
Min 18 42 
Max 42 42 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.46 0.68 

Variance 0.13 0.17 

TABLE III 

TEST IMAGE SET 2 

Method OpenCV Our method 

Number of found corners Number of found corners 
Mean 37.4 of 42 41.5 of 42 
Min 30 37 
Max 42 42 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.43 0.69 

Variance 0.15 0.20 

Variance 0.23 0.63 

C. Discussion 

The results show that our approach consistently outper-

forms OpenCV, except on high-resolution and nearly planar 

images (test set no. 1) where they are on equal footage. Our 

algorithm notably also works well in conjunction with non-

hyperbolic mirrors (test sets no. 4, 5, and 6). Furthermore, 

corner localization is shown to have an average error of less 

than one pixel, compared to reference. If not much blur is 

present in the calibration images, a Harris corner finder as 

implemented into most toolboxes is able to negate this error. 

D. Issues with Our Approach 

The following two examples are intended to give the 

reader an understanding on issues which could arise during 

TABLE V 

TEST IMAGE SET 4 

Method OpenCV Our method 

Number of found corners Number of found corners 
Mean 28 of 42 41.7 of 42 
Min 14 40 
Max 39 42 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.77 0.97 

Variance 0.55 0.84 

TABLE VI 

TEST IMAGE SET 5 

Method OpenCV Our method 

Number of found corners Number of found corners 
Mean 26.8 of 42 41.4 of 42 
Min 10 36 
Max 36 42 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.05 0.79 

Variance 0.51 0.31 



TABLE VII 

TEST IMAGE SET 6 

Method OpenCV Our method 

Number of found corners Number of found corners 
Mean 8.3 of 42 33.4 of 42 
Min 3 23 
Max 15 42 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.08 1.05 

Variance 0.35 0.90 

Fig. 10. Calibration images which best reflect the average performance of 
the algorithm for test set 6. Left: OpenCV. Right: our approach. 

the checkerboard pattern extraction. 

1) Importance of a Wide Border around the Checker-

board: When taking pictures against bright light sources, 

the adaptive threshold is disturbed into believing that the 

white checkerboard border is actually black. We stress the 

importance of a wide enough white border. 

2) Small Checkers in Low Resolution Images: Figure 11 

belongs to test image set no. 5. Close inspection of the 

matching process shows that during one erosion run the 

bottom right checkers are too small to be recognized as 

quadrangles; during the next erosion run, however, they are 

already grown together with their neighbor checker. In such 

cases, which happen only for very small checkers in low-res 

images, corner extraction for the involved checkers fails. 

V. CONCLUSION 

In this paper an existing method for identifying checker-

boards on calibration images was analyzed. This method then 

served as the starting point for the adapted and improved 

method described in Section III. The enhancements to the 

code proved to dramatically increase the corner output for 

low resolution and blurred images, consistently returning 

80% and more of the corners present, compared to as low as 

20% for the existing method. On higher resolution images, 

nearly 100% corner recognition was obtained. False positive 

detection was found to be very low, provided the image 

Fig. 11. Bottom checkers of the board are not recognized: During one 
erosion run they are too small for recognition (left image), during the next, 
however, already grown together with their neighbor checker (right image). 

acquisition prerequisites from Section IV-A are fulfilled. This 

shows the strength of the algorithm: it builds on top of and 

enhances the openCV implementation using the refinements 

described earlier, and thus works just as well on nondistorted 

images as the original approach, but consistently outperforms 

it in low resolution, highly distorted and/or blurred images. 

We therefore believe it to be well suited for implementation 

into a wide range of camera calibration toolboxes, which 

could notably benefit from automatic calibration routines. 

A standalone executable of the algorithm was then gener-

ated. Via a Matlab based interface it may be easily integrated 

into any of the available camera calibration toolboxes. The 

complete source code, the executable and a sample interface 

are available online [15]. 

REFERENCES 

[1] B. Micusik, Two View Geometry of Omnidirectional Cameras. PhD 
thesis, Center for Machine Perception, Czech Technical University in 
Prague, 2004. 

[2] R. Benosman and S. B. Kang, editors. Panoramic vision: sensors, 
theory, and applications. Monographs in computer science. Springer 
Verlag, New York, 2001. 

[3] R.Y. Tsai, An Efficient and Accurate Camera Calibration Technique 
for 3D Machine Vision. Proceedings of IEEE Conference on Computer 
Vision and Pattern Recognition, Miami Beach, FL, pp. 364-374, 1986. 

[4] Zhengyou Zhang. A Flexible New Technique for Camera Calibration, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
Volume 22, Issue 11, pp.: 1330 - 1334. November 2000. 

[5] R. Hartley and A. Zisserman, Multiple View Geometry in Computer 
Vision. Cambridge University Press, ISBN: 0521540518, second ed., 
2004. 

[6] Scaramuzza, D., Martinelli, A. and Siegwart, R. A Toolbox for Easy 
calibrating Omnidirectional Cameras. In Proc. of IROS’06, pp. 5695- 
5701, China, October 2006, Beijing, (2006). 

[7] C. Mei and P. Rives, “Single view point omnidirectional camera 
calibration from planar grids,” in IEEE International Conference on 
Robotics and Automation, April 2007. 

[8] C. Geyer and K. Daniilidis, “Paracatadioptric camera calibration,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
vol. 24, pp. 687–695, may 2002. 

[9] 19. Y. Ma, S. Soatto, J. Kosecka, S. Sastry, An invitation to 3D vision, 
from images to geometric models models, Springer Verlag, ISBN-0- 
387-00893-4. 2003. 

[10] J. Gluckman and S. Nayar, “Ego-motion and omnidirectional cam-
eras,” in 6th International Conference on Computer Vision, pp. 999– 
1005, 1998. 

[11] S. Kang, “Catadioptric self-calibration,” in IEEE International Con-

ference on Computer Vision and Pattern Recognition, pp. 201–207, 
2000. 

[12] Micusik, B. and Pajdla, T. Estimation of omnidirectional camera model 
from epipolar geometry. In Proc. of CVPR. ISBN 0-7695-1900-8, US, 
June 2003, IEEE Computer Society, Madison, (2003). 

[13] S. Bougnoux, “From projective to euclidean space under any practical 
situation, a criticism of self-calibration,” in 6th International Confer-

ence on Computer Vision, pp. 790–796, 1998. 
[14] Bouguet, J.-Y. Camera Calibration Toolbox for Matlab: 

http : //www.vision.caltech.edu/bouguetj/calib doc 
[15] Scaramuzza, D. Omnidirectional Camera Calibration Toolbox 

for Matlab: Google for “ocamcalib”, or go directly to 
http : //asl.epf l.ch/̃scaramuz/research/ 
Davide Scaramuzza f iles/Research/OcamCalib T utorial.htm 

[16] Mei, C. Omnidirectional Camera Calibration Toolbox for Matlab: 
http : //www.robots.ox.ac.uk/̃cmei/T oolbox.html 

[17] Vezhnevets, V. OpenCV Calibration Object Detection: 
http : //graphics.cs.msu.ru/en/research/calibration/ 
opencv.html 

[18] Intel Corporation. Open Source Computer Vision Library: 
http : //www.intel.com/technology/computing/opencv 


