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Abstract—The object-based analysis of remotely sensed im-
agery provides valuable spatial and structural information that
is complementary to pixel-based spectral information in classi-
fication. In this paper, we present novel methods for automatic
object detection in high-resolution images by combining spec-
tral information with structural information exploited by using
image segmentation. The proposed segmentation algorithm uses
morphological operations applied to individual spectral bands
using structuring elements in increasing sizes. These operations
produce a set of connected components forming a hierarchy of
segments for each band. A generic algorithm is designed to se-
lect meaningful segments that maximize a measure consisting
of spectral homogeneity and neighborhood connectivity. Given
the observation that different structures appear more clearly at
different scales in different spectral bands, we describe a new
algorithm for unsupervised grouping of candidate segments be-
longing to multiple hierarchical segmentations to find coherent
sets of segments that correspond to actual objects. The segments
are modeled by using their spectral and textural content, and
the grouping problem is solved by using the probabilistic latent
semantic analysis algorithm that builds object models by learning
the object-conditional probability distributions. The automatic
labeling of a segment is done by computing the similarity of its
feature distribution to the distribution of the learned object models
using the Kullback–Leibler divergence. The performances of the
unsupervised segmentation and object detection algorithms are
evaluated qualitatively and quantitatively using three different
data sets with comparative experiments, and the results show that
the proposed methods are able to automatically detect, group, and
label segments belonging to the same object classes.

Index Terms—Hierarchical segmentation, image segmentation,
mathematical morphology, object-based analysis, unsupervised
object detection.

I. INTRODUCTION

DUE TO the constantly increasing coverage and availability
of very high resolution remotely sensed data, automatic

content extraction, object detection, and classification for urban
applications have continued to be important research problems.
There is an extensive literature on the classification of remotely
sensed imagery, where pixel-level processing has been the
common choice for remote sensing image analysis systems.
These systems use a broad range of features, including multi- or
hyperspectral information, texture features, edge detection, and
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Fig. 1. Example classification results using a pixel-based quadratic Gaussian
classifier with (c) PCA and Gabor features and (d) DAFE features. The
classification maps for (c) and (d) are taken from [1] and [2], respectively.
(a) False color. (b) Reference map. (c) Classification using PCA and Gabor
features. (d) Classification using DAFE features.

linear or nonlinear transformations of these features. Such fea-
tures are used with a wide range of classifiers, including prob-
abilistic methods employing maximum-likelihood or Bayesian
estimation techniques, neural networks, decision trees, support
vector machines, and genetic algorithms for applications like
land cove/land use classifications.

Despite the high success rates that have been published in the
literature using limited ground truth data, visual inspection of
the results shows that most of the urban structures still cannot
be delineated as accurately as expected, particularly in high-
resolution images. For example, Fig. 1(a) shows the false-color
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representation of a hyperspectral image of Pavia, Italy. The
classification map shown in Fig. 1(c) is obtained by using fea-
tures extracted with principal components analysis (PCA) and
Gabor texture filters with a quadratic Gaussian classifier [1].
Similarly, Fig. 1(d) shows the map obtained by using discrimi-
nant analysis feature extraction (DAFE) and a similar classifier
[2]. Although the success rates obtained as 93.97% and 97.2%,
according to the reference map shown in Fig. 1(b), can be
considered quite high, none of the boundaries of the buildings,
roads, and shadows on the left half of the image is explicit,
and no structure can be seen in the results. In other words, the
limitations of the pixel-based classification evaluated by using
limited pixel-based ground truth are not necessarily reflected
in the numerical accuracy. Therefore, this shows that there is
still much work to be done, and more advanced classification
methods must be designed for practically acceptable results.

We believe that in addition to pixel-based spectral data,
spatial and structural information should also be used for a more
intuitive and accurate classification. Common ways of incorpo-
rating spatial information into the classification involve the use
of textural, morphological, and object-based features. Features
extracted by using co-occurrence matrices, Gabor wavelets [3],
morphological profiles [4], and Markov random fields [5] have
been widely used in the literature to model spatial information
in neighborhoods of pixels. However, problems, such as scale
selection and the detailed content of very high resolution im-
agery, make the applicability of traditional fixed-window-based
methods difficult for such data sets.

Another powerful method for exploiting structural infor-
mation is to perform region-based classification rather than
classifying individual pixels. This is also referred to as object-
oriented classification in the remote sensing literature. For ex-
ample, Bruzzone and Carlin [6] performed classification using
the spatial context of each pixel according to a hierarchical
multilevel representation of the scene. In a similar approach [7],
we obtained a wavelet-based multiresolution representation,
segmented images at each resolution, and used region-based
spectral, textural, and shape features for classification. In [8],
Katartzis et al. also modeled spatial information by segment-
ing images into regions and classifying these regions using a
Markovian model, which is defined on the hierarchy of a mul-
tiscale region adjacency graph. In another study [9], Soh et al.

presented a system for sea-ice image classification, which also
segmented the images, generated descriptors for the segments,
and then used expert system rules to classify the images.

Many popular segmentation algorithms in the computer vi-
sion literature assume that images have a moderate number of
objects with relatively homogeneous features and cannot be
directly applied to high-resolution remote sensing images that
contain a large number of complex structures. Furthermore, an-
other popular approach of edge-based segmentation is hard for
such images because of the large amount of details. Moreover,
watershed-based techniques are also not very useful because
they often produce oversegmented results that are mostly be-
cause of irrelevant local extrema in the images. A common
approach is to apply smoothing filters to suppress these ex-
trema; however, lots of details in high-resolution images may
be lost because the spatial support of these details are usually
small. Therefore, most of the segmentation work in the remote
sensing literature have been based on merging neighboring

pixels according to user-defined thresholds on their spectral
similarity. Alternatively, proximity filtering and morphological
operations can also be used as postprocessing techniques to
pixel-based classification results for segmenting regions [10].

In a related work, Pesaresi and Benediktsson [4] success-
fully applied opening and closing operations with increasing
structuring element (SE) sizes to an image to generate mor-
phological profiles for all pixels and assigned a segment label
to each pixel using the SE size corresponding to the largest
derivative of these profiles. Although morphological profiles
are sensitive to different pixel neighborhoods, the segmentation
decision is performed by individually evaluating pixels without
considering the neighborhood information, and the assumption
that all pixels in a structure have only one significant deriva-
tive maximum occurring at the same SE size often does not
hold for very high resolution images. Scale selection is also a
very important problem in multiscale/hierarchical segmentation
techniques. For example, Tilton [11] developed a hierarchical
segmentation algorithm that combined spectral clustering with
iterative region growing, where segments at coarser levels of
detail were obtained by merging segments at finer levels of de-
tail. The multiresolution segmentation implementation offered
by the eCognition software also consists of bottom–up region
merging, where each pixel is initially considered as a separate
object and pairs of image objects are iteratively merged to form
larger segments [12]. The main problems associated with both
of these approaches are that the resulting segmentations depend
on the thresholds used with local homogeneity criteria and that
the manual interpretation of the hierarchy is needed because
different objects may appear at different scales.

Our main contributions in this paper are twofold. We present
a new segmentation algorithm for exploiting structural informa-
tion and propose a novel method that uses the resulting regions
for unsupervised object detection. Our first contribution, which
is the segmentation algorithm, uses the neighborhood and
spectral information as well as the morphological information.
First, morphological opening and closing operations are applied
to individual spectral bands using SEs in increasing sizes to
generate morphological profiles. These operations produce a
set of connected components, forming a hierarchy of segments
for each band. Then, unlike [4], where only the scale with the
maximum change in the profile is considered, each component
at different levels of the hierarchy is evaluated as a candidate
for meaningful structures using a measure that consists of two
factors, namely: spectral homogeneity, which is calculated in
terms of the variances of spectral features, and neighborhood
connectivity, which is calculated by using the sizes of connected
components. A novel two-pass algorithm is designed to select
the segments that jointly optimize this combined measure and
find the meaningful segments in a completely unsupervised
process. The proposed selection algorithm is generic in the
sense that other criteria for homogeneity and connectivity can
also be directly incorporated.

An important observation is that different structures appear
more clearly in different bands. For example, buildings can be
detected accurately in one band, but roads, trees, fields, and
paths can be detected accurately in other bands. With a similar
observation, Benediktsson et al. [2] appended the morpholog-
ical profiles that were independently extracted from multiple
principal components into a single high-dimensional feature
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vector, performed linear feature reduction, and classified the
pixels using neural networks.

In this paper, as our second main contribution, we pro-
pose a novel unsupervised method for the automatic detec-
tion of objects from multiple hierarchical segmentations and
the corresponding candidates for meaningful structures from
individual bands. The goal is to find coherent groups of seg-
ments that correspond to actual objects. Considering multiple
objects/structures of interest, this setting can also be seen
as a grouping problem within the space of a large number
of candidate segments obtained from multiple hierarchical
segmentations. To solve the grouping problem, we use the
probabilistic latent semantic analysis (PLSA) [13] technique
by formulating a graphical model for the joint probability of
the segments and their features in terms of the probability of
observing a feature given an object and the probability of an
object given the segment. The parameters of this graphical
model are learned by using the expectation-maximization (EM)
algorithm. Then, for a particular segment, the set of probabil-
ities of objects/structures given this segment, can be used to
assign an object label to this segment. The performances of
the unsupervised segmentation and automatic object detection
algorithms are evaluated qualitatively and quantitatively using
three different data sets with comparative experiments.

The rest of this paper is organized as follows. The data sets
and the features used for both segmentation and object detection
are introduced in Section II. The segmentation algorithm for
the extraction of candidate segments from individual bands in
an image is described in Section III. The algorithm for group-
ing segments for object detection is presented in Section IV.
Experiments are discussed in Section V, and conclusions are
given in Section VI.

II. FEATURE EXTRACTION

We illustrate the proposed algorithms using three data sets.

1) DC Mall: HYDICE image with 1280 × 307 pixels, 3-m
spatial resolution, and 191 spectral bands corresponding
to an airborne data flightline over the Washington, DC
Mall area. The false-color image is shown in Fig. 2(a).

2) Pavia: ROSIS data with 1096 × 715 pixels, 2.6-m spa-
tial resolution, and 102 spectral bands corresponding to
the city center in Pavia, Italy. The false-color image is
shown in Fig. 3(a).

3) Ankara: IKONOS data with 500 × 500 pixels and 1-m
spatial resolution pan-sharpened red, green, blue (RGB)
bands corresponding to part of a university campus
in downtown Ankara. The color image is shown in
Fig. 19(a).

Considering that morphological operations have traditionally
been defined for single-band binary or gray-scale images, we
applied PCA to summarize the hyperspectral data because the
PCA bands provide the optimal representation in the least-
squares sense [14]. The resulting three bands corresponding to
the top principal components representing the 99% variance of
the whole data are shown in Figs. 2 and 3 for the DC Mall and
Pavia data sets, respectively. Original RGB bands were used for
the Ankara data set.

In addition to the PCA bands that give the best representa-
tion, we also applied linear discriminant analysis (LDA) that

Fig. 2. False-color image (generated using the bands 63, 52, and 36) and the
first three PCA bands of the DC Mall data set. (a) False color. (b) First PCA
band. (c) Second PCA band. (d) Third PCA band.

Fig. 3. False-color image (generated using the bands 68, 30, and 2) and the
first three PCA bands of the Pavia data set (a missing vertical section in the
middle was removed). (a) False color. (b) First PCA band. (c) Second PCA
band. (d) Third PCA band.
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projects the data onto a new set of bases that best separate the
classes in the least-squares sense [14]. Six bands for the DC
Mall and eight bands for the Pavia data sets were extracted by
using the pixel level seven class and nine class ground truth
available for these data sets, respectively. Finally, we extracted
Gabor texture features [3] using kernels at two scales and four
orientations, resulting in an additional feature vector of length
eight for each pixel for a given band. The resulting PCA bands
are used for image segmentation as the best representation for
the spectral data in Section III, and the LDA and Gabor bands
are used as alternative features, in addition to the PCA bands,
for object detection in Section IV.

III. IMAGE SEGMENTATION

The proposed segmentation algorithm combines spectral
information from the original data with structural informa-
tion extracted through morphological operations. These two
complementary types of information are incorporated into a
hierarchical structure, and a generic iterative algorithm is used
to extract meaningful segments from this hierarchy by simul-
taneously optimizing spectral homogeneity and neighborhood
connectivity. Considering the fact that different structures may
appear more clearly in different bands, we analyze each band
separately. The following sections describe the details of the
algorithm. Parts of this section were presented in [15].

A. Morphological Profiles

We use mathematical morphology to exploit structural in-
formation. In particular, morphological opening and closing
operations are used to model structural characteristics of pixel
neighborhoods. These operations are known to isolate struc-
tures that are brighter and darker than their surroundings,
respectively. Contrary to opening (respectively, closing), open-
ing by reconstruction (respectively, closing by reconstruction)
preserves the shape of the structures that are not removed by
erosion (respectively, dilation). In other words, image structures
that the SE cannot be contained are removed while others
remain.

The opening and closing by reconstruction operations are
applied by using increasing SE sizes to generate multiscale
characteristics called morphological profiles. The derivative of
the morphological profile (DMP) [4] is defined as a vector
where the measure of the slope of the opening–closing profile
is stored for every step of an increasing SE series. Pesaresi and
Benediktsson [4] used the structural information encoded in
the DMP for segmenting remote sensing images. They defined
an image segment as a set of connected pixels showing the
greatest value of the DMP for the same SE size. That is,
the segment label of each pixel is assigned according to the
scale corresponding to the largest derivative of its profile. Their
scheme works well in images with moderate resolution, where
the structures in the image are mostly flat so that all pixels in
a structure have only one derivative maximum. A drawback
of this scheme is that neighborhood information is not used
while assigning segment labels to pixels. This often results in
numerous small noisy segments in very high resolution images
with nonflat structures where the scale with the largest value of
the DMP may not correspond to the true structure (see Fig. 4
for an illustration). In our approach, we do not consider pixels

Fig. 4. Greatest value in the DMP of the pixel marked with a blue + in (a) is
obtained for the SE size 2 [derivative of the opening profile is shown in (b)].
Subpanel (c) shows the segment that we would obtain if we label the pixels
with the SE size corresponding to the greatest DMP. The segment in (d) that
occurs with SE size 3 is more preferable as a complete structure, but it does not
correspond to the scale of the greatest DMP for all pixels inside the segment.
(a) Example pixel. (b) DMP of the pixel. (c) Segment for SE size 2. (d) Segment
for SE size 3.

Fig. 5. (a) Example opening DMP at three scales. (b) Pixels whose DMP
values are greater than zero (thresholding at DMP > 0). Each connected
component at each scale is a candidate segment for the final segmentation.

alone while assigning segment labels. Instead, we also take into
account the behavior of the neighbors of the pixels.

B. Hierarchical Segment Extraction

In our segmentation approach, our aim is to determine the
segments by applying opening and closing by reconstruction
operations. We assume that pixels with a positive DMP value
at a particular SE size face a change with respect to their
neighborhoods at that scale. As opposed to [4], where only
the scale corresponding to the greatest DMP is used, the main
idea is that a neighboring group of pixels that have a similar
change for any particular SE size is a candidate segment for
the final segmentation. These groups can be found by applying
connected components analysis to the DMP at each scale
(see Fig. 5 for an illustration).

Considering the fact that different structures have different
sizes, we apply the opening and closing by reconstruction using
SEs in increasing sizes that are from 1 to m (radius of the disk).
However, a connected component appearing for a small SE size
may be appearing because of the heterogeneity and geometrical
complexity of the scenes and of other external effects such
as shadows producing texture effects in images and resulting
in structures that can be one to two pixels wide [4]. In this
case, there is, most probably, a larger connected component
appearing at the scale of a larger SE to which the pixels of
those noise components belong. On the other hand, a connected
component that corresponds to a true structure in the final
segmentation may also appear as part of another component
at larger SE sizes. The reason is that a meaningful connected
component may start merging with its surroundings and other
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Fig. 6. Example connected components for a building structure. These com-
ponents appear for SE sizes 3, 5, and 6, respectively, in the derivative of
the opening profile of the second PCA band. (a) False-color image. (b) A
small connected component that is part of (c). (c) The preferred connected
component. (d) A large component where (c) started merging with others.

connected components after the SE size in which it appears is
reached. Fig. 6 shows these cases.

For each opening and closing profile, through increasing
SE sizes from 1 to m, each morphological operation reveals
connected components that are contained within each other in
a hierarchical manner, where a pixel may be assigned to more
than one connected component appearing at different SE sizes
as in Fig. 6. We treat each component as a candidate meaningful
segment. Using these segments, a tree is constructed where each
connected component is a node and there is an edge between
two nodes corresponding to two consecutive scales if one node
is contained within the other. Leaf nodes represent the compo-
nents that appear for the SE size 1. Root nodes represent the
components that exist for the SE size m. Fig. 7 shows a part of
an example tree constructed by candidate meaningful segments
appearing in five levels. Considering that we use a finite number
of SE sizes, there may be more than one root node. In this case,
there will be more than one tree, and the algorithms described
in the next section are run on each tree separately.

C. Segment Selection

After forming a tree for each opening and closing profile, our
aim is to search for the most meaningful connected components
among those appearing at different scales in the segmentation
hierarchy. With a similar motivation in [11], Tilton analyzed
hierarchical image segmentations and selected the meaningful
segments manually. Then, Plaza and Tilton [16] investigated
how the different spectral, spatial, and joint spectral/spatial
features of segments change from one level to another in a
segmentation hierarchy, with the goal of automating the se-
lection process in the future. Alternatively, Klaric et al. [17]
thresholded the DMP to obtain candidate objects and applied
heuristics, such as thresholds, on the aspect ratio of the bound-
ing box to accept a candidate as a building object. In this
paper, each node in the tree is treated as a candidate segment
in the final segmentation, and selection is done automatically
as described in the following.

Ideally, we expect a meaningful segment to be as spectrally
homogeneous as possible. However, in the extreme case, a
single pixel is the most homogeneous. Hence, we also want
a segment to be as large as possible. In general, a segment
stays almost the same (both in spectral homogeneity and size)
for some number of SEs and then faces a large change at a
particular scale, which is either because it merges with its sur-
roundings to make a new structure or because it is completely
lost. Consequently, the size we are interested in corresponds
to the scale right before this change. In other words, if the
nodes on a path in the tree stay homogeneous until some node

Fig. 7. Example tree where each candidate segment is a node.

n and if the homogeneity is lost in the next level, we say that n
corresponds to a meaningful segment in the hierarchy.

With this motivation, to check the meaningfulness of a
node, we define a measure consisting of two factors, namely:
spectral homogeneity, which is calculated in terms of variances
of spectral features, and neighborhood connectivity, which is
calculated by using the sizes of connected components. Then,
starting from the leaf nodes (level 1) up to the root node
(level m), we compute this measure at each node and select a
node as a meaningful segment if it is a highly homogeneous
and large enough node on its path in the hierarchy (a path
corresponds to the set of nodes from a leaf to the root).

In order to calculate the homogeneity factor in a node, we
use the fact that pixels in a correct structure should not only
have similar morphological profiles but also similar spectral
features. Thus, we calculate the homogeneity of a node as the
standard deviation of the spectral information of the pixels
in the corresponding segment. The spectral information for
the DC Mall and Pavia data sets consists of the PCA bands,
whereas the RGB bands are used for the Ankara data set. The
PCA components are used instead of the full hyperspectral data
because they achieve dimensionality reduction and provide the
best summarization of spectral data in the least-squares sense.
The LDA bands are not used because their computation requires
labeled data, and we want the segmentation step to be fully
unsupervised. The rest of the algorithm is generic; thus, it is
independent of which features are used to compute the spectral
homogeneity.

In examining a node from the leaf up to the root in terms of
homogeneity, we do not directly use the standard deviation of
the node. Instead, we consider the difference of the standard de-
viation of that node and its parent. What we expect is a sudden
increase in the standard deviation. When the standard deviation
does not change much, it usually means that small sets of pixels
are added to the segment or some noise pixels are cleaned.
When there is a large change, it means that the structure merged
with a larger structure or it merged with other irrelevant pixels,
disturbing the homogeneity in the node. Hence, the difference
of the standard deviation in the node’s parent and the standard
deviation in the node should be maximized while selecting the
most meaningful nodes.

The computation of the standard deviation of the multispec-
tral data of a node is done by projecting these data onto a 1-D
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representation [18]. Let the number of spectral bands be d. The
basis used for the 1-D representation is selected as the vector
connecting the mean of the original d-dimensional data for the
pixels of the current node and the mean of the data for its parent.
The projection of the d-dimensional data onto this vector, which
can be considered to separate the nodes in the spectral space,
is computed using inner products, and the standard deviation
of the resulting 1-D data is computed for each node. This
formulation exploits the multivariate information contained in
the multispectral bands while computing the standard deviation.
We also tested a formulation using the average of the standard
deviations computed from individual bands, but there was no
visual difference in the results compared with the ones given in
this paper.

As discussed previously, using only the spectral homogeneity
factor will favor small structures. To overcome this problem,
the number of pixels in the segment corresponding to the node
is introduced as another factor to create a tradeoff. As a result,
the goodness measure M for a node n is defined as

M(n) = D (n, parent(n)) × C(n) (1)

where the first term is the standard deviation difference between
the node’s parent and itself and the second term is the number
of pixels in the node. The node that is relatively spectrally
homogeneous and large enough will maximize this measure
and will be selected as a meaningful segment. Other linear
and nonlinear combinations of homogeneity and scale can be
incorporated for calculating the goodness measure. However,
we use the simplest combination in (1) to avoid the introduction
of new parameters.

Given the value of the goodness measure for each node, we
find the most meaningful segments as follows. Suppose that
T = (N , E) is the tree, with N as the set of nodes and E as the
set of edges. The leaf nodes are in level 1, and the root node is in
level m. Let P denote the set of all the paths from the leaves to
the root, M(n) as the measure at node n, and descendant(n)
as the descendant nodes of node n. We select N ∗ ⊆ N as the
final segmentation with the following conditions:

1) ∀a ∈ N ∗,∀b ∈ descendant(n),

M(a) ≥ M(b);

2) ∀a ∈ N \ N ∗,

∃b ∈ descendant(n) : M(a) < M(b);

3) ∀a, b ∈ N ∗,

∀p ∈ P : a ∈ p → b /∈ p,

∀p ∈ P : b ∈ p → a /∈ p;

4) ∀p ∈ P,

∃a ∈ p : a ∈ N ∗.

The first condition requires that any node in N ∗ must have a
measure greater than all of its descendants. The second condi-
tion requires that no node in N \ N ∗ has a measure greater than
all of its descendants. The third condition requires that any two
nodes in N ∗ cannot be on the same path (i.e., the corresponding
segments cannot overlap in the hierarchical segmentation). The
fourth condition requires that every path must include a node
that is in N ∗.

We use a two-pass algorithm for selecting the most mean-
ingful nodes (N ∗) in the tree. The bottom–up (first) pass aims

to find the nodes whose measure is greater than all of its de-
scendants (condition 1). The algorithm first marks all nodes in
level 1. Then, starting from level 2 up to the root level, it checks
whether each node in each level has a measure greater than or
equal to those of all of its children. The greatest measure, which
is seen so far in each path, is propagated to upper levels so that
it is enough to check only the immediate children rather than all
descendants in order to find whether a node’s measure is greater
than or equal to that of all of its descendants’.

After the bottom–up pass marks all such nodes, the top–down
(second) pass seeks to select the nodes that also satisfy the
remaining conditions (2, 3, and 4). It starts by marking all
nodes as “selected” in the root level if they are marked by
the bottom–up pass. Then, in each level until the leaf level,
the algorithm checks for each node whether it is marked in the
bottom–up pass while none of its ancestors is marked. If this
condition is satisfied, it marks the node as selected. Finally, the
algorithm selects the nodes that are marked as selected in each
level as meaningful segments. The pseudocode for the selection
algorithm is shown in Algorithms 1–3.

Algorithm 1 Segment-Selection Algorithm

Run Bottom–Up algorithm

Run Top–Down algorithm

for each level l = 1 to m do

for each node n in level l do

select n as a meaningful segment if it is marked as

selected

end for

end for

Algorithm 2 Bottom–Up Algorithm

Mark all nodes in level 1

for each level l = 2 to m do

for each node n in level l do

if M(n) ≥ max{M(a)|a ∈ children(n)} then

mark n

else

M(n) = max{M(a)|a ∈ children(n)}
leave n unmarked

end if

end for

end for

Algorithm 3 Top–Down Algorithm

Mark all nodes in level m as selected if they are already

marked in Bottom–Up

for each level l = m − 1 to 1 do

for each node n in level l do

if parent(n) is marked as selected or parent-selected

then

mark n as parent-selected

else

if parent(n) is not marked in Top–Down and n is

not marked in Bottom–Up, then

leave n unmarked

else

mark n as selected

end if

end if

end for

end for
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Fig. 8. Example run of the Bottom–Up algorithm on a sample tree. Beginning
from the leaves until the root, the nodes whose measures are greater than all of
the descendants (satisfying condition 1) are colored with blue in each step. (a)
Step 1. (b) Step 2. (c) Step 3. (d) Step 4.

Fig. 9. Example run of the Top–Down algorithm on the tree in Fig. 8(d).
Beginning from the root until the leaves, the nodes marked in the Bottom–Up
algorithm which also satisfy the remaining conditions (2, 3, and 4) are marked
with green in each step. When the algorithm ends, the green nodes are selected
as the most meaningful nodes in the tree. (a) Step 1. (b) Step 2. (c) Step 3. (d)
Step 4.

An example run of these algorithms is illustrated using a
sample tree where the nodes are labeled as i_j, with i denoting
the node’s level and j denoting the number of the node from left
to right in that level. A value for the goodness measure is given
in parenthesis for each node. Figs. 8 and 9 show the marked
nodes in each step of the Bottom–Up and the Top–Down al-
gorithms, respectively. During the Bottom–Up algorithm, each
node 1_j (1 ≤ j ≤ 8) is marked in the beginning. Then, as we
move upwards, nodes 2_1, 2_2, 2_3, and 2_5 in level 2 and
nodes 3_1 and 3_2 in level 3 are marked because the measure
of each of them is greater than or equal to those of all of its
descendants. Then, we run the Top–Down algorithm and mark
nodes 3_1, 3_2, 2_5, and 1_5, satisfying the four conditions
defined previously, as selected.

After selecting the most meaningful connected components
in each opening and closing tree separately, the next step is
to integrate the resulting connected components. A problem
may occur when two connected components, one being selected
from the opening tree and the other being selected from the
closing tree, intersect. In this case, the intersecting part is
assigned to the connected component whose goodness measure
is greater.

TABLE I
TOTAL NUMBER OF SEGMENTS OBTAINED BY USING DIFFERENT

SEGMENTATION ALGORITHMS FOR INDIVIDUAL BANDS. HS, PROPOSED

HIERARCHICAL SEGMENTATION ALGORITHM; PB,
PESARESI–BENEDIKTSSON ALGORITHM; AND WS,

WATERSHED SEGMENTATION

Fig. 10. Example segmentation results for the DC Mall data set. From left
to right: false color, result of the proposed approach, result of Pesaresi–
Benediktsson, and result of watershed segmentation.

D. Evaluation of Segmentation

We applied the proposed hierarchical segmentation algo-
rithm to all three data sets described in Section II. Disk SEs,
with radii from 3 to 15, were used for both opening and closing
profiles constructed for each spectral band (3 PCA bands for
DC Mall and Pavia and three RGB bands for Ankara). The
tree structure was separately constructed for each band, and the
segments were independently selected from each tree. The same
bands were also segmented by using the Pesaresi–Benediktsson
algorithm [4] that defines an image segment as a set of con-
nected pixels showing the greatest value of the derivative
morphological profile for the same SE size and the watershed
segmentation [19] that uses the gradient of an image as input
after suppressing small local extrema to avoid severe overseg-
mentation. The same parameters were used for all data sets for
a given algorithm.

Table I shows the total number of segments obtained by using
all three algorithms. Figs. 10–12 show example segmentations
for the DC Mall, Pavia, and Ankara data sets, respectively. We
present the zoomed versions of the results for several example
areas to better illustrate the details for high-resolution imagery
and for clarity of the presentation of this paper. Considering
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Fig. 11. Example segmentation results for the Pavia data set. From left
to right: false color, result of the proposed approach, result of Pesaresi–
Benediktsson, and result of watershed segmentation.

Fig. 12. Example segmentation results for the Ankara data set. From left
to right: RGB color, result of the proposed approach, result of Pesaresi–
Benediktsson, and result of watershed segmentation.

that there is no detailed object-level geographic information
system (GIS) vector data available, only qualitative evaluation
is done for segmentation. The results show that our segmenta-
tion algorithm is able to detect structures in the image that are
more precise and more meaningful than the structures detected
by the compared approaches. The oversegmentation produced
by the Pesaresi–Benediktsson algorithm occurred because the
segment label assignment is done individually for each pixel
by only considering the greatest value in its DMP. Thus, noisy
pixels that are different from their neighborhoods may produce
small segments because they may have large values occurring
at scales corresponding to small SE sizes. Similarly, although a
prefiltering to suppress the small local extrema of the gradient
is applied, the watershed segmentation algorithm still produces
oversegmentation that is commonly observed in the literature.
However, our algorithm considers both the morphological char-
acteristics encoded in the DMP and the spectral homogeneity
measured in terms of the standard deviation within contiguous
groups of pixels. It also considers the consistency of these
values within neighboring pixels forming large connected com-
ponents. As a result, the combined measure that uses both
spectral and structural information is both robust to noise and
consistent within detailed structures in high-resolution images.
In all of the examples, our algorithm is able to extract many
meaningful structures as whole segments.

Note that it is possible to improve some of the segments by
tuning the parameters of the Pesaresi–Benediktsson algorithm
(e.g., specifying different set of scales) and the watershed
segmentation algorithm (e.g., threshold for eliminating small
local extrema; the same parameters were used for all algorithms

Fig. 13. Example segmentation results for different PCA bands of the DC
Mall data set. The left, middle, and right images show the segments extracted
in the first, second, and third PCA bands, where the roads/shadows, trees, and
buildings are detected more clearly, respectively.

for all data sets in the experiments). However, we observed
that different parameters needed to be manually selected for
different bands of different data sets, and the parameters that
performed well for one band of a data set could give very
bad results for other bands and other data sets. On the other
hand, the proposed segment extraction and segment selection
algorithms are free from parameters (except for the number of
scales m used to construct the range of SE sizes with fixed unit
increments for the morphological profile for segment extrac-
tion) and can automatically select the meaningful segments at
different scales and sizes in the hierarchy for different spectral
bands and different data sets in a completely unsupervised
process without any need for parameter tuning.

Another important observation is that different structures are
extracted more clearly in different spectral bands. In particular,
buildings can be detected accurately in one band, but roads,
trees, fields, paths, and shadows can be detected accurately in
other bands. For example, the structures in Fig. 10(a) and (b)
are found in the second PCA band of the DC Mall data set. On
the other hand, the structures in Fig. 11(a) and (b) are found
in the third PCA band of the Pavia data set. Fig. 13 shows the
extracted segments in different PCA bands of the DC Mall data
set. The reason why a particular structure is better extracted in
a particular band is that the pixels belonging to that structure
are found lighter or darker than their surroundings on that
band. This motivates the next step to automatically integrate
the results from individual bands as a final segmentation with
detected objects in an image.

IV. OBJECT DETECTION

In Section III, we described a method that used the neigh-
borhood and spectral information, as well as the morphological
information, for segmentation. In this section, we present an
unsupervised algorithm for the automatic selection of segments
from multiple segmentations and spectral bands (parts of this
section were presented in [20]). The input to the algorithm is
a set of hierarchical segmentations corresponding to different
spectral bands. The goal is to find coherent groups of segments
that correspond to meaningful structures. The assumption here
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Fig. 14. Each segment is modeled by using the statistical summary of its pixel
content. In the experiments, these summaries are obtained by quantizing the
feature values using the k-means algorithm and representing the distribution of
these quantized values in a histogram.

is that for a particular structure (e.g., building), the “good”
segments (i.e., the ones containing a building) will all have
similar features, whereas the “bad” segments (i.e., the ones con-
taining multiple objects or corresponding to overlapping partial
object boundaries) will be described by a random mixture of
features. Therefore, considering multiple objects/structures of
interest, this selection process can also be seen as a grouping
problem within the space of a large number of candidate
segments obtained from multiple hierarchical segmentations.
The resulting groups correspond to different types of objects
in the image.

A. Modeling Segments

The grouping algorithm consists of three steps, namely:
extracting segment features, grouping segments, and detecting
objects. In the first step, each segment is modeled by using
the statistical summary of its pixel content. First, all pixels
in the image are clustered by applying the k-means algorithm
in a feature domain. This corresponds to the quantization of
the feature values. Then, a histogram is constructed for each
segment to approximate the distribution of these quantized
values belonging to the pixels in that segment, as shown in
Fig. 14. This histogram is used to represent the segment in
the rest of the algorithm. Alternative representations include
the use of the mean or the covariance of the feature values of
the pixels within a segment. However, the mean is often not
sufficient to distinguish complex objects, and the covariance es-
timation can have singularity problems for small sample sizes.
The histogram model provides a tradeoff that contains more
information than the mean while being easier to estimate than
the covariance. Furthermore, the segment selection algorithm in
Section III-C uses a goodness measure that selects the segments
that are large enough so that the histograms can be reliably
estimated. Note that the object detection algorithm is generic
in the sense that any discrete model of the segment’s content
can also be used by the grouping algorithm in the next section.

B. Grouping Segments

In this paper, we use the PLSA algorithm [13] to solve the
grouping problem. PLSA was originally developed for statisti-
cal text analysis to discover topics in a collection of documents
that are represented by using the frequencies of words from a
vocabulary. In our case, the documents correspond to image
segments, the word frequencies correspond to the histograms
of pixel-level features, and the topics to be discovered corre-
spond to the set of objects/structures of interest in the image.

Fig. 15. (a) PLSA graphical model. The filled nodes indicate observed ran-
dom variables, whereas the unfilled node is unobserved. The red arrows show
examples for the measurements represented at each node. (b) In PLSA, the
object-specific feature probability P (xj |tk) and the segment-specific object
probability P (tk|si) are used to compute the segment-specific feature proba-
bility P (xj |si).

Russell et al. [21] used a different graphical model in a similar
setting where multiple segmentations of natural images were
obtained by using the normalized cut algorithm by changing
its parameters, and instances of segments corresponding to
objects such as cars, bicycles, faces, sky, etc., were successfully
grouped and retrieved from a large set of images.

The PLSA technique uses a graphical model for the joint
probability of the segments and their features in terms of the
probability of observing a feature given an object and the pro-
bability of an object given the segment. Suppose there are
N segments (documents) having content coming from a dis-
tribution (vocabulary) with M discrete pixel feature values
(words). The collection of segments is summarized in an N -by-
M co-occurrence table n, where n(si, xj) stores the number of
occurrences of the feature value xj in segment si. In addition,
there is a latent object type (topic) variable tk associated with
each observation; an observation being the occurrence of a
feature in a particular segment.

The graphical model used by PLSA to model the joint
probability P (xj , si, tk) is shown in Fig. 15. The generative
model P (si, xj) = P (si)P (xj |si) for the feature content of
segments can be computed by using the conditional probability

P (xj |si) =
K

∑

k=1

P (xj |tk)P (tk|si) (2)

where P (xj |tk) denotes the object-conditional probability of
the feature xj occurring in object tk, P (tk|si) denotes the
probability of the object tk observed in segment si, and K is
the number of object types. Then, the object-specific feature
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distribution P (xj |tk) and the segment-specific feature distribu-
tion P (xj |si) can be used to determine the similarities between
object types and segments (as explained in the next section).

In PLSA, the goal is to identify the probabilities P (xj |tk)
and P (tk|si). These probabilities are learned by using the EM
algorithm [13]. In the E step, the posterior probability of the
latent variables are computed based on the current estimates of
the parameters as

P (tk|si, xj) =
P (xj |tk)P (tk|si)

∑K
l=1

P (xj |tl)P (tl|si)
. (3)

In the M step, the parameters are updated to maximize the
expected complete data log-likelihood as

P (xj |tk) =

∑N
i=1

n(si, xj)P (tk|si, xj)
∑M

m=1

∑N
i=1

n(si, xm)P (tk|si, xm)
(4)

P (tk|si) =

∑M
j=1

n(si, xj)P (tk|si, xj)
∑M

j=1
n(si, xj)

. (5)

The E and the M steps are iterated until the difference between
the consecutive expected complete data log-likelihoods is less
than a threshold or the number of iterations exceeds a predeter-
mined value.

C. Detecting Objects

After learning the parameters of the model, we want to
find good segments belonging to each object type learned.
This is done by comparing the feature distribution within
each segment p(x|s) and the feature distribution for a given
object type p(x|t). The similarity between two distributions
can be measured using the Kullback–Leibler (KL) divergence
D(p(x|s)‖p(x|t)). Then, for each object type, the segments in
an image can be sorted according to their KL divergence scores,
and the most representative segments for that object type can be
selected. However, if there are two segments that are extracted
from different spectral bands grouped within the same object
type and at least one of them overlaps with the other by a
predetermined percent of its whole area, the less representative
structure (the one with a larger KL divergence score) is removed
from that object type to avoid having multiple segments of the
same object.

D. Evaluation of Object Detection

The performance of the PLSA-based segment grouping and
object detection depends on the choice of the features that are
used to model the segments and the number of object types
that is given as the input to the grouping algorithm. Clustering
evaluation measures can be used to study the effects of dif-
ferent settings of the parameters and provide an objective and
quantitative evaluation of the unsupervised grouping/detection
algorithms described in the previous sections.

In the literature, clustering is often used as an intermediate
step of a classification/recognition system, where only the
performance of the final system is analyzed or where, usually,
only a qualitative visual inspection of the clustering results
are performed. To evaluate the accuracy of object detection,

first, quality measures for both individual object types (clusters)
and the overall detection (clustering) must be defined. One
way of defining these measures involves the use of ground
truth data, where the resulting groups are compared with the
manually assigned labels for the segments. In other words,
the quality measures should quantify how well the results
of the unsupervised detection algorithm reflect the groupings
in the ground truth.

In an optimal result, the segments with the same object
class labels in the ground truth must be assigned to the same
group (cluster), and the segments corresponding to different
object class types must appear in different groups (clusters)
at the end of the detection process. An information theoretic
criterion that measures the homogeneity of the distribution
of the segments with respect to different object types is the
entropy [22]. Another measure is the Rand index [23] that is
analogous to the Kappa coefficient and measures the agreement
between two labelings. These two measures are described in the
following.
1) Entropy: Let hck denote the number of segments as-

signed to the object type (cluster) k with a ground truth object

class label c, hc. =
∑K

k=1
hck denote the number of segments

with a ground truth object class label c, and h.k =
∑C

c=1
hck

denote the number of segments assigned to object type (cluster)
k, where K is the number of object types given as input to
the grouping/detection algorithm and C is the true number
of objects. The quality of individual clusters is measured in
terms of the homogeneity of the true object class labels within
each cluster. For each cluster k, the cluster entropy Ek is
given by

Ek = −
C

∑

c=1

hck

h.k

log
hck

h.k

. (6)

Then, the overall cluster entropy Ecluster is given by a weighted
sum of individual cluster entropies as

Ecluster =
1

∑K
k=1

h.k

K
∑

k=1

h.kEk. (7)

A smaller cluster entropy value indicates a higher homo-
geneity. However, the cluster entropy continues to decrease as
the number of clusters increases. To overcome this problem,
another entropy criterion that measures how the segments of
the same true object class are distributed among the clusters
can be defined. For each true object class c, the class entropy
Ec is given by

Ec = −
K

∑

k=1

hck

hc.

log
hck

hc.

. (8)

Then, the overall class entropy Eclass is given by a weighted
sum of individual class entropies as

Eclass =
1

∑C
c=1

hc.

C
∑

c=1

hc.Ec. (9)

Unlike the cluster entropy, the class entropy increases when the
number of clusters increases. Therefore, the two measures can
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be combined for an overall entropy measure as

E = βEcluster + (1 − β)Eclass (10)

where β ∈ [0, 1] is a weight that balances the two mea-
sures [22].
2) Adjusted Rand Index: When the number of true object

classes and the number of detected object types are the same,
the Kappa coefficient can be used to measure the amount of
agreement between the two labelings. However, the number of
detected clusters in an unsupervised classification is not always
the same as the true number of objects. In such cases, the
Rand index can be used to measure the agreement of every
pair of segments according to both unsupervised and ground
truth labelings [23]. The agreement occurs if two segments that
belong to the same class are put into the same cluster or if two
segments that belong to different classes are put into different
clusters. The Rand index is computed as the proportion of all
segment pairs that agree in their labels. The index has a value
between 0 and 1, where 0 indicates that the two labelings do
not agree on any pair of segments and 1 indicates that the two
labelings are exactly the same.

However, the expected value of the Rand index of two
random groupings does not take a constant value. The adjusted
Rand index [23], which can be computed as

R =

C
∑

c=1

K
∑

k=1

(

hck

2

)

−

[

C
∑

c=1

(

hc.

2

)

K
∑

k=1

(

h.k

2

)

]

/
(

N
2

)

[

C
∑

c=1

(

hc.

2

)

+
K
∑

k=1

(

h.k

2

)

]

/2 −

[

C
∑

c=1

(

hc.

2

)

K
∑

k=1

(

h.k

2

)

]

/
(

N
2

)

(11)

where N is the total number of segments, has a maximum
value of 1 and an expected value of 0. Therefore, it has a wider
range and more sensitivity than the original index. This index is
also analogous to the Kappa coefficient because it measures the
agreement over and above that expected by chance [23].
3) Ground Truth for Object Detection: Considering that

suitable detailed GIS data and object-level ground truth are not
available in the form of individual segments, we use the pixel-
level ground truth to generate the object labels for evaluation.
The pixel-level ground truth that we manually created and is
shown in Fig. 16(a) is used for this purpose. Given all segments
that are used for object detection, a segment is assigned an
object class label if at least 20% of its pixels have an overlap
with the pixel-level ground truth and at least 50% of those
pixels have the same label. The first threshold handles the areas
where the pixel-level ground truth is not available. The second
threshold ensures that the majority of the segment belongs to
the same object. These two thresholds are selected empirically
to obtain an object-level ground truth, with a coverage as much
as possible, by making use of the pixel-level ground truth as
much as possible. These object labels for segments are used
to perform a quantitative evaluation of the unsupervised object
detection.

V. EXPERIMENTS

The qualitative evaluation of the proposed image-
segmentation algorithm with comparative experiments
was presented in Section III-D. The input to the unsupervised

Fig. 16. Reference map and the statistics of the ground truth used to compute
the object detection performance indexes. The plots in (c) and (d) show the
indexes (left) for different settings of the features for k = 25 and (right) for
different number of quantization levels (k = 10, 25, 40) when PCA, LDA, and
Gabor features were used. The x-axes show the number of object types (K,
number of clusters) given as input to the detection algorithm. (a) Reference map
(which is rotated). (b) Ground truth statistics (number of pixels and segments
in each class). (c) Entropy versus number of object types. (d) Adjusted Rand
index versus number of object types.

object detection algorithm is the set of all segments extracted
from individual bands of an image, where the goal is to find
coherent groups of segments that correspond to different
objects. The total number of segments that are automatically
extracted was 2070, 4107, and 1053 for the DC Mall, Pavia,
and Ankara data sets, respectively.

The next step is the modeling of the segments using his-
tograms of quantized feature values. All seven possible com-
binations of three different types of features (PCA, LDA, and
Gabor), for the DC Mall and Pavia data sets, and three possible
combinations of two different types of features (RGB and
Gabor), for the Ankara data set, were used as described in
Section II. The pixels in each image were quantized using the
k-means algorithm, where the number of quantization levels
(k) was set to three different values (10, 25, and 40) to study
the effects of quantization. Then, for each segment, a histogram
with k bins was constructed by counting the number of pixels
belonging to each quantization level within that segment, as
described in Section IV-A.

Next, the PLSA algorithm was used to learn the object-
conditional feature distributions for all object types. In the
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experiments, the number (K) of latent object type variables
(tk) was varied from 5 to 60 with increments of 1. The
parameters of the distribution models were learned by using the
EM algorithm for each setting, as described in Section IV-B.

In the final step, the KL divergence score between each
segment and each object type was computed, and the segments
were grouped as belonging to the object type where the KL
score was the smallest. Considering that the segments were
extracted from different bands, some of the segments could
overlap. When the overlap between two segments belonging
to the same group was more than 30% of the area of one of
the segments, the one with a larger KL divergence score was
removed, as described in Section IV-C.

Quantitative performance evaluation for object detection was
performed for the DC Mall data set using the performance
indexes described in Section IV-D. We extended the original
pixel-level ground truth containing only 8079 pixels that we ob-
tained with the hyperspectral data [24] to increase its coverage
as much as possible [shown in Fig. 16(a)]. Fig. 16 shows the
entropy and Rand indexes with respect to the different settings
of the features, the number of quantization levels, and the
number of object types (number of clusters). When individual
cluster and class entropy values are analyzed in detail, we can
see that the cluster entropy continued to decrease, as expected,
as the number of clusters increased because purer clusters
were obtained when the segments were divided into a larger
number of groups. On the other hand, the class entropy tend
to stay flat for a very small number of clusters and started
to increase when the number of clusters became greater than
the number of true object classes (C = 7 for this data set)
because the segments belonging to the same object class were
divided into numerous groups, diversifying the distribution of
the class over the clusters. The turning point for the overall
entropy occurred when the number of clusters was approxi-
mately equal to the number of true object classes (K = 8 or 9),
after which it continued to increase because the increase in
the class entropy was greater than the decrease in the cluster
entropy.

The Rand index measures the agreement between the de-
tected and true segment labels using two components, namely:
the number of segment pairs that belong to the same class and
put into the same cluster and the number of segment pairs that
belong to different classes and put into different clusters. In
the experiments, the former number tend to stay flat for a very
small number of clusters and started to decrease, as expected,
when the number of clusters became greater than the number
of true object classes because the segments of the same object
type were divided into different clusters. On the other hand,
the latter number continued to increase, as expected, as the
number of clusters increased. The overall Rand index followed
the former number because its decrease was more significant
than the increase in the latter. Note that the adjusted Rand
index values above 30% correspond to an agreement of above
80% between the detected and ground truth labels of every pair
of segments according to the definition of the original Rand
index in [23].

When the effects of different feature combinations are an-
alyzed, we can see that individual LDA features performed
better than the PCA and Gabor features. This is expected
because pixel-level class labels are used to extract these fea-

tures so that they maximize class separability, whereas the
PCA and Gabor features are computed by using unsupervised
techniques. The feature combinations that include the LDA
features also performed better than other combinations for the
same reasons. The Gabor features were not as effective as
the others because such features are generally useful for large
textured areas, such as vegetation, but many building segments
did not gain additional information from texture because their
support (area) were usually too small compared with the sizes
of the texture filters. When the PCA (spectral) features are
compared with the LDA features, the latter were very effective
in distributing segments that belong to different object classes,
such as buildings, vegetation, roads, etc., to different groups
(clusters), whereas the former were powerful in distinguishing
buildings with different types of roofs (all buildings were in the
same ground truth class called roof). Therefore, they provide
complementary information and, usually, the best results were
obtained when they were used together; however, the results
with only the PCA features were also acceptable and show
that the grouping technique is very powerful for unsupervised
object detection even when no manual label information is
available.

When the effect of the number of quantization levels is
analyzed, we did not observe any significant difference between
k = 10, 25, or 40. Finally, although there were some differences
in the performance index values for different feature combi-
nations, the visual inspection of the resulting groups showed
that these differences occurred mostly because of different
groupings of the small tree and grass segments. Although the
major and relatively larger segments, such as buildings or roads,
were similarly grouped with different feature combinations,
there were some differences in the grouping of small vegetation
segments (particularly when K was increased) that were larger
in number compared with other object types, and this caused
some differences in the performance indexes.

Note that the quantitative performance indexes actually
provide a “pessimistic” estimate of the actual performance
because, for example, two different kinds of buildings with
different roof types that are correctly put into different clusters
by the object detection algorithm will decrease the Rand index
if those two visually different buildings have the same ground
truth label as “roof.” Although the ground truth may not contain
that much detail, visual evaluation confirms that such cases
can be correctly handled by our algorithm. This also shows
that there may not be a single best value for K but one
can interpret the plots, such as in Fig. 16, by looking at the
significant changes in the performance indexes that occur when
a significant new cluster (group) is produced when the number
of object types is increased. Therefore, a natural extension of
this unsupervised grouping process is the selection and labeling
of the detected groups by the user for a final classification with
a desired level of detail.

In addition to the entropy and Rand indexes, we also evalu-
ated the performance of the proposed object detection algorithm
using precision and recall to measure how well the detected ob-
jects correspond to the ground truth objects. Given the segment
groups (clusters) obtained using the unsupervised detection
algorithm for a specific value of K, first, we manually identified
the groups containing roads, buildings, and vegetation accord-
ing to the content of the majority of the segments using visual
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TABLE II
NUMBER OF AUTOMATICALLY DETECTED SEGMENTS FOR ROADS,

BUILDINGS, AND VEGETATION OBJECTS AND THE CORRESPONDING

PRECISION AND RECALL VALUES (AS PERCENTAGES)
FOR DIFFERENT NUMBER OF CLUSTERS (K)

Fig. 17. Examples of object detection for the DC Mall data set. (a) False
color. (b) Clusters when K = 5. The groupings are already meaningful for a
small K. (c) Two new clusters introduced when K = 8. The second cluster
in (b) is divided into building and water segments. (d) Two new clusters
introduced when K = 10. The building segments in the first cluster in (c) are
further divided according to their roof types. (e) Two new clusters introduced
when K = 17. The first cluster in (b) is divided into road and shadow
segments.

inspection. For a segment to be accepted as a correct detection,
it must have a sufficient overlap with an object in the ground
truth. Then, we used the object-level ground truth described in
Section IV-D and, for each object type, computed precision and
recall as

precision =
# of correctly detected objects (segments)

# of all detected objects (segments)
(12)

recall =
# of correctly detected objects (segments)

# of all objects in the ground truth
. (13)

Recall can be interpreted as the number of true positive objects
extracted by the algorithm, whereas precision evaluates the

Fig. 18. Examples of object detection for the Pavia data set when K = 30.
(a) False color. (b) Buildings. (c) Roads. (d) Vegetation.

tendency of the algorithm for false positives [17]. The results
for three different values of K are shown in Table II. We believe
that the results are quite satisfactory, given the complexity of the
data and the unsupervised nature of the algorithm used.

Fig. 17 shows example groups obtained for the DC Mall
data set when the PCA, LDA, and Gabor features were used
with 25 quantization levels. The clusters for K = 5 contained
roads/shadow, buildings/water, buildings/soil, trees/grass, and
grass and were already quite meaningful for a small K.
When K was increased, the trees and grass segments started
separating further. At K = 8, the water segments separated
from the buildings.1 At K = 10, the building segments started
separating into different clusters according to their roof types.
A further increase in K caused the grass segments to be
divided into more clusters (e.g., greener segments versus
browner segments). At K = 17, most of the shadow segments
separated from the roads. Larger values of K produced small
clusters that contained small tree or grass segments because
there were more such segments compared with segments of
other types.

1Some large water segments do not appear in the results because small
structuring elements (maximum radius of 15) were used in the morphological
profile because we are mainly interested in smaller structures such as buildings.
All water segments can be extracted by using larger structuring elements. Al-
ternatively, the simple thresholding of spectral bands can detect water segments
before running our object detection algorithm.
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Fig. 19. Examples of object detection for the Ankara data set when K = 5.
(a) RGB. (b) Buildings. (c) Roads. (d) Vegetation.

Similarly, Figs. 18 and 19 show example results for the Pavia
and Ankara data sets, respectively. Due to space limitations,
instead of individual clusters, the segments belonging to the
groups that mostly contain buildings, roads, and vegetation
are shown. For the Pavia image, all buildings with tile roofs
were grouped together with almost no false alarms. There
were some minor confusions between the roads and some
shadow segments and buildings with very similar colors. For
the Ankara image, the clusters were almost complete when
K = 5. Overall, the quantitative evaluation using performance
indexes and the qualitative visual inspection of the detection
results for all data sets confirmed that the proposed algorithms
were able to identify the segments corresponding to objects
(i.e., “good” segments) by placing them into coherent groups
in an unsupervised mode, where there is a strong correlation
between the true object labels and the detected segment labels.

VI. CONCLUSION

We presented novel methods for unsupervised image seg-
mentation and automatic object detection in high-resolution re-
motely sensed imagery. Our segmentation algorithm exploited
structural information using morphological operators. These
operators were applied to each spectral band separately, where
candidate segments were extracted by applying connected
components analysis to the pixels selected according to their
morphological profiles. These segments were hierarchically
modeled by using a tree, and the most meaningful ones in this
hierarchy were selected by optimizing a criterion that consisted
of two factors, namely: spectral homogeneity and neighborhood
connectivity. The segment selection algorithm is generic in the
sense that not only can other criteria for a “good” (meaningful)
segment be directly incorporated, but it can also be used with
other hierarchical segmentation algorithms.

We evaluated the proposed approach qualitatively on three
data sets. The results showed that our method that considers

morphological characteristics, spectral information, and their
consistency within neighboring pixels is able to detect struc-
tures in the image which are more precise and more meaningful
than the structures detected by two popular approaches that do
not make strong use of neighborhood and spectral information
jointly.

We also proposed an object detection algorithm that for-
mulated the detection process as an unsupervised grouping
problem for the automatic selection of coherent sets of seg-
ments corresponding to meaningful structures among a set of
candidate segments from multiple hierarchical segmentations
obtained from individual spectral bands. The grouping problem
was solved by using the PLSA algorithm that built object
models by learning the object-conditional feature probability
distributions. The automatic labeling of a segment was done
by comparing its spectral and textural content distributions
with the distribution of the learned object models. The object
detection algorithm is generic in the sense that any model for
a segment’s content can be used by the grouping algorithm.
Extensive performance evaluation showed that the proposed
methods are able to automatically detect and group structures
belonging to the same object classes.
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