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Automatic Detection of Clear-Sky Periods

From Irradiance Data
Benjamin H. Ellis, Michael Deceglie , and Anubhav Jain

Abstract—Recent degradation studies have highlighted the im-
portance of considering cloud cover when calculating degradation
rates, finding more reliable values when the data are restricted to
clear sky periods. Several automated methods of determining clear
sky periods have been previously developed, but parameterizing
and testing the models has been difficult. In this paper, we use clear
sky classifications determined from satellite data to develop an al-
gorithm that determines clear sky periods using only measured
irradiance values and modeled clear sky irradiance as inputs. This
method is tested on global horizontal irradiance (GHI) data from
ground collectors at six sites across the United States and com-
pared against independent satellite-based classifications. First, 30
separate models were optimized on each individual site at GHI data
intervals of 1, 5, 10, 15, and 30 min (sampled on the first minute
of the interval). The models had an average F0.5 score of 0.949 ±

0.035 on a holdout test set. Next, optimizations were performed
by aggregating data from different locations at the same interval,
yielding one model per data interval. This paper yielded an average
F0.5 of 0.946 ± 0.037. A final, “universal” optimization that was
trained on data from all sites at all intervals provided an F0.5 score
of 0.943 ± 0.040. The optimizations all provide improvements on
a prior, unoptimized clear sky detection algorithm that produces
F0.5 scores that average to 0.903 ± 0.067. Our paper indicates that
a single algorithm can accurately classify clear sky periods across
locations and data sampling intervals.

I. INTRODUCTION

S
OLAR resource availability and variability have become

active topics of study given the accelerating adoption of

photovoltaic (PV) technologies. By accounting for solar irradi-

ance variation in PV monitoring and degradation analyses, one

can isolate outages, anomalies, and calculate degradation under

consistent solar resource availability. For example, recent work

from the National Renewable Energy Laboratory (NREL) and
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SunPower Corporation demonstrated that introducing clear sky

modeling and filtering into retrospective degradation rate anal-

yses of PV system data can substantially reduce uncertainty and

bias in the extracted degradation rate due to, for example, drift-

ing irradiance sensors [1]. In their work, skies were determined

to be clear if the measured global horizontal irradiance (GHI)

was within 20% of modeled clear-sky GHI. The authors ac-

knowledge that a static threshold is not an ideal solution given

that they observed that irradiance sensors can drift by up to

2%/year—highlighting the need for more accurate methods to

detect clear-sky periods.

In this paper, clear-sky periods will be defined as periods

throughout a given day that have measured GHI values indis-

tinguishable from modeled clear-sky GHI. This definition is the

same as the previous work’s definition, as well as other recent

research efforts [2], [3]. This selection is made for two reasons.

First, many PV sites do not track meteorological data related to

cloud cover. Relying on such data would limit the applicability

of the proposed methodology. This paper will specifically focus

on the comparison of measured GHI to modeled GHI (although

other measurements, such as direct normal irradiance or diffuse

horizontal irradiance, could in principle be used). We note that

within this definition, a clear sky period may still include the

presence of clouds, aerosols, or other particulates so long as

those conditions do not significantly affect the irradiance that

PV sites collect. The task in this paper is to best formalize this

definition into a working algorithm for clear sky detection.

Classifying sky conditions using ground-based irradiance

measurements has been previously researched. Many re-

searchers rely on the clearness index (the ratio of GHI observed

from ground measurements to the corresponding extraterrestrial

irradiance) to determine if skies are clear, cloudy, or even deter-

mine what types of clouds are present at a given time [4]–[8].

None of these studies agreed on thresholds for the clearness

index to determine clear sky periods; the minimum threshold

ranged from 0.6 to 0.7. Similar work has also considered the

diffuse fraction of GHI in determining clear skies [9] and cor-

related meteorological data with the clearness index and diffuse

fraction data [10]. Progress has also been made in determin-

ing cloud cover and cloud types from satellite data [11], [12].

Advancements in computer vision and image recognition have

also resulted in methods to derive cloud conditions from ground-

based images of the sky [13]–[15]. More recently, a method to

determine sky clarity by extracting five features from measured

GHI curves and comparing them with features extracted from

expected clear sky irradiance has been developed [3]. Extending
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this most recent work, the goal of our paper is to predict clear

sky periods automatically (across locations and data sampling

intervals) using only GHI data as an input.

II. METHODS

This paper will demonstrate a method to automatically deter-

mine thresholds for existing clear sky classification algorithms

by combining available ground-based irradiance data with satel-

lite data. In this paper, we focus solely on the detection algorithm

developed previously by Reno and Hansen because it only re-

quires GHI as an input [3]. To distinguish clear and cloudy skies,

this method (subsequently called the “PVLIB method”) calcu-

lates five features for discrete windows of time along time-series

GHI data. Four of the five features are calculated for both mea-

sured GHI and modeled clear-sky GHI (GHICS). The difference

between GHI and GHICS of these four features must be within

some tolerance to label the period as clear sky, i.e., these fea-

tures determine whether modeled clear-sky GHI and measured

GHI are in agreement. The final feature, standard deviation of

the slopes, must be below some absolute tolerance value and

ensures that the GHI curve is smooth rather than irregular. We

will describe the five features developed for the PVLIB method

concisely—an in-depth justification of each is described in the

original work. We represent measured irradiance as G and clear-

sky irradiance as GCS. The modeled clear sky was obtained us-

ing the Ineichen model via the PVLIB-Python implementation

[16], [17]. Other clear sky models can be used with this method,

although we did not test them in this study.

In the following equations, i will represent the index of sin-

gle data point (GHI measurement) in a window that contains n

elements. The first two features described by Reno and Hansen

are the differences between the average and maximum measured

and modeled irradiance over a given window of time [3]

x1 =
∣

∣G−GCS

∣

∣ (1)

x2 = |max ({Gi, . . . , Gn})−max ({GCS,i, . . . ., GCS,n})| .
(2)

The third feature is the difference in line length of the

irradiance-versus-time curves

x3 = GLL − GLL
CS (3)

in which the line length is calculated as follows:

GLL =

n−1
∑

i=1

√

(Gi+1 −Gi)
2 + (ti+1 − ti)

2
. (4)

The fourth feature is the standard deviation of the slope be-

tween adjacent data points in a time window normalized by the

average irradiance

x4 =
1

G

√

√

√

√

1

n− 1

n−1
∑

i=1

(si − s̄)2
(5)

where si values are the slopes between adjacent points and s̄

is their average. The fifth feature is the maximum difference

between the slope of the measured and modeled irradiance over

a window

x5 = max (|αG − αGCS
|) (6)

α =
Gi+1 −Gi

ti+1 − ti
. (7)

We note that in the original work, time is not included in the

denominator of the slopes because that work implicitly assumes

1-min data [3]. Our paper will generalize many data intervals

and thus benefits from this normalization.

In the original work, the authors demonstrated the model’s ef-

ficacy by determining thresholds for the five features manually.

Results from the model were visually inspected and compared

with previous clear sky models and satellite data. Based on these

results, the PVLIB method provides default thresholds, assum-

ing that irradiance data are measured every minute, for each of

the features presented. These parameterizations include: a win-

dow size of 10 min, an absolute threshold of 75 W/m2 for average

and maximum difference of GHI and GHICS, a line length dif-

ference from –5 to 10, a threshold for the standard deviation of

differences of 0.005, and a maximum absolute difference be-

tween adjacent points of 8 W/m2. The thresholds listed work

well for minutely data intervals; however, as we will demon-

strate in the results section, they do not generalize well to higher

interval data. We note that these features reflect the definitions

from the original article [3]. We note that the implementation in

version 0.5.2 of PVLIB-Python (the version as of the time this

work was initiated) contains inconsistencies between the pub-

lication and implementation that were fixed for this paper—the

source code used in this paper can be found in PVLIB-Python

version 0.5.2+13.g3f9dc9d.

In cases where the default PVLIB parameters are inadequate,

researchers must optimize these parameters individually. This

procedure adds additional time, complication, and nonstandard-

ization (variability) to monitoring and studying PV systems—

especially large studies encompassing multiple sites. This

motivated our paper to automatically tune PVLIB parameters

by scoring PVLIB sky classifications versus known clear-sky

periods using a combination of ground and satellite data.

In this paper, we correlate ground-based irradiance data with

satellite-derived cloud coverage to automatically determine op-

timal thresholds for the PVLIB detection scheme at multiple

intervals. The ground collectors are all members of the NREL

Measurement and Instrumentation Data Center (MIDC) net-

work. Stations in this network monitor solar radiation and me-

teorological data across the United States. For this work, we

have selected six different locations for study [18]–[23]. Their

information is listed in Table I. These sites were selected be-

cause they each collected GHI at 1-min intervals and have at

least four years of overlap with satellite data in the National So-

lar Radiation Database (NSRDB). The ground-based irradiance

measurements serve as inputs to the PVLIB clear sky classifier.

The span and amount of data for each MIDC site is detailed in

Table I. Note that these dates are the total span of data. When

reporting our results, the final calendar year of each data set was

held out for testing and scoring (i.e., not used to optimize PVLIB

model parameters).
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TABLE I
MIDC STATION METADATA

Begin and end dates are in MM-DD-YYYY format.

Satellite data has been collected from the NSRDB Physical

Solar Model version 2 [12]. This resource provides cloud cover

data at 30-min intervals across the United States at a spatial res-

olution of 4× 4 km. The NSRDB is capable of assigning several

cloud classifications, although a binary classifier to determine

“clear” or “not clear” was developed for the application in mind.

Clear periods were determined by the “clear” NSRDB determi-

nation, with the constraint that expected clear-sky irradiance

must be greater than 0 W/m2 to remove clear periods from dusk

to dawn. All other classifications were determined to be cloudy.

Periods with missing cloud types were not used for training or

scoring. Only points occurring at every 30th min were used for

training and scoring—a limitation necessitated by the satellite

collection interval. All lower interval data points measured from

the ground were used for calculating the five model features.

III. CALCULATION

Before parameter optimization, several data preprocessing

steps removed erroneous data points. First, periods missing

cloud data from NSRDB data sets were removed. Second, pe-

riods from dusk to dawn were also removed from scoring (ex-

pected clear sky irradiance had to be greater than 0 Wm–2). In

the third cleaning step, points having GHI measurements in very

strong agreement with modeled clear-sky GHI values (difference

less than 50 W/m2 averaged over 1 h) but labeled as “cloudy” by

NSRDB determinations were removed from training and test-

ing. This issue is illustrated in Fig. 1, where all “cloudy” points

as classified by NSRDB (circles) have an absolute difference of

less than 50 Wm–2 from the modeled clear-sky GHI. In the same

figure, we see that clear points (triangles) also have a difference

of less than 50 Wm–2. Removing these “conflicting” points, in

which there is clear a disagreement between irradiance data and

NSRDB cloud classification, will help the models more reli-

ably distinguish clear and cloudy skies. A similar cleaning step

removed periods labeled as clear but that had an average abso-

lute difference between GHI and GHICS (over 1 h) greater than

50 Wm–2. The next preprocessing step removed data points from

training and scoring where GHI values from NSRDB and ground

measurements differed by a large degree. This step ensured that

GHI from satellite data agreed with irradiance directly measured

at ground locations. Discrepancies between satellite and ground

GHI measurements are presented in Fig. 2. Points where the av-

erage difference between ground and NSRDB GHI was greater

than 50 Wm–2 over 1 h were filtered out of training, testing, and

Fig. 1. Difference between GHI and GHICS throughout a sample day indicates
potential inconsistencies in satellite-based clear sky labels and GHI data.

Fig. 2. Differences between GHI measured from ground-based collectors and
NSRDB for a sample day indicates discrepancies in satellite-based GHI data
and ground-based GHI data.

scoring. These preprocessing steps guaranteed that an intuitive

and consistent definition of clear skies (measured GHI is indis-

tinguishable from modeled GHICS) was reflected in the data and

helped compensate for inaccuracies in the training data set.

In this paper, clear-sky threshold parameters for the five fea-

tures were determined using data from each of the 6 MIDC sites

at intervals of 1, 5, 10, 15, and 30 min individually, resulting

in 30 different optimizations. Data from the MIDC sites were

collected at a 1-min interval and were downsampled with no
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Fig. 3. Flowchart of the parameter optimization procedure.

smoothing for the 5, 10, 15, and 30 min optimizations. In this

paper, we define downsampling as selecting every ith minute

from the data set (e.g., for the 10-min interval optimization, we

selected every 10th min from the original, 1-min interval data). A

further discussion of this topic is in the supporting information.

The performance of each model is quantified using the Fβ

score

Fβ = (1 + β2)×
precision× recall

(β2 × precision) + recall
. (8)

The Fβ score is a weighted mean between the precision and

recall. In this paper, β was set to 0.5, giving greater weight

to precision. This metric will minimize the occurrence of false

positives (i.e., cloudy periods incorrectly classified as clear),

which is of interest for the application in mind.

The optimal parameters for our model were determined by

maximizing the F0.5 scores between PVLIB predictions and

satellite classifications in the training data set, as illustrated in

Fig. 3. The optimization algorithm iteratively searches for points

in the PVLIB parameter space. Before a new set of parameters is

tested, a gradient-boosted forest regression is trained on previ-

ous PVLIB parameters and F0.5 scores. The new sets of PVLIB

parameters are picked from regions, as predicted by the regres-

sion model, where the F0.5 score is expected to increase. The

selected parameters are scored and used in future iterations to

train the regression model. Each optimization procedure was

terminated after testing 250 sets of PVLIB parameters.

IV. RESULTS AND DISCUSSION

Three sets of results are presented that illustrate the F0.5 scores

of various newly trained PVLIB parameters. These scores reflect

the degree of agreement between classifications from our algo-

rithm and satellite data used in conjunction with the NSRDB

Physical Solar Model version 2 [12]. In method A, we indi-

vidually optimize a unique set of PVLIB parameters for each

combination of location and data interval. In method B, we ag-

gregate the data by interval across sites to produce a different

set of optimized PVLIB parameters tailored to each data in-

terval. Finally, in method C, we consider only a single “uni-

versal” parameter set for the entire data set across all data

intervals and all sites across the MIDC network. All F0.5 scores

presented in this paper were calculated using a hold-out, test

Fig. 4. Boxplots representing F0.5 scores averaged across all six MIDC
locations at each interval using default and optimization PVLIB thresholds.
(a) Parameters were optimized individually at each site and interval. (b) Param-
eters were optimized by combining data at each interval. (c) Parameters are the
result of optimizing on all site and intervals simultaneously. All scores were cal-
culated on the same hold-out data set. Black points indicate that they are below
the 1.5 × IQR (interquartile range).

year that was not observed during the parameter optimization

process.

F0.5 scores for default and optimized PVLIB parameters are

summarized in Fig. 4. The default scores were all computed

using default (previously published [3]) PVLIB parameters. For

default scores, the window size was set to the PVLIB default

of 10 min for minutely data and to 1-h window size for lower

interval data (i.e., 5, 10, 15, and 30-min intervals). Optimized

PVLIB parameters and scores were calculated using a fixed 1-h

window for all intervals.

Fig. 4 illustrates that default parameters compare well with

optimized parameters on minutely data. This is an expected re-

sult because the original PVLIB parameters were tuned for this

data interval. This figure also demonstrates that as data interval

increases, the performance of the default parameters becomes

worse. We note again that the data interval was increased (e.g.,

from 1-min to 5-min) by selecting every ith minute from the

data set; no smoothing was performed. We see that the opti-

mized scores are consistent from minute data to 30-min data

using all three optimization approaches.

Detailed scores for each of the parameter sets is presented in

Fig. 5. Again, our results indicate that there is very little dif-

ference between optimized parameters and default parameters

for minute data. As the interval increases, we see that scores

from default parameter sets and optimized parameter sets di-

verge. In both default and optimized parameter sets, we see that

Oak Ridge National Laboratory (ORNL) performs significantly

worse than other sites (it also represents the outlier in Fig. 4).

This is true even for method A, where that site is independently

optimized, indicating a fundamental challenge with improving

performance at that site rather than some characteristic differ-

ence from the other sites. We believe the poor performance of

ORNL stems from disagreement between satellite and ground
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Fig. 5. Detailed F0.5 scores using default and optimized parameters. (a) Parameters were optimized individually at each site and interval (frequency).
(b) Parameters were optimized by combining data at each interval. (c) parameters are the result of optimizing on all site and intervals simultaneously. All
scores were calculated on the same hold-out data set.

measurements of GHI at that location (see supporting informa-

tion). Despite the poor performance of ORNL data relative to

other sites, it is encouraging to see that the optimization scores

still outperform PVLIB’s default parameters on longer interval

data.

The set of three optimizations was performed to demonstrate

that optimal thresholds for the PVLIB detection scheme can

be considered to be location and interval agnostic (Optimized

(C) results in Figs. 4 and 5). Optimization (A) results indicate

the performance to expect when PVLIB parameters are opti-

mized at a specific location and for a specific interval. These

parameters have an F0.5 score equal to 0.949 ± .035 (The mean

F0.5 score plus/minus the standard deviation). Although this ap-

proach would yield the highest possible score for any given

data set, it would be unfeasible to perform this optimization

in a large-scale degradation study that spans tens or hundreds

of locations. Optimization (B) parameters were determined by

training on data aggregated at each interval. These results reveal

that PVLIB parameters are not unique to location and provide

performance similar to parameters optimized specific to a loca-

tion and interval. On average, these parameters provided an F0.5

score of 0.946 ± 0.037. This encouraging result motivated the

question of whether there is a set of “universal” parameters that

provide good F0.5 score regardless of site location or data inter-

val. Optimization (C) parameters present evidence that a single

set of PVLIB parameters work across locations and intervals for

less than 1 h. Our findings demonstrate that PVLIB parameters

obtained by performing the optimization on all locations and in-

tervals simultaneously provide nearly identical performance to

parameters optimized for specific locations and data intervals.

The universally optimized parameters produced an F0.5 score of

0.943 ± 0.040.

We are optimistic that the parameters from optimization (C)

are in fact universal because they perform nearly as well the

single-site optimization, suggesting that the algorithm is not too

sensitive to the specifics of any single site. In addition, because

the Reno and Hansen method relies on physically relevant char-

acteristics of a clear-sky GHI profile, we expect the application

at new sites to be robust. However, we have not validated the

method globally, and care should be taken when using these

results for new sites outside this study.

TABLE II
DEFAULT AND OPTIMIZED PVLIB PARAMETERS (FOR ALL SITES AND DATA

INTERVALS) WHEN USING A 60-MIN TIME WINDOW TO CALCULATE FEATURES

Optimal parameters, applicable to all sites and intervals, are

compared with default parameters in Table II. It is important

to note that the default parameters were determined manually

using a 10-min window to calculate features [3]. The optimiza-

tion procedure in this paper used 60-min windows to calculate

features. We chose the 60-min window because it is applicable

to all data intervals used in the study. It is interesting to note

that the optimal thresholds for mean and max difference and the

standard deviation of slopes are similar to those proposed in the

original work. However, Table II indicates that the remaining

thresholds are quite different from the defaults. We suggest that

the differences in the thresholds are due to our optimization

for higher interval data in contrast with the 1-min data used to

optimize the default thresholds [3].

To visually demonstrate the effect of the revised parameters,

a sample of the performance of the universal, optimized PVLIB

parameters is illustrated in Fig. 6. Results are plotted for the

Baseline Measurement System (BMS) site as it is representative

of the performance across most sites. Upon visual inspection, it

appears that default parameters are more conservative than the

optimized parameters; in general, the optimized parameters label

more periods as clear. In some cases, the optimized parameters

may perhaps mislabel cloudy periods (morning of 2012-04-08,

15-min intervals). However, there exist more periods where the

optimized parameters clearly outperform the default parame-

ters (morning of 2012-04-10 at 15, 10, 5, and 1-min intervals).

Generally, we find that the optimized parameters provide perfor-

mance one might expect based on visual classification without

requiring researcher inspection of the data.
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Fig. 6. Examples of ground-based GHI measurements for several days at several data intervals (black curves). Each row represents the same three days but at
increasingly low intervals. The data points identified by the NSRDB database as corresponding to clear skies are labeled with yellow diamonds, whereas previous
work only considered points indicated in red to be clear, the revised parameters classify both red and blue points as clear. Determinations were made using 60-min
moving windows and the PVLIB parameters shown in Table II.
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Fig. 7. Percent of data points in which ground-based and satellite-based GHI
values agree to within 50 W/m2; higher values are likely to reflect more reliable
data.

V. CONCLUSION

We developed an optimization scheme for determining param-

eters for PVLIB clear sky identification at six different locations

across the United States with a total span of 29 years by combin-

ing ground-based irradiance measurements with satellite-based

cloud cover. The parameter sets determined using this optimiza-

tion scheme are capable of producing clear-sky classifications in

good agreement with satellite-image-based classification while

only using ground-based GHI data as input. We demonstrated

that a single, universal set of optimized parameters perform

consistently across multiple data intervals and geographic lo-

cations, yielding a mean F0.5 score of 0.943 ± 0.040. This is

only slightly lower than site-and-interval specific optimization,

which produced an F0.5 score of 0.949 ± .035. We expect that

the findings of this paper will be of interest to researchers that

require clear-sky classification routines in their PV performance

and degradation analysis studies.

APPENDIX

A. Disagreement Between Ground and Satellite-Based Global

Horizontal Irradiance Values

In cases where ground and satellite data disagree, it can be

more difficult to use satellite data to train and test a clear-sky

algorithm for ground-based measurements. We plot in Fig. 7 the

percentage of points that are in agreement (within 50 W/m2) for

ground versus satellite measurements. We note that the ORNL

site shows the poorest agreement between the two GHI values

(56.6% of all day-time points).

Furthermore, we find that the magnitude and sign of disagree-

ment is not random. In most cases, the ground-based GHI is

lower than the satellite-based GHI, suggesting that many points

labeled as “clear” from satellite data might be reasonably clas-

sified as “cloudy” from ground-based data. In Fig. 8, we plot the

mean error between NSRDB and ground-collected GHI, show-

ing that at the ORNL site in particular the magnitude of the

disagreement is 41.3 W/m2. These results may provide an expla-

nation for the relatively poor classification accuracy measured

for the ORNL site (as explained in the main text), as the goal of

Fig. 8. Mean difference in GHI values between ground-based and satellite-
based data at various sites.

Fig. 9. F0.5 scores for (both default and optimized algorithms) for the 15-min
data interval at various sites when the GHI values are averaged (rather than
instantaneously sampled) over the interval.

the classification is to achieve agreement between ground-based

and satellite-based data.

B. Averaged Versus Instantaneous Data for Downsampling of

Data Intervals

In this paper, GHI was downsampled by taking the instanta-

neous value of the GHI at various intervals. However, in many

practical systems, GHI is downsampled by averaging over the

relevant interval. We have investigated whether the F0.5 scores

for the 15-min data interval GHI change when using an aver-

aging versus instantaneous approach (see Fig. 9). We find that

the F0.5 scores indeed drop and may need to be reoptimized for

using averaged GHI. Nevertheless, the as-trained parameters as

reported in our paper significantly outperform the previous pa-

rameters even with no further tuning.
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