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Recognition of spalling on surface of concrete wall is crucial in building condition survey. Early detection of this form of defect
can help to develop cost-effective rehabilitation methods for maintenance agencies. This study develops a method for automatic
detection of spalled areas.The proposed approach includes image texture computation for image feature extraction and a piecewise
linear stochastic gradient descent logistic regression (PL-SGDLR) used for pattern recognition. Image texture obtained from
statistical properties of color channels, gray-level cooccurrence matrix, and gray-level run lengths is used as features to characterize
surface condition of concrete wall. Based on these extracted features, PL-SGDLR is employed to categorize image samples into
two classes of “nonspall” (negative class) and “spall” (positive class). Notably, PL-SGDLR is an extension of the standard logistic
regression within which a linear decision surface is replaced by a piecewise linear one.This improvement can enhance the capability
of logistic regression in dealing with spall detection as a complex pattern classification problem. Experiments with 1240 collected
image samples show that PL-SGDLR can help to deliver a good detection accuracy (classification accuracy rate = 90.24%). To ease
the model implementation, the PL-SGDLR program has been developed and compiled in MATLAB and Visual C# .NET.Thus, the
proposed PL-SGDLR can be an effective tool for maintenance agencies during periodic survey of buildings.

1. Introduction

In themaintenance process of high-rise buildings, it is impor-
tant to identify surface defects to ensure the serviceability of
structures. The reason is that surface quality strongly affects
the safety as well as esthetics of buildings. After buildings are
delivered to clients, their conditions quickly deteriorate due
to the combined influences of inclement weather conditions,
occupants’ activities, and structural aging [1]. The deterio-
ration of buildings is usually reflected in forms of cracks
and spalls. These forms of damage do not only bring about
inconvenience to occupants but also degrade the structural
integrity [2]. If periodic maintenance processes cannot detect
and handle this damage timely, building’s owners may suffer
fromfinancial losses due to degradation of asset value. Hence,
correct detection of surface damage is a crucial task in
building condition assessment.

Spalling (see Figure 1) happens when fragments of mate-
rials (e.g., concrete, mortar) are ejected from the surface
structure because of impact or internal stress. Spalling occurs
in concrete because of moisture incursion into structural
elements. Spalls are commonly observed in various structural
elements in buildings such as wall, beam, column, ceiling,
and floor. Particularly for reinforced concrete structures,
spalls are indicators of oxidation or corrosion of reinforcing
steel [3–5]. Therefore, if this form of defect is unidentified
and untreated during the building maintenance process, the
problem of corroded reinforcementsmay quickly expand and
significantly worsen the structural durability.

InVietnam, periodic buildingmaintenance is usually per-
formed by human technicians. This practice is also common
in other countries due to the fact that human inspection
can help to obtain a high level of accuracy and directly
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Figure 1: Spalls on concrete surface.

point out the problems underlying the detected defects [6].
Nevertheless, manual survey is notoriously known to be time
consuming and labor intensive [3]. Moreover, the quality of
building assessment is also strongly dependent on the skill,
experience, and subjective judgment of human inspectors.
This factmay lead to variability of building assessment results.
In addition, the processes of data collection by means of
measurement, data processing, and report are extremely time
consuming for high-rise buildings having a huge number
of structural elements needed to be surveyed periodically.
Therefore, it is beneficial for maintenance agencies to be
equipped with a more productive method of collecting and
processing building condition data.

Among automated methods for building condition
assessment, image processing based methods have been
extensively used because of a quick advancement in the
field and affordable cost of digital cameras [7–9]. Using
image process techniques, regions of image samples suffering
from spalling can be distinguished and isolated from healthy
regions based on the features extracted from these regions.
Essentially, spalling belongs to the category of area based
defect.Thismeans that using information of one pixel cannot
be sufficient for spall detection. Hence, characteristics of
an image region need to be extracted and analyzed for
recognizing spall defect.

Nevertheless, recognition of area based defect on surface
of structures is a challenging task. It is due to various
difficulties including diversified textures of concrete surface,
uneven illumination, irregular textures caused by stains, etc.
Therefore, in recent years, a considerable number of research
works have been dedicated to automatic detection of area
based distress including spalling. Suwwanakarn et al. [10]
proposed the employment of three circular filters to detect air
pockets on the surfaces of concrete. Koch and Brilakis [11] put
forward a pothole detection method which employs image
thresholding, morphological thinning, elliptic regression,
and texture extraction.

German et al. [4] extracted major properties of spalled
regions on concrete columns for postearthquake safety
assessment of buildings; this study involves the technique
of image thresholding by means of a local entropy-based
algorithm and a global adaptive thresholding approach.
Subsequently, template matching and morphological oper-
ations can be performed to identify damaged regions [4].
A multispectral image analysis approach was presented by
Valença et al. [12] to evaluate concrete damage and delineate
the deteriorated zones in an automatic manner.

Kim et al. [13] established a framework to assess the
dimensional and surface quality of precast concrete ele-
ments on the basis of BIM and 3D laser scanning. Paal

et al. [14] present a computer vision based method for
detecting building’s columns and retrieving their properties
used for damage recognition. A technique for localizing
and quantifying spalling defects on concrete surfaces has
been put forward by the employment of a terrestrial laser
scanner [5]. Li et al. [15] investigate the feasibility of an
integrated framework for the detection and measurement
of potholes on the basis of 2D images and Ground Pene-
trating Radar data. Konishi et al. [16] detect void in sub-
way tunnel lining using thermal image photographs and
signal analyses. Dawood et al. [3] develop an integrated
model based on image processing techniques and machine
learning algorithms for spalling detection used in condition
survey of subway networks; the image processing technique
includes various methods of image smoothing, threshold-
ing, histogram equalization, and filtering. Hoang [2] relied
on steerable filters and machine learning for recognizing
defects appearing on wall surface. Oliveira Santos et al.
[17] and Santos et al. [18] put forward hyperspectral image
processing models to detect cracking patterns both on
clean and on concrete surface with biological stains. Recent
research works [19–23] have pointed out an increasing trend
of applying computer vision in structural health inspec-
tion.

Since the spalled areas and healthy ones have distinctive
texture properties, texture of image samples can be computed
and employed for spall recognition. Image texture expresses
the spatial arrangement of color or intensities in an image
sample [24]. Therefore, image texture computation methods
such as statistical measurements of color channels (e.g.,
mean, standard deviation, skewness, etc.) [25], gray-level
cooccurrence matrix [26], and gray-level run lengths [27]
can be potentially applied for spall detection. Based on the
image texture based features, machine learning approaches
can be employed for classifying data instances into cate-
gories of spall (positive class) and nonspall (negative class).
Nevertheless, few studies have investigated the efficiency
of the aforementioned image texture computation in spall
recognition. Moreover, it is evident that the combination
of image processing and machine learning can potentially
lead to effective solutions for structure health monitoring
[28–34]. However, models that hybridize the strengths of
image processing and machine learning based classifiers
have rarely been employed for spall detection. Therefore,
the current study is an attempt to fill these gaps in the
literature.

Furthermore, the problem of spall detection can be
formulated as a two-class pattern recognition; it is able to
model the target output as a binary response variable with
“nonspall” = 0 and “spall” = 1. Hence, logistic regression
(LR), which is one of the models for binary data [35], can
be employed for pattern classification. Logistic regression
is a simple linear classifier yet effective machine learning
model which is capable of delivering probabilistic prediction
outcomes. The key procedure of a LR model is to define
a linear classifier (in the form of a hyperplane) and an
objective function (in the form of a log likelihood function);
accordingly, gradient descent algorithm can be applied to
adapt the model parameters [36]. The implementation of LR
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is straightforward and its successful applications have been
reported in various studies [37–39].

Nevertheless, one observable limitation of LR is that its
employment of a linear classifier is expressed in the form of a
hyperplane. To improve the capability of LR in dealing with
nonlinear data, this study investigates the feasibility of replac-
ing the conventional linear classifier used in LR by a piecewise
linear model. This modification can lead to a higher degree
of flexibility of model structure and potentially bring about
a better predictive accuracy. In this study, a piecewise linear
LR model, named PLLR, is developed for detecting spalled
regions on surface of concrete wall structures. Additionally,
a sequential algorithm described in the previous work of
Hoang [40] and the stochastic gradient descent algorithm
[41] are used to train the PLLR model. Data set including
1240 image samples has been collected to construct and verify
the proposed method. The statistical descriptions of color
channels, properties of the gray-level cooccurrence matrix,
and properties of the gray-level run lengths are employed to
compute the texture of image samples. In addition, based on
the set of image texture based features, principal component
analysis is employed for dimension reduction. The perfor-
mance of the proposed PLLR is benchmarked with those of
stochastic gradient descent LR and backpropagation artificial
neural network.

The subsequent parts of the paper are organized as fol-
lows. The second section reviews the research methodology,
followed by the third section that describes the collected
image data set; the fourth section describes the structure of
the proposed model used for automatic recognition of con-
crete wall spalling. The fifth section will report experimental
results; several concluding remarks of this study are provided
in the final section.

2. Research Methodology

2.1. Image Texture Computation. Due to the typical texture
of concrete walls, two pixels having the same color/gray level
can belong to both spalled and nonspalled areas. Thus, it is
infeasible to detect spall in a pixel level because information
of a single pixel is not sufficient for spall recognition. As stated
earlier, since spalled and nonspalled concrete wall surface
have distinctive features regarding color and roughness.
Hence, information of texture of an image region can be
helpful for identifying spalled wall sections. Accordingly, a
large surveying image can be separated into a number of
nonoverlapped image samples with a fixed size (e.g. 100x100
pixels). This division can also help to expedite the texture
computation process. Based on such small image samples,
image textures regarding statistical measurements of color
channels [25], gray-level cooccurrencematrix [26], and gray-
level run lengths [27] can be computed and used for data
classification.

2.1.1. Statistical Properties of Color Channels. Since concrete
surface background may contain irregular objects such as
paints or stains caused by corroded steel reinforcements,
information regarding the color of image samples can be

helpful for the task of spall recognition. Let𝑃(𝐼) represent the
first-order histogram of an image sample 𝑆; 𝑃(𝐼) is computed
as follows [25]:

𝑃𝑐 (𝐼) = 𝑁𝐼,𝑐𝑊×𝐻 (1)

where 𝑐 is a color channel (either red or green or blue).𝑁𝐼,𝑐 denotes the number of pixels having color value of the
channel 𝑐 = 𝐼. 𝐻 and𝑊 represent the two parameters of the
image height and width.

Accordingly, the average (𝜇𝑐) and the standard deviation
(𝜎𝑐) of color value can be computed in the following manner:

𝜇𝑐 = 𝑁𝐿−1∑
𝑖=0
𝐼𝑖,𝑐 × 𝑃𝑐 (𝐼) (2)

𝜎𝑐 = √𝑁𝐿−1∑
𝑖=0

(𝐼𝑖,𝑐 − 𝜇𝑐)2 × 𝑃𝑐 (𝐼) (3)

where 𝐼𝑖,𝑐 = 0, 1, 2, . . . , 255.NL=256 is the number of discrete
color values.

Moreover, the skewness (𝛿𝑐) and kurtosis (𝜂𝑐) of discrete
color values are calculated as follows:

𝛿𝑐 = ∑𝑁𝐿−1𝑖=0 (𝐼𝑖,𝑐 − 𝜇𝑐)3 × 𝑃𝑐 (𝐼)𝜎3 (4)

𝜂𝑐 = ∑𝑁𝐿−1𝑖=0 (𝐼𝑖,𝑐 − 𝜇𝑐)4 × 𝑃𝑐 (𝐼)𝜎4 (5)

The entropy (𝜌𝑐) and range (Δ 𝑐) of color intensity can
be computed and characterize distinctive features of image
samples. These 𝜌𝑐 and Δ 𝑐 are calculated as follows:

𝜌𝑐 = −𝑁𝐿−1∑
𝑖=0
𝑃𝑐 (𝐼) × log2 (𝑃𝑐 (𝐼)) (6)

Δ 𝑐 = max (𝐼𝑐) −min (𝐼𝑐) (7)

2.1.2. Gray-Level Cooccurrence Matrix (GLCM). In computer
vision field, gray-level cooccurrence matrix (GLCM) [26]
is a commonly employed method for texture classification.
A cooccurrence matrix provides information regarding the
distribution of cooccurring pixel values at a given offset 𝑟
[42]. After the cooccurrence matrix is computed, it is often
normalized. Subsequently, a set of statistical measures can
be computed from this normalized matrix. Furthermore, it
is beneficial for texture classification to detect features of an
image’s region which are rotationally invariant. This is the
reason why the cooccurrence matrix is usually computed at
different regular angles (Δ) with certain value of offset 𝑟. The
commonly used values of Δ are 0∘, 45∘, 90∘, and 135∘ [42].

It is proper to note that a color image sample must
be converted to a gray-scale image before the computation
of its GLCM. Let 𝛿 = (𝑟, Δ) represent a relationship
employed to compute a GLCM of an image. Thus, the joint
probability of the pairs of color levels that occur at the two
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locations dictated by the relationship 𝛿 can be calculated
[42]. The information of this joint probability is provided in
a cooccurrence matrix 𝑃𝛿 within which 𝑃𝛿(𝑖, 𝑗) denotes the
probability of the two color levels of 𝑖 and 𝑗 occurring at the
relationship 𝛿 [43].

The normalized cooccurrence matrix is computed as
follows:

𝑃𝑁𝛿 (𝑖, 𝑗) = 𝑃𝛿 (𝑖, 𝑗)𝑆𝑃 (8)

where𝑃𝑁𝛿 represents the normalizedGLCMand 𝑆𝑃 is the total
number of pixels.

With 𝑟 = 1 and Δ = 0∘, 45∘, 90∘, and 135∘, we can establish
four cooccurrence matrices. Based on these four matrices,
the indices of angular second moment (AM), contrast (CO),
correlation (CR), and entropy (ET) can be obtained and
utilized for texture classification [44, 45]. These indices are
calculated by the following equations [26]:

𝐴𝑀 = 𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1
𝑃𝑁𝛿 (𝑖, 𝑗)2 (9)

where 𝑁𝑔 = 256 denotes the number of color level values.
Consider

𝐶𝑂 = 𝑁𝑔−1∑
𝑘=0

𝑘2 𝑁𝑔∑
𝑖=1
|𝑖−𝑗|=𝑘

𝑁𝑔∑
𝑗=1
𝑃𝑁𝛿 (𝑖, 𝑗) (10)

𝐶𝑅 = ∑𝑁𝑔𝑖=1∑𝑁𝑔𝑗=1 𝑖 × 𝑗 × 𝑃𝑁𝛿 (𝑖, 𝑗) − 𝜇𝑋𝜇𝑌𝜎𝑋𝜎𝑌 (11)

where 𝜇𝑋, 𝜇𝑌, 𝜎𝑋, and 𝜎𝑌 represent the means and stan-
dard deviations of the marginal distribution associated with𝑃𝑁𝛿 (𝑖, 𝑗) [26].
2.1.3. Gray-Level Run Lengths (GLRL). First proposed by
Galloway [27], texture analysis based on gray-level run
lengths is an effective method in image processing. This
method is based on the observation that relatively long gray-
level runs occur more often in a coarse texture and a fine
texture often includes short runs [46]. Based on previous
experimental works, properties of gray-level run lengths can
help construct useful features for texture classification tasks
[47–50]. For an image sample and in a given direction, a
run-length matrix 𝑝(𝑖 𝑗) is defined as the number of times
that the image contains a run length j of gray level 𝑖 [27].
Based on 𝑝(𝑖 𝑗), various texture features can be computed
[46].

Let 𝑀 and 𝑁 denote the number of gray levels and the
maximum run length, respectively. Moreover, let 𝑁𝑟 be the
total number of runs and let 𝑁𝑝 be the number of pixels in

the image. Given a set of directions {0∘, 45∘, 90∘, 135∘}, a run
length matrix can be computed. Accordingly, based on each
run length matrix, the Short Run Emphasis (SRE), Long Run
Emphasis (LRE), Gray-Level Nonuniformity (GLN), Run

Length Nonuniformity (RLN), and Run Percentage (RP) are
defined as follows [27, 46]:

𝑆𝑅𝐸 = 1𝑁𝑟
𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝑝 (𝑖, 𝑗)𝑗2 (12)

𝐿𝑅𝐸 = 1𝑁𝑟
𝑀∑
𝑖=1

𝑁∑
𝑗=1
𝑝 (𝑖, 𝑗) × 𝑗2 (13)

𝐺𝐿𝑁 = 1𝑁𝑟
𝑀∑
𝑖=1
( 𝑁∑
𝑗=1
𝑝 (𝑖, 𝑗))2 (14)

𝑅𝐿𝑁 = 1𝑁𝑟
𝑁∑
𝑗=1
(𝑀∑
𝑖=1
𝑝 (𝑖, 𝑗))2 (15)

𝑅𝑃 = 𝑁𝑟𝑁𝑝 (16)

In addition to the above five properties, Chu et al. [51]
proposed the Low Gray-Level Run Emphasis (LGRE) and
High Gray-Level Run Emphasis (HGRE) as follows:

𝐿𝐺𝑅𝐸 = 1𝑁𝑟
𝑁∑
𝑗=1

𝑀∑
𝑖=1

𝑝 (𝑖, 𝑗)𝑖2 (17)

𝐻𝐺𝑅𝐸 = 1𝑁𝑟
𝑁∑
𝑗=1

𝑀∑
𝑖=1
𝑝 (𝑖, 𝑗) × 𝑖2 (18)

Furthermore, the Short Run Low Gray-Level Emphasis
(SRLGE), Short Run High Gray-Level Emphasis (SRHGE),
LongRunLowGray-Level Emphasis (LRLGE), and LongRun
High Gray-Level Emphasis (LRHGE) have been proposed by
Dasarathy and Holder [48] as follows:

𝑆𝑅𝐿𝐺𝐸 = 1𝑁𝑟
𝑁∑
𝑗=1

𝑀∑
𝑖=1

𝑝 (𝑖, 𝑗)𝑖2 × 𝑗2 (19)

𝑆𝑅𝐻𝐺𝐸 = 1𝑁𝑟
𝑁∑
𝑗=1

𝑀∑
𝑖=1

𝑝 (𝑖, 𝑗) × 𝑖2𝑗2 (20)

𝐿𝑅𝐿𝐺𝐸 = 1𝑁𝑟
𝑁∑
𝑗=1

𝑀∑
𝑖=1

𝑝 (𝑖, 𝑗) × 𝑗2𝑖2 (21)

𝐿𝑅𝐻𝐺𝐸 = 1𝑁𝑟
𝑁∑
𝑗=1

𝑀∑
𝑖=1
𝑝 (𝑖, 𝑗) × 𝑖2 × 𝑗2 (22)

2.2. Stochastic Gradient Descent Logistic Regression. It is
noted that the task at hand is to construct a decision boundary
that divides data instances into two class labels of nonspall
and spall. Thus, the logistic regression (LR) model, which
is a powerful pattern classifier, can be employed [52]. LR is
selected to establish the spall detection model in this study
because its learning phase is straightforward. Moreover, the
LRmodel structure is easy to interpret.Thismachine learning
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Procedure SGD
Create a training dataset
Randomly create 𝜃
DefiningMaxEpoch // the maximum number of epochs
Defining 𝛼 // the learning rate parameter
For ep = 1 toMaxEpoch

Shuffle samples in the training data set
For 𝑖 = 1 toM //M = number of data samples

For 𝑘 = 0 to𝐷
𝜃𝑘 = 𝜃𝑘 + 𝛼𝜕𝑙(𝜃𝑘)𝜕(𝜃𝑘)

End For
End For

End For
Return 𝜃

Algorithm 1: Pseudo code of the Stochastic Gradient Descent (SGD) algorithm.

method has also been successfully applied in various recent
applications [53–56].

Let 𝑦 be the outcome of the model. 𝑦 = 1 (the positive
class) when an image sample is subject to spall and 𝑦 = 0
(the negative class) when an image sample is free from spall.
Let 𝑥 be a vector of input features which are extracted from
an image sample. Herein, 𝑥𝑖 = 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝐷 where 𝐷
denotes the number of the features used for classification.
In addition, a vector of 𝜃 = 𝜃0, 𝜃1, 𝜃2, . . . , 𝜃𝐷 represents
adaptable parameters of a LR model.ℎ𝜃(𝑥𝑖) is used to express the probability of the positive
class output of spall which is calculated as follows [35]:

ℎ𝜃 (𝑥𝑖) = ℎ𝜃 (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝐷) = 11 + exp (−𝜂𝑖)
= 11 + exp (−𝜃𝑇𝑥𝑖)

(23)

where 𝜂𝑖 = 𝜃0 + 𝜃1𝑥𝑖1 + 𝜃2𝑥𝑖2 + ⋅ ⋅ ⋅ + 𝜃𝐷𝑥𝑖𝐷 = 𝜃𝑇𝑥𝑖.
Notably, 𝑔(𝜂𝑖) = 1/(1 + exp(−𝜂𝑖)) is called the logis-

tic function or the sigmoid function and its derivative is
expressed in the following form [41]:𝑔 (𝜂𝑖) = 𝑔 (𝜂𝑖) × (1 − 𝑔 (𝜂𝑖)) (24)

The probabilities of the positive and negative classes are
given as follows:𝑃 (𝑦𝑖 = 1 | 𝑥𝑖, 𝜃) = ℎ𝜃 (𝑥𝑖) (25)

𝑃 (𝑦𝑖 = 0 | 𝑥𝑖, 𝜃) = 1 − ℎ𝜃 (𝑥𝑖) (26)

Hence, the output probability can be computed in the
following equation [41]:

𝑃 (𝑦𝑖 = 0 | 𝑥𝑖, 𝜃) = (ℎ𝜃 (𝑥𝑖))𝑦𝑖 (1 − ℎ𝜃 (𝑥𝑖))1−𝑦𝑖 (27)

The likelihood of the LR model parameters can be
expressed as follows [41]:

𝐿 (𝜃) = 𝑀∏
𝑖=1
(ℎ𝜃 (𝑥𝑖))𝑦𝑖 (1 − ℎ𝜃 (𝑥𝑖))1−𝑦𝑖 (28)

where𝑀 represents the number of data samples.

To identify the model parameter 𝜃, the following log
likelihood function is maximized:

𝑙 (𝜃) = log (𝐿 (𝜃))
= 𝑀∑
𝑖=1
𝑦𝑖 log (ℎ𝜃 (𝑥𝑖) + (1 − 𝑦𝑖) (1 − log (ℎ𝜃 (𝑥𝑖)) (29)

The stochastic gradient descent (SGD) [36] can be
employed to construct the LRmodel by adapting its adaptable
parameters 𝜃. Before the model construction phase, the orig-
inal collected data sample should be divided into two sets: a
training set and a testing set.The first set is employed to adapt
themodel parameters; the latter set is reserved for confirming
the model generalization capability. The procedure of the
SGD algorithm is described in Algorithm 1.

Within the SGD algorithm, the quantity 𝜕𝑙(𝜃𝑘)/𝜕(𝜃𝑘) can
be computed as follows:

𝜕𝑙 (𝜃𝑘)𝜕 (𝜃𝑘) = (𝑦𝑖 − ℎ𝜃 (𝑥𝑖)) 𝑥𝑖,𝑘 (30)

Thus, the update rule employed to determine the LR
model parameter 𝜃 is expressed as follows:

𝜃𝑘 = 𝜃𝑘 + 𝛼 (𝑦𝑖 − ℎ𝜃 (𝑥𝑖)) 𝑥𝑖,𝑘 (31)

where 𝑥𝑖,0 = 1 with all 𝑖.
2.3. Piecewise Linear Model. As stated earlier, one limitation
of the standard LR is that its decision is given in the form
of a linear model which is essentially a hyperplane. This
study aims at extending the capability of LR by employing
a piecewise linear decision surface. The underlying concept
is illustrated in Figure 2. Herein, a model 𝑦(𝑥) is used to
separate the input space into two regions characterizing two
data categories. Instead of using a linear decision surface,
a piecewise linear one is employed to fit a subset of the
input data 𝑥. The transition location from a certain subset
to another one is termed a breakpoint or a knot [57].
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Figure 2: Piecewise linear model.

The breakpoints enhance the flexibility of the model by
disintegrating the input space into subspaces in which each
linear model can be used to fit the collected data [40].

Similar to the concept of a piecewise linear regression
[58], the mathematical formulation of a piecewise linear
model with one breakpoint is shown as follows:

𝑦 (𝑥𝑖) =
{{{{{{{{{{{

𝐷+1∑
𝑑=1
𝜃𝑑𝑥𝑖,𝑑 𝑖𝑓 𝑥𝑖,𝑑 ≤ 𝑏

𝐷+1∑
𝑑=1
𝜃𝑑𝑥𝑖,𝑑 𝑖𝑓 𝑥𝑖,𝑑 > 𝑏 (32)

where 𝑥𝑖 denotes the vector of the 𝑖th predicting variable
consisting of 𝐷 elements. 𝑏 represents the knot value. 𝑦
denotes the model output.

The model establishment of the piecewise linear classi-
fication model requires the selection of the knots (𝑏) and
the model parameter (𝜃). In this study, the knot position is
identified via a sequential algorithmdescribed in the previous
work of Hoang [40]. In addition, based on the collected data
samples and the selected knots, the aforementioned SGD
algorithm is used to train piecewise LR and reveal the set of𝜃 that brings about the best fit to the data set at hand.
3. The Image Data Set

Since the logistic regression is a supervised machine learning
algorithm, a data set consisting of 1240 pavement image
samples with the ground truth label has been collected to
construct the logistic regression based classification model.
Herein, the numbers of image samples in the two categories
of nonspalling and spalling are both 620. The digital images
have been collected during survey trip of several high-rise
buildings in Danang city (Vietnam).The employed camera is
the Cannon EOSM10.The camera is positioned at a distance
of about 1.5 meter from the concrete surface. Image samples

of the two categories of nonspalling (label = 0) and spalling
(label = 1) have been prepared for further analysis.

To expedite the speed of the feature extraction process,
the size of image sample has been fixed to be 100x100 pixels.
The collected image samples are demonstrated in Figure 3. It
is worth noticing that the ground truth of image samples is
assigned by human inspectors and the wall condition (either
nonspalling or spalling) is determined at the image level.
Moreover, an image is labeled as spalling if the spalling area
occupies at least 50% of the entire image sample. To ensure
the diversity of the image set, the class of nonspalling includes
samples of intact concrete surface, cracks, and stains; the class
of spalling also takes into account samples in which steel
reinforcement is revealed.

4. The Proposed Piecewise Linear Stochastic
Gradient Descent Logistic Regression Model
for Wall Spall Detection

This section of the study describes the overall structure
of the newly developed piecewise linear (PL) stochastic
gradient descent logistic regression (SGDLR) model for wall
spall detection. The proposed model, named PL-SGDLR,
is a hybridization of image texture computation and data
classification approach.The statistical measurements of color
channels, GLCM, and GLRL are employed for computing
the texture of each image sample. The PL-SGDLR uses the
image texture as features for classifying data samples into
the categories of nonspall and spall. The model structure is
illustrated in Figure 4 which basically includes two modules:
image texture based feature extraction and PL-SGDLR based
data classification. The first module is developed in Visual
C#.NET by the author; the second module is programmed in
MATLAB. The graphical user interfaces of the two modules
are demonstrated in Figure 5.

In the first module of feature extraction, image texture
computing techniques including statistical analysis of color
channels, GLCM, and GLRL are employed to extract features
from image samples. This module has been developed by the
author in Visual C# .NET (Framework 4.6.1). First, the group
of features based on statistical properties of color images is
computed. For each of the three color channels (red, green,
and blue), six statistical indices of mean, standard deviation,
skewness, kurtosis, entropy, and range are computed accord-
ing to the aforementioned formulas. Thus, the total number
of features extracted from these statistical measurements of
an image sample is 6 x 3 = 18.

Second, the group of texture features extracted from four
cooccurrence matrices corresponding to the directions of
0∘, 45∘, 90∘, and 135∘ are obtained. Since each cooccurrence
matrix yields four properties of the angular second moment,
contrast, correlation, and entropy, the total number of fea-
tures extracted from GLCMs is 4 x 4 = 16. Third, the feature
group extracted from four GLRL matrices is calculated.
The four GLRL matrices are constructed by considering the
texture of pixels in the four directions of 0∘, 45∘, 90∘, and
135∘. For each GLRL matrix, the 11 properties of the Short
Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-Level
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(a) (b)

Figure 3: The collected image samples: (a) nonspalling class and (b) spalling class.

Training Data 
Set

PL-SGDLR Model 
Prediction

PL-SGDLR Model 
Training

Spall detection 
result
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features

Statistical properties 
of color channels

GLRL based 
features

Sequential 
Algorithm

Testing Data 
Set

Figure 4: Structure of the proposed PL-SGDLR.

(a)

(b)

Figure 5: Graphical user interface (GUI) of the PL-SGDLR program. (a) Texture computation module and (b) data classification module.
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Figure 6: Concept of a hinge function.

Nonuniformity (GLN), Run Length Nonuniformity (RLN),
Run Percentage (RP), Low Gray-Level Run Emphasis
(LGRE), High Gray-Level Run Emphasis (HGRE), the Short
Run Low Gray-Level Emphasis (SRLGE), Short Run High
Gray-Level Emphasis (SRHGE), Long Run Low Gray-Level
Emphasis (LRLGE), and Long Run High Gray-Level Empha-
sis (LRHGE) are calculated to represent an image texture.
Hence, the total number of features extracted from GLRL
matrices is 4 x 11 = 44.

Accordingly, each image sample is presented by a feature
vector consisting of 18 + 16 + 44 = 78 elements. When
the feature extraction module finishes, a numerical data set
consisting of 1240 data samples and 78 input features is
prepared for further analysis. This data set has two class
outputs: 0 denoting nonspall (negative class) and 1 denoting
spall (positive class). For standardizing the data ranges and
facilitating the data modeling process, the extracted data set
has been processed using Z-score data normalization [59].
Furthermore, the widely employed statistical procedure of
principal component analysis (PCA) is employed for dimen-
sion reduction. PCA basically converts the input features of
the original numerical data set into a set of linearly uncor-
related variables [60]. The processed data is then randomly
separated into two sets: a training set (90%) and a testing set
(10%). The first data set is used for model construction; the
latter data set is reserved for model verification.

The training phase of a PL-SGDLR model relies on the
concept of a hinge function [61] (see Figure 6). As can be seen
from the figure, the output of a hinge function is zero for a
certain part of its range. Therefore, this function is useful for
dividing the data into separated regions; each of the regions
can be satisfactorily fitted by a linear model. Using such a
concept of hinge functions, a PL-SGDLR model having one
predicting variable 𝑥 and one breakpoint 𝑏 is given as follows:
𝑦 = 𝛽𝑜 + 𝛽11max (0, sign (𝑥 − 𝑏))

+ 𝛽12max (0, sign (𝑏 − 𝑥)) + 𝛽21max (0, 𝑥 − 𝑏)
+ 𝛽22max (0, 𝑏 − 𝑥)

(33)

Hence, the output 𝑦(𝑥) according to different values of
the explanatory variable 𝑥 can be written as follows:

(i) If 𝑥 > 𝑏 then 𝑦 = 𝛽11 + 𝛽21max(0, 𝑥 − 𝑏).

(ii) If 𝑥 < 𝑏 then 𝑦 = 𝛽12 + 𝛽22max(0, 𝑏 − 𝑥).
(iii) If 𝑥 = 𝑏 then 𝑦 = 𝛽0.
In essence, at two sides of a breakpoint 𝑏 of the predicting

variable 𝑥, two linear models are constructed. The terms 𝛽0,𝛽11,𝛽12,𝛽21, and𝛽22 are parameters of these two linearmodels.
Without much difficulty, the model with one predicting
variable and one breakpoint can be generalized to a model
with many predicting variables and multiple breakpoints in
the following manner:

𝑦 = 𝐷∑
𝑑=1

𝑉𝑑∑
V=1
𝐿𝐹𝑑,V (𝑥𝑑) (34)

where 𝑑 is the index of predicting variables; 𝐷 denotes the
number of predicting variables; V represents the index of the

hinge function of the 𝑑th predicting variable; 𝑉𝑑 denotes the
number of hinge functions of the 𝑑th predicting variable.

To identify the appropriate breakpoints for the predicting
variables, the range of each input feature 𝑥d is partitioned
into 𝑁𝐵𝑃 equally spaced subranges as follows: min(𝑥𝑑) <𝑏𝑑,1 < 𝑏𝑑,2 < ⋅ ⋅ ⋅ < max(𝑥𝑑). Accordingly, each variable𝑥 has 𝑁𝐵𝑃 + 1 candidates of knots. The model is then
constructed sequentially by adding a suitable breakpoint for
each input variable in each iteration. Procedure of the model
construction phase is demonstrated in Algorithm 2.

In order to accept a breakpoint from a set of candidates,
the following fitness function is proposed:

𝑓𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑃𝑃𝑉 + 𝑁𝑃𝑉2 + 𝜆𝑆𝑢𝑚𝐵𝑃 + 𝜔 (35)

where PPV and NPV are Positive Predictive Value and Nega-
tive Predictive Value, respectively. 𝜆 denotes a regularization
parameter; SumBP is the number of currently accepted
breakpoints; 𝜔 = 1 is a scalar simply used to ensure numerical
stability.

These two quantities of PPV and NPV are computed as
follows:

Positive Predictive Value (PPV) = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (36)

Negative Predictive Value (NPV) = 𝑇𝑁𝑇𝑁 + 𝐹𝑁 (37)

In (35), the first term ((𝑃𝑃𝑉 + 𝑁𝑃𝑉)/2) represents the
model classification accuracy; the second term (𝜆/(𝑆𝑢𝑚𝐵𝑃+𝛼)) is used to quantify the model complexity. It is reasonable
to obtain a model featuring a high value of classification
accuracy with moderated complexity. It is because a model
having a high degree of complexity tends to be overfitted.
Moreover, the model complexity can be expressed in terms
of the SumBP. Therefore, it is desirable to obtain a model
with high value of both predictive values (PPV and NPV)
and a low SumBP. The breakpoint acceptance criterion
(BAC) calculates the fitness value to examine the benefit
of accepting a knot candidate. If a candidate can help to
increase the model’s fitness value, it is allowed to enter the
model structure. It is noted that in order to compute the
classification accuracy the overall LR model is fitted by the
SGD described in the previous section of the study.
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Define the breakpoint acceptance criterion (BAC)
Define the maximum number of iterationsMaxIter
Define the parameter𝑁𝐵𝑃
For 𝑖 = 1 toMaxIter

InitializeModel Structure = []
For d = 1 to D // D is the number of predicting variables

Identify a breaking point for𝑋𝑑 based on BAC
UpdateModel Structure
IdentifyModel Parameter 𝛽 using SGD algorithm

End For
End For
ReturnModel Structure and Model Parameter

Algorithm 2: Pseudo code of the model training phase.
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Figure 7: Total variance explained by principal components.

5. Experimental Result and Comparison

As mentioned in the previous section, the data set, which
consists of 1240 samples and 78 input features, is employed
to construct and validate the proposed PL-SGDLR approach.
The original input data with the number of features = 78
has been preprocessed by PCA to eliminate linear correlation
among its variables. The result of the PCA data transforma-
tion process is a new set of linearly uncorrelated variables;
each new variable is a linear combination of the 78 original
features representing texture of image samples.

Figure 7 reports the PCA result in the form of the
total variance explained by principal components. Based on
several trial runs, the threshold of total variance = 95% is
used to select the suitable number of principal components.
Accordingly, the number of principal components = 7 (corre-
sponding to the total variance = 95.88%) is used. Additionally,
the feature extraction process of the proposed PL-SGDLR
model is demonstrated with an image sample of nonspall
class (Figure 8(a)) and with an image sample of spall class
(Figure 8(b)).

Based on the PCA result, the transformed data set
including 7 input variables and the class label of either 0
(nonspall) or 1 (spall) has been divided into training and
testing subsets. The former and the latter subsets consist
of 90% and 10% of the collected data set, respectively. The
first set is employed in the model construction phase; the

second set is reserved for evaluating themodel generalization
capability when predicting spalls in novel image samples.
Furthermore, because one time of model training and testing
cannot well reveal the model generalization capability due to
the randomness in data selection, this study has performed
a random subsampling of the original data set. This random
subsampling process contains 20 runs. In each run, 10% of the
data is randomly drawn to form the testing set; the rest of the
data is used for model training purpose.

As can be seen from the training process of PL-SGDLR,
it is required to select the parameters of the number of
training iterations (MaxIter), the number of training epochs
(MaxEpoch), and𝑁𝐵𝑃 which determines the number of knot
candidates, learning rate (𝛼) used in the SGD algorithm, and
regularization parameter (𝜆) used in the training phase of PL-
SGDLR. The suitable values of these hyperparameters of the
model have been experimentally found as follows:MaxIter =
3,MaxEpoch = 300,𝑁𝐵𝑃 = 50, learning rate (𝛼) = 0.1, 𝜆= 0.01.

In addition, besides the aforementioned PPV and NPV,
Classification Accuracy Rate (CAR), Recall, and F1 score can
also be employed to express the model spall detection result.
These performance measurement indices are calculated as
follows [62]:

Classification Accuracy Rate: CAR

= 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 × 100% (38)
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Figure 8: Illustration of the feature extraction process. (a) A nonspall sample and (b) a spall sample.
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Figure 9: Illustration of the PL-SGDLR model’s training progress.

Recall = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (39)

F1 Score = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (40)

After the repeated data sampling with 20 independent
runs, the average performance of the PL-SGDLRmodel used
for predicting testing samples is reported as follows: CAR
= 90.24%, PPV = 0.90, Recall = 0.91, NPV = 0.91, and F1
score = 0.90. A typical training phase of the proposed PL-
SGDLRmodel is demonstrated in Figure 9. In this figure, the
horizontal axis denotes the training step which is equal to
the number of MaxIter multiplied by the number of input
variables. Herein, MaxIter is 3 and the number of input
variables is 7. The vertical axis represents the fitness function
value described in (35).

As mentioned earlier, to guarantee the diversity of the
image set and to better cope with the real-world circum-
stance, anomalies such as cracks and stains have been
included in the image data set (see Figure 10). The category
of spalling also contains image samples in which steel rein-
forcement is revealed. Image samples in which spalling and
anomalies (such as crack and stains) coexist are also included
in the image samples to train and verify the predictionmodel.
Based on experimental results, the prediction model can
predict the correct labels of the image samples containing
anomalies.

In addition, to demonstrate the capability of the pro-
posed PL-SGDLR model, the SGD-LR and the Levenberg-
Marquardt Backpropagation Artificial Neural Network (LM-
ANN) [63] are utilized as benchmark approaches. These two
machine learning models are selected due to their successful
applications reported in previous studies [37, 39, 64–66].
SGD-LR is programmed in MATLAB by the author. In addi-
tion, the LM-ANN model is constructed by the MATLAB’s
Statistics and Machine Learning Toolbox [67]. The SGD-LR
is also trained with 300 epochs and the learning rate = 0.1.
In addition, via several trial-and-error runs, the appropriate
configuration of the BPANNmodel is as follows: the number
of neurons = 7, the learning rate = 0.01, and the number of
training epochs = 1000.

The performances of spall detection models obtained
from the repeated data sampling with 20 runs are summa-
rized in Table 1. As can be observed from the experimental
outcomes, the proposed PL-SGDLR has obtained the best
predictive performance (CAR = 90.24%, PPV = 0.90, Recall
= 0.91, NPV = 0.91, and F1 score = 0.90), followed by LM-
ANN (CAR = 88.83%, PPV = 0.88, Recall = 0.90, NPV = 0.90,
and F1 score = 0.89) and SGD-LR (CAR = 84.40%, PPV =
0.84, Recall = 0.85, NPV = 0.85, and F1 score = 0.84).The box
plots of spalling detection performance of the proposed PL-
SGDLR as well as the benchmark models of LM-ANN and
SGD-LR are shown in Figure 11. As shown in this figure, the
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Table 1: Prediction Results Comparison.

Phase Metrics
SGD-LR LM-ANN PL-SGDLR

Mean Std. Mean Std. Mean Std.

Training

CAR (%) 86.42 0.40 90.68 1.46 91.07 0.72

PPV 0.86 0.02 0.90 0.02 0.90 0.02

Recall 0.87 0.02 0.91 0.01 0.93 0.02

NPV 0.87 0.01 0.91 0.01 0.93 0.02

F1 Score 0.86 0.00 0.91 0.01 0.91 0.01

Testing

CAR (%) 84.40 3.56 88.83 3.71 90.24 2.48

PPV 0.84 0.05 0.88 0.04 0.90 0.04

Recall 0.85 0.05 0.90 0.05 0.91 0.02

NPV 0.85 0.04 0.90 0.04 0.91 0.02

F1 Score 0.84 0.04 0.89 0.04 0.90 0.02

(a) (b)

Figure 10: Illustrations of image samples containing anomalies: (a) cracks and (b) stains.
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Figure 11: Box plots of classification performance.

median value of the CAR of the PL-SGDLR (90.72%) is also
higher than those of the LM-ANN (84.68%) and SGD-LR
(88.31%). Thus, it can be seen that the newly developed PL-
SGDLR has outperformed the two benchmarkmethods in all
of the employed performance measurement indices.

In addition, the Wilcoxon signed-rank test [68] is also
employed in this section to investigate the statistical differ-
ence of each pair of spalling detection methods. Herein, the
significance level of the test is set to be 0.05. By assessing
the CAR values obtained from the repeated data sampling
with 20 runs, the Wilcoxon signed-rank test shows that
the spalling detection performance of the PL-SGDLR is
statistically different from that of the SGD-LR with the p-
values = 0.0001. Nevertheless, the statistical test regarding the
performances of the PL-SGDLR and LM-ANN models has

the p-values = 0.1971. Based on this result, it can be seen that
the performance of the PL-SGDLR is highly competitive to
that of the LM-ANN. However, since the CAR, PPV, Recall,
NPV, and F1 Score of the PL-SGDLR are higher than those of
LM-ANN, it is able to confirm that PL-SGDLR is a capable
tool for detecting concrete wall spalls.

6. Conclusion

Detecting spalled areas in concrete wall structures is an
important task in structural health monitoring. This study
proposes a computer vision based model to replace the time-
consuming manual method commonly used for periodic
building survey. The proposed model is a hybridization of
image texture analysis and machine learning approaches.
Image texture computed by the statistical measurements of
color channels, GLCM, and GLRL is employed as features
to characterize the condition of concrete wall surface. Based
on such extracted features, the PL-SGDLR is employed to
classify image samples into two categories of nonspall and
spall. An image data set consisting of 1240 samples has been
collected to train and verify the PL-SGDLR model.

This study also extends the modeling capability of the
standard LR model by employing a piecewise linear decision
surface. A sequential procedure is proposed to iteratively con-
struct the piecewise linear LR model. Experimental results
point out that the newly developedmodel can help to achieve
good spall detection accuracy with CAR = 90.24%. This
result is better than those of LM-ANN (CAR = 88.83%)
and LR (CAR = 84.40%). Since the performance of PL-
SGDLR is better than that of LR, it is able to confirm that
the utilization of a piecewise linear decision surface can
help the LR to extend its nonlinear modeling capability.
Accordingly, the proposed PL-SGDLR can be a potential
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tool to assist maintenance agencies in the task of periodic
survey. Future extensions of the current work may include
the investigation into the effect of different spatial resolutions
on the spalling detection results and the utilization of other
advanced machine learning methods to enhance the predic-
tion accuracy. Furthermore, the effect of different percentages
of the spalling area on the model prediction outcome is also
worth investigating.
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