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Abstract

The cyclic alternating pattern is a microstructure phasic event, present in the non-rapid eye movement sleep, which has

been associated with multiple pathologies, and is a marker of sleep instability that is detected using the electroen-

cephalogram. However, this technique produces a large quantity of information during a full night test, making the task of

manually scoring all the cyclic alternating pattern cycles unpractical, with a high probability of miss classification.

Therefore, the aim of this work is to develop and test multiple algorithms capable of automatically detecting the cyclic

alternating pattern. The employed method first analyses the electroencephalogram signal to extract features that are used as

inputs to a classifier that detects the activation (A phase) and quiescent (B phase) phases of this pattern. The output of the

classifier was then applied to a finite state machine implementing the cyclic alternating pattern classification. A systematic

review was performed to determine the features and classifiers that could be more relevant. Nine classifiers were tested

using features selected by a sequential feature selection algorithm and features produced by principal component analysis.

The best performance was achieved using a feed-forward neural network, producing, respectively, an average accuracy,

sensitivity, specificity and area under the curve of 79, 76, 80% and 0.77 in the A and B phases classification. The cyclic

alternating pattern detection accuracy, using the finite state machine, was of 79%.
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1 Introduction

During sleep, the brain oscillates between two major states,

the rapid eye movement (REM) and the non-REM

(NREM). Cyclic patterns of REM and NREM define the

sleep macrostructure, organized in discrete levels that are

directly related to the sleep deepness. NREM is divided

into three stages (N1, N2 and N3), increasing from stage to

stage the slow-wave activity.

Stage N1 is commonly characterized by mixed fre-

quency activity with low amplitude and constitutes

between 2 and 5% of the total sleep time. The energy in the

lower frequencies increases during the second sleep stage

(N2) that occupies between 45 and 55% of the total sleep.

High-amplitude waves with low frequency characterize

stage N3. During REM sleep, the cerebral activity increa-

ses, presenting mixed wave frequencies with low amplitude

[1].

Transitional states are defined by the sleep microstruc-

ture, describing the transient and phasic events in the brain

electrical activity that can be measured by
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electroencephalography. This imaging technique belongs

to the electrobiological measurements group, and the

electroencephalogram (EEG) is one of the most commonly

used techniques in this field. EEG is registered, at the

surface of the scalp, using metal electrodes and conductive

media [2]. The most common scalp electrodes distribution

is the 10–20 electrode placement standardization [3].

A relevant microstructure phasic event, defined in the

NREM sleep, is the cyclic alternating pattern (CAP),

characterized by cycles of an activation (A phase) phase

followed by a quiescent (B phase) phase. Each phase

duration can vary between 2 and 60 s [4]. A non-CAP

period occurs when the duration of the phases is higher or

lower than the specified one and a CAP sequence is a

succession of two or more CAP cycles. The mean duration

of a CAP sequence, in healthy adults, is estimated to be

2 min and 33 s, composing in average to 5.6 CAP cycles,

having each cycle a mean duration of 26.9 ± 4.1 s [5].

Three subtypes, A1, A2 and A3, were defined according

to the A phase characteristics, increasing the energy, in the

alpha or beta bands from subtypes A1–A3 [6]. The EEG

monopolar derivations, C4-A1 or C3-A2, are often used for

CAP analysis, and the sigma band is introduced. Therefore,

the EEG power spectrum is subdivided into five bands,

delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma

(12–15 Hz) and beta (15–30 Hz) [7]. A detailed analysis of

CAP origin and its significance was produced by Terzano

and Parrino [8]. An example of a B phase and the three

subtypes of the A phase is presented in Fig. 1.

Studies have indicated that CAP is a relevant process to

generate, consolidate and disrupt the sleep macrostructure

[9]. The CAP rate is defined by the ratio of the total CAP

time, in NREM sleep, to total NREM sleep time. When

sleep is disturbed, by induced vigilance instability, the

CAP rate increases. Hence, there is a temporal relation

between autonomic functions, behavioural activities and

CAP [10]. A poorer sleep quality is related to higher values

of CAP rate; therefore, CAP is the EEG marker of sleep

instability [11] and measures the effort of the brain to

maintain sleep [12]. CAP cycles have been associated with

sleep apnea [13], bruxism [14], insomnia [12, 15], periodic

limb movements [12, 16], restless leg syndrome [17],

idiopathic generalized epilepsy [18] and nocturnal frontal

lobe epilepsy [17]. Therefore, scoring CAP is significant

for characterization and diagnosis of such pathologies.

A large quantity of information is produced during a full

night of EEG sleep, making the task of manually scoring

all the CAP cycles unpractical, with a high probability of

miss classification. Consequently, the specialist agreement,

analysing the same EEG results, is in the 69–78% range

[19] and automatic CAP detection algorithms have been

proposed to address this issue.

Therefore, the objective of this work is to analyse

multiple classifiers, proposing algorithms for possible

implementation, making an expansion of the previous work

[20] where linear discriminant analysis (LDA) was anal-

ysed for the CAP phases classification.

The paper is organized as follows: related work is

analysed in Sect. 2; employed methods are discussed in

Sect. 3; algorithm’s performance is examined in Sect. 4;

Sect. 5 presents the comparison of the produced results

Fig. 1 Example of CAP phases, a B phase, b A1 subtype, c A2

subtype and d A3 subtype. From a to c, it is possible to detect the

increase in rapid activities, and from a to any of the A phase subtypes

(b–d), an increase in the signal amplitude variation occurs

Neural Computing and Applications

123



with related work in the state of the art, and the paper

conclusion is presented in the final section.

2 Related work

Two main approaches for CAP classification were identi-

fied through a systematic review. The first consists in

directly classifying the CAP cycles using features extracted

from EEG. Karimzadeh et al. [21] have employed this

method using multiple entropy features and tested three

classifiers, the support vector machine (SVM), the LDA

and the k-nearest neighbours (kNN). kNN provided the best

results, and the most relevant features were Shannon,

Kolmogorov and sample entropies. The alternative

approach consists in first generating features from EEG to

feed a classifier with the aim of determining the A and B

phases. Afterwards, a finite state machine (FSM) classifies

the CAP cycles. A commonly employed simplification

consists of considering that when an epoch is not an A

phase, it will be classified as a B phase (binary classifica-

tion). The second method was employed in this work since

it provides more information, specifically the CAP phases

and the CAP cycles, that could be useful for medical

diagnosis.

Multiple methods for sleep microstructure analysis, and

specifically the A phase classification, are presented in the

state of the art. Barcaro et al. [22] proposed a technique for

the quantitative description of sleep microstructure, based

on the computation of descriptors that provide a normal-

ized measure of how much the amplitude of the activity in

a specific frequency band differs from its background.

Navona et al. [23] and Barcaro et al. [24] used five fre-

quency band descriptors (one descriptor for each of the

EEG bands) and thresholds for classification. A threshold

classification was also employed by Mariani et al. [25], and

Hjorth activity was determined to be the best feature. Largo

et al. [26, 27] computed the fast discrete wavelet transform

and analysed the signal power in each of the five frequency

bands. Two moving averages were calculated, and the

relation between the averages (named activity index) was

used as a measure of the presence of activation phases by

comparing with a threshold. The moving averages and the

thresholds were defined by a genetic algorithm.

Ferri et al. [28] presented an algorithm where the user

has to choose two threshold values: one for the low-fre-

quency band power (characterizing the A1 and part of A2

phases) and another level for the high-frequency band

power (characterizing the A3 and the other part of the A2

phases). A technique based in the similarity analysis of the

windowed signal and an A phase windows reference

database was presented by Niknazar et al. [29].

Five band descriptors, Hjorth activity and differential

variance were used as features to feed classifiers by Mar-

iani et al. [7, 30 31, 32]. In the first work, the employed

classifier was a three-layer neural network (NN), and in the

second it was a SVM with Gaussian kernel. In the third

work, three LDA classifiers were employed (one for B

phase classification, other for A1 phase classification and

the last for A2 and A3 phases classification) and the A

phase classification was generated by a SVM feed by a

combination of the classification vectors. The fourth work

analysed four classifiers, specifically, LDA, NN, SVM and

adaptive boosting (AdaBoost). The best results were pro-

duced by LDA.

Teager energy operator (TEO), a nonlinear energy-

tracking operator viewed as an instantaneous measure of

energy, was used in the discrete form by Machado et al.

[33] applying a threshold for classification. LDA, SVM and

kNN were tested by Machado et al. [34] using TEO,

macro–microstructure descriptor, Lempel–Ziv complexity,

empirical mode decomposition, zero crossing, variance and

Shannon entropy as features. It was verified that the highest

accuracy was achieved by the SVM.

Temporal (skewness, standard deviation, kurtosis and

average A phase duration), energy (total EEG energy and

power density in four bands: delta; theta; alpha; beta) and

complexity (sample entropy, Lempel–Ziv complexity,

Tsallis entropy and fractal dimension) measures were

computed by Mendez et al. [6] to feed a kNN classifier. It

was determined that sample entropy, Lempel–Ziv com-

plexity, standard deviation, EEG energy and power in the

beta band were the most relevant features. A method was

also proposed to discriminate the A phase borders (onset

and offset) that was further analysed by Mendez et al. [35].

The features indicated as the most relevant by the

analysed A phase detection proposals were: Hjorth activity;

Lempel–Ziv complexity; differential variance; TEO;

Shannon entropy; five frequency band descriptors; EEG

energy; power in the beta band; empirical mode decom-

position. LDA, kNN, SVM and NN were the most signif-

icant classifiers. The majority of the analysed papers

remove the REM periods from the analysis, leading to an

increase in the classifier performance. In this work, all the

sleep data of the subjects were kept, making the developed

algorithms more suitable for an automatic system

implementation.

3 Materials and methods

The implemented method for CAP classification first dis-

criminates each epoch as either A or B phase. Afterwards, a

FSM analyses the epochs and determines the CAP cycles.
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A public database was used for training and testing the

classifier and the FSM.

The employed features and the analysed classifiers are a

combination of some that were identified in the systematic

review and some new proposals.

Two tests were performed for each classifier using data

from a database that contains polysomnographic recordings

enclosing subjects with and without pathologies. In the

first, features were selected by sequential feature selection,

using the best features for each classifier. In the second, the

features were produced by principal component analysis

(PCA), selecting the features independently from the

classifier.

3.1 Database

The CAP Sleep Database from Physionet was used [36] to

test the algorithms. This database has annotations con-

cerning the microstructure and macrostructure of sleep

inserted by a team of trained neurologists of the Ospedale

Maggiore of Parma, Italy. EEG was recorded using the

10-20 international system, and the signals from monopolar

derivations (C4-A1 or C3-A2) were used.

Recordings from fourteen subjects were selected for this

work. Nine of them are free of any neurological disorders,

four have sleep-disordered breathing, and one has bruxism.

The recording’s duration varies between 6 h and 30 min to

9 h and 15 min. Five subjects were females, and nine were

males, having an age variation between 23 and 78 years

old. The annotations include the A phase description and

duration. However, the CAP cycles are not annotated.

Hence, these annotations were made for each subject in

agreement with Terzano reference atlas [36].

An average of 50,000 samples was used in each of the

employed datasets, consisting of data from three subjects,

either for training or for testing. Thus, seven subjects were

used for training and the other seven for testing. In each

iteration, two datasets were used for training or testing and

validation was performed with the left off subject, repeat-

ing multiple times with different combinations until all

subjects were used at least once for validation.

The programming environment MATLAB (The Math-

works Inc.) was used to produce the analysis, importing the

EEG signals.

3.2 Methodology

The employed methodology was based on the processing of

the whole EEG signal related to either C4-A1 channel or

C3-A2 channel and encompasses the steps: feature

extraction; feature selection; classification by a classifier

(A and B phases); post-processing; FSM classification

(CAP cycles).

3.3 Feature set

A two-second epoch duration was employed since it is the

minimum duration of a CAP phase. An individual test of

each of the features identified in the systematic review, as

the most relevant for A phase detection, was performed.

The five band descriptors, implemented in delta,

(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma

(12–15 Hz) and beta (15–30 Hz) bands, achieved good

discriminatory capabilities in the A phase analysis. How-

ever, the power spectral density (PSD) of each band was

chosen since they provided a higher accuracy. The same

conclusion was obtained when comparing the autocovari-

ance with differential variance. Log-energy entropy was

indicated as a significant feature for EEG analysis by

Aydin et al. [37] and presented a better performance than

Hjorth activity, Lempel–Ziv complexity and empirical

mode decomposition for A phase detection. Standard

deviation and the average power of the time series also

exhibit a good correlation with the A phase presence.

Therefore, a group of eleven features, indicated in

Table 1, were used in this work, specifically, the standard

deviation and the average power in the time series, auto-

covariance, Shannon and log-energy entropies, PSD in the

five frequency bands (delta, theta, alpha, sigma and beta)

and TEO. Feature selection was performed using classifier

dependent, sequential forward selection and classifier

independent, PCA, methods.

3.4 Sequential feature selection

Feature selection was performed using the sequential for-

ward selection (SFS) method. The algorithm is initiated

with two vectors: the first is empty, and the second has all

the features with a random order.

Table 1 Analysed features and the respective identification number

Feature Number

Average power 1

Standard deviation 2

Shannon entropy 3

Log-energy entropy 4

Autocovariance 5

TEO 6

PSD in the delta band 7

PSD in the beta band 8

PSD in the alpha band 9

PSD in the sigma band 10

PSD in the theta band 11
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The goal is to produce a feature vector that provides the

maximum accuracy (Acc), sensitivity (Sen) and specificity

(Spe). Consequently, this is a multi-objective optimization.

Therefore, a combined objective (CO) was defined as the

sum of accuracy, sensitivity and specificity with equal

weight [38].

In the first iteration, the feature that provided the highest

value for the CO was selected as the most relevant and was

moved from the second vector to the first vector.

In the next iterations, the algorithm looks for the feature,

in vector two, that when combined with the feature in

vector one provides the highest value for the CO. The

selected feature was moved from the second to the first

vector and placed after the first moved feature. This pro-

cess was repeated until all the features have been moved

from the second to the first vector. The result was a vector

(the first vector) with all features ordered according to their

relevance for the classifier. A feature selection process

analyses the result vector and chooses the features that

contribute to an increment of the CO. The final feature

vector keeps the features that, when combined, provided

the maximum achieved value of the CO.

3.5 Classifiers

A binary classification was employed in this work since the

results of the classifier are either an A phase or not an A

phase (considered to be a B phase). In the previous work

[20], LDA was analysed. It is a supervised learning clas-

sifier that assumes the data to be produced based on

Gaussian distributions [39].

Nine classifiers were tested in this study with the aim of

covering multiple possible solutions, from simple to com-

plex implementations. Two classifiers based in unsuper-

vised learning were selected: the first was the self-

organizing map (SOM), a type of NN that analyses topo-

graphic relationships of the input data [40]. The second

classifier was k-means clustering (kMC) that consists in

determining cluster means and then assigning the data

points to the clusters [41]. The other seven classifiers,

based on supervised learning, were logistic regression

(LR), classification tree (CT), ensemble of decision trees

(ET), SVM, kNN, feed-forward NN (FFNN) and cascade-

forward NN (CFNN).

LR uses the logistic function to predict the output

probability given the model parameters. A different

approach is followed by CT, dividing the dataset into

smaller subsets, and generates an associated decision tree

with decision nodes and leaf nodes that produces the

classification [39]. An ET was also analysed, consisting of

a combination of multiple decision trees (weak learners) to

implement a classifier combination strategy [40].

The kNN algorithm classifies the data by analysing the

dominant class among its k-nearest neighbour points in the

training set. A more complex approach is employed by

SVM, representing the input data in a multidimensional

space that is divided by a discriminant hyperplane to

identify classes. The FFNN can be seen as series of logistic

regression models connected in layers to form a directional

network [39]. CFNN is similar to FFNN but has a con-

nection from every previous layer to the next layer.

A cross-validation scheme, where validation was per-

formed with one subject and training or testing with the

others, was used for each classifier performance analysis,

producing the average Acc, Sen, Spe and area under the

curve (AUC). The FSM was then fed with the classifier

output to determine the CAP cycles, and the accuracy of

the results (CAPacc) was evaluated.

3.6 Post-processing and finite state machine

A post-processing procedure was implemented to reduce

the CAP phases classification outliers, leading to an

improvement in the accuracy of CAP detection.

An epoch was considered as a misclassification if the

previous and the next epochs are from the opposite phase.

Therefore, if the epoch was classified as an A or B phase,

then the epoch label is changed to a B or A phase,

respectively.

After the post-processing, a FSM was employed to

classify the CAP cycles in agreement with Terzano refer-

ence atlas [36]. First, the algorithm verifies whether the A

and B phases are valid, using the specifications of mini-

mum (2 s) and maximum (60 s) duration of a phase.

Afterwards, the cycles are defined by applying the rule that

an A phase needs to separate two consecutive B phases.

4 Results

It was verified that the features have different behaviours in

each sleep stage and this effect decreases the classifier

performance. However, all features react to the occurrence

of an A phase in every sleep stage.

The performance of the classifiers was analysed in two

tests, with a cross-validation scheme in each test. The

features selected by SFS were employed in the first test,

and the features produced by PCA were used in the second

test.

The SFS results of each classifier are presented in

Table 2. The order of selection is from the most relevant

(first feature) to the less relevant (last feature), and the

feature number indicates the feature according to Table 1.

Figure 2 presents the number of times each feature was

selected by the classifiers. It is possible to determine that
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PSD in the beta band is the most relevant feature and PSD

in the delta band is the less relevant feature. The first three

components of PCA were used in the second test. It was

verified that the first component was the most relevant. An

example of the variation of this component and the PSD in

the beta band (most relevant feature) is presented in Fig. 3

and is possible to assess their correlation with the CAP

phases. An A phase is represented by the value 1 and a B

phase by the value 0.

The specifications of each classifier were chosen by

performing multiple runs with cross-validation, and the

parameters that maximized the CO were kept. For the LR,

it was verified that using regularization does not increase

the classification performance. The selected split predictor

algorithm for the CT minimizes the p value of the Chi-

square tests. If the p value is greater than 0.05, then the

algorithm stops splitting nodes. The best minimum parent

size was varied between 1 and 10.

Best results were produced for the minimum size of 1.

For the ET, the best number of trees was evaluated by

consecutive increment, from 3 to 30. It was determined that

the highest value for the CO was achieved with 10 trees.

Three ensemble-aggregation methods were tested, specifi-

cally the AdaBoost, LPBoost and TotalBoost [42]. The best

results were produced using TotalBoost. Linear and

Gaussian kernel functions were tested for the SVM clas-

sifier, with the highest CO value obtained using the linear

kernel function with a scale of 2 and a 10% outlier fraction.

The best transfer function for both FFNN and CFNN

was the hyperbolic tangent sigmoid, and gradient descent

was employed for learning adaptation. The chosen training

function was Levenberg–Marquardt backpropagation [41].

The number of neurons was varied from 20 to 400, in steps

of 10 neurons. The best value of neurons for the FFNN was

280, and for CFNN it was 270.

Three kMC distance measures were analysed, specifi-

cally, the squared Euclidean, sum of absolute differences

and Hamming [43]. The best results were provided by the

squared Euclidean distance. The number of nearest

neighbours for the kNN classifier was varied between 1 and

10, with the best result achieved with 4 for the Euclidean

distance. The analysed distances were Chebyshev, Eucli-

dean and Hamming [39]. For SOM, the dimension size was

varied from 2 to 10. The best result was achieved using a

dimension size of 6.

Table 2 SFS result of each classifier, using the feature identification

number present in Table 1

Classifier SFS order

LR 8, 1, 9, 6

CT 7, 8, 11, 10, 9, 5, 4, 3

ET 9, 7, 11, 10, 4, 8, 6, 5, 3

SVM 1, 8, 11, 4, 6, 2, 10, 5

FFNN 8, 3, 6, 5, 11

CFNN 8, 3, 6, 9, 11, 5, 10

kMC 10, 5, 6, 3, 9, 8, 2

kNN 11, 8, 7, 9, 5, 3, 1, 4, 2

SOM 10, 1, 8, 6, 11, 5, 2

Fig. 2 Number of times the features were selected by each classifier

specified by a colour. Features are identified by the identification

number present in Table 1 (colour figure online)

Fig. 3 Example of the variation of the most relevant feature (PSD in

the beta band) and PCA first component with the CAP phases

Table 3 Average results of the implemented classifiers using the

features selected by SFS

Classifier Acc (%) Sen (%) Spe (%) AUC CAPacc (%)

LR 76 80 75 0.77 78

CT 70 58 73 0.66 64

ET 70 64 71 0.67 70

SVM 72 80 70 0.76 75

FFNN 79 76 80 0.78 79

CFNN 76 77 76 0.76 77

kMC 78 67 81 0.74 78

kNN 72 70 72 0.71 70

SOM 67 79 66 0.73 68
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Tables 3 and 4 present the results of each classifier using

the features selected by SFS and the features produced by

PCA, respectively. The accuracy of the FSM is also pre-

sented. The performance analysis is based in the Acc, Sen,

Spe, AUC and CAPacc. Comparing the results of the two

tests, it is possible to verify that only the CT and ET

achieved better results using PCA.

FFNN with features selected by SFS provided the

highest average values for the CO, Acc and AUC. CT with

the features produced by PCA attains the highest average

Spe but has a poor Sen. The maximum Sen was achieved

by SOM, but it has also produced the lowest value for the

CO.

It was determined that FFNN is the best classifier to

classify the CAP phases and the FSM attains the highest

accuracy in the CAP classification (CAPacc) using the

results of the FFNN as input. However, LR with features

selected by SFS achieved similar results, when comparing

with the FFNN, and this algorithm provides a simpler

implementation that could be useful in a system with few

computational resources.

The variation, around the average value, of Acc, Sen,

Spe, AUC and CAPacc (using the results provided by the

classifier to feed the FSM), for each classifier using the

features selected by SFS, is presented, respectively, in

Figs. 4, 5, 6, 7 and 8. By analysis of these figures, it is

possible to verify that CFNN has the lowest variation in the

results, while ET has the highest.

The estimate of which noise level is tolerable for the

proposed method that achieved the best results (FFNN with

features selected by SFS), classifying the CAP phases, was

performed by introducing additive white Gaussian noise

(AWGN) to the EEG signal with different levels of signal-

to-noise ratio (SNR) and using the CO as the reference

measurement. The results are presented in Fig. 9, and it

was verified that below a SNR of 31 dB the performance of

the proposed method begins to deteriorate and the lowest

admissible SNR was 0.5 dB (CO of 70%).

Table 4 Average results of the implemented classifiers using the

features produced by PCA

Classifier Acc (%) Sen (%) Spe (%) AUC CAPacc (%)

LR 67 78 65 0.71 69

CT 74 51 82 0.62 68

ET 74 63 77 0.70 76

SVM 68 84 66 0.74 71

FFNN 75 76 75 0.75 76

CFNN 74 76 74 0.75 76

kMC 61 62 61 0.61 61

kNN 69 65 70 0.67 66

SOM 22 90 08 0.49 60

Fig. 4 Variation in percentage of the Acc of each classifier, using

features selected by SFS

Fig. 5 Variation in percentage of the Sen of each classifier, using

features selected by SFS

Fig. 6 Variation in percentage of the Spe of each classifier, using

features selected by SFS

Fig. 7 Variation in percentage of the AUC of each classifier, using

features selected by SFS
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5 Discussion

Multiple approaches for A phase detection are presented in

the state of the art. Table 5 summarizes the analysis of the

reported results from the articles that have been identified

in the review. The average results achieved in this work are

also presented to facilitate the comparison. A common

approach consists of removing the REM sleep periods,

leading to a reduction in the miss classifications and,

therefore, an increase in the Acc. From the analysed works

in Table 5 only this work, Machado et al. [34] and Men-

donça et al. [20] did not follow this approach.

From the group of papers that did not employ a machine

learning approach, Barcaro et al. [24] reported the highest

Acc using band descriptors. Mariani et al. [31] achieved the

maximum reported Acc and Spe using LDA as classifier.

However, the approach also reported the lowest Sen,

leading to unbalanced results. Using the same classifier,

Mariani et al. [32] achieved the second highest Acc with

balanced results in Sen and Spe. Comparing these results

with the works that have also used LDA, Machado et al.

[34] and Mendonça et al. [20], it is possible to verify that a

lower performance was achieved possibly due to the effect

of not removing the REM sleep periods from the analysis.

Comparing the achieved results, for the kNN and SVM

classifiers, with the results reported by Machado et al. [34]

it is possible to verify that a higher ACC was achieved in

this work. Making the comparison with Mariani et al.

[7, 32], for the SVM, it is possible to verify that in this

work a lower Acc and Spe were achieved, but the Sen is

higher. These results could be due to the typical unbal-

anced data in a normal subject, having much more B

phases than A phases, implying that an increase in Spe has

a greater impact in the Acc than an increase in Sen. The

other relevant aspect is the removal of the REM sleep

periods from the analysis that also leads to an increase in

the Acc. The same analysis is valid for the comparison of

the achieved results with the FFNN and the NN employed

by Mariani et al. [30, 32].

Table 6 presents the analysis for CAP classification. It is

possible to verify that the results reported by Karimzadeh

et al. [21] are similar to the results achieved in this work for

the methods that employ either the LR, FFNN and kMC

classifiers or the FSM. However, the proposed implemen-

tation in this work is based in features that are obtained

more easily.

The higher CAPacc achieved by Karimzadeh et al. [21]

could be due to the removal of the REM periods. Men-

donça et al. [20] employed the method of first discriminate

the CAP phases, with an LDA classifier, and afterwards use

a FSM to determine the CAP cycles. Therefore, it is pos-

sible to make a direct comparison with this work. Classi-

fying the CAP phases with SVM provides the same

accuracy as reported by Mendonça et al. [20]. However,

better results are produced using the LR, FFNN, CFNN and

kMC classifiers.

6 Conclusions

The goal of this work was to develop algorithms capable of

detecting the CAP phases, using a classifier to determine

the A and B phases, and the CAP cycles, by employing a

FSM. A review was made to assess the most relevant

features and classifiers to be analysed in the work. Each

classifier was tested with features selected by SFS and

PCA. The best results were produced using the FFNN with

features selected by SFS. It was verified that the developed

algorithms have a comparable performance with the algo-

rithms in the state of the art for the detection of the CAP

phases, without the need to remove the REM sleep periods,

providing a simpler approach for an automatic system

implementation.

According to Rosa et al. [19], the specialist agreement,

analysing the same EEG results, is in the 69–78% range.

Therefore, the attained results with the LR, FFNN, CFNN

and kMC classifiers are above the average specialist

agreement, indicating that the presented algorithms could

be useful for medical diagnosis.

Fig. 8 Variation in percentage of the CAPacc, using the results

provided by each classifier, with features selected by SFS, to feed the

FSM

Fig. 9 CO produced by the FFNN with features selected by SFS

(method that achieved the best results) in the presence of AWGN,

classifying the CAP phases. The noise was introduced in the EEG

signal with different levels of SNR
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The main limitation of this study is related to the

unknown effect that EEG signals provided by subjects with

sleep pathologies that were not considered in this study

database, such as insomnia, narcolepsy, periodic leg

movements, nocturnal frontal lobe epilepsy and REM

behaviour disorder, which would produce in the developed

methods. Such analysis is the subject of the future work.

A bigger dataset could be a good option to carry out a

clinical validation of the method. Regarding physical

implementation, either a computer or a dedicated hardware,

such as a digital signal processor, is needed to run the

algorithm and sensors to produce the EEG signal from

either C4-A1 channel or C3-A2 channel.
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Table 5 Comparative analysis

of the CAP phases classification

proposals in the state of the art

and the presented methods

Paper Method Acc (%) Sen (%) Spe (%)

Navona et al. [23] Band descriptors 77 84 90

Barcaro et al. [24] Band descriptors 84 – –

Mariani et al. [30] NN 82 76 83

Mariani et al. [7] SVM 84 74 86

Mariani et al. [25] Band descriptors 69 59 71

Differential variance 72 55 76

Hjorth activity 72 70 72

Mariani et al. [32] AdaBoost 79 69 79

LDA 85 73 87

NN 82 73 82

SVM 82 70 84

Mariani et al. [31] LDA 86 67 90

Niknazar et al. [29] Similarity analysis 81 76 81

Machado et al. [34] kNN 70 – –

LDA 68 – –

SVM 71 – –

Mendonça et al. [20] LDA 75 78 74

This work LR 76 80 75

CT 70 58 73

ET 70 64 71

SVM 72 80 70

FFNN 79 76 80

CFNN 76 77 76

kMC 78 67 81

kNN 72 70 72

SOM 67 79 66

Table 6 Comparative analysis of the CAP classification proposals in

the state of the art and the presented methods

Paper Method CAPacc (%)

Karimzadeh et al. [21] kNN 79

LDA 79

SVM 82

Mendonça et al. [20] LDA and FSM 75

This work LR and FSM 78

CT and FSM 64

ET and FSM 70

SVM and FSM 75

FFNN and FSM 79

CFNN and FSM 77

kMC and FSM 78

kNN and FSM 70

SOM and FSM 68
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