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ABSTRACT

This paper presents a deep learning approach for automatic detection and visual analysis of invasive ductal
carcinoma (IDC) tissue regions in whole slide images (WSI) of breast cancer (BCa). Deep learning approaches
are learn-from-data methods involving computational modeling of the learning process. This approach is similar
to how human brain works using different interpretation levels or layers of most representative and useful features
resulting into a hierarchical learned representation. These methods have been shown to outpace traditional
approaches of most challenging problems in several areas such as speech recognition and object detection. Invasive
breast cancer detection is a time consuming and challenging task primarily because it involves a pathologist
scanning large swathes of benign regions to ultimately identify the areas of malignancy. Precise delineation
of IDC in WSI is crucial to the subsequent estimation of grading tumor aggressiveness and predicting patient
outcome. DL approaches are particularly adept at handling these types of problems, especially if a large number
of samples are available for training, which would also ensure the generalizability of the learned features and
classifier. The DL framework in this paper extends a number of convolutional neural networks (CNN) for
visual semantic analysis of tumor regions for diagnosis support. The CNN is trained over a large amount of
image patches (tissue regions) from WSI to learn a hierarchical part-based representation. The method was
evaluated over a WSI dataset from 162 patients diagnosed with IDC. 113 slides were selected for training and 49
slides were held out for independent testing. Ground truth for quantitative evaluation was provided via expert
delineation of the region of cancer by an expert pathologist on the digitized slides. The experimental evaluation
was designed to measure classifier accuracy in detecting IDC tissue regions in WSI. Our method yielded the
best quantitative results for automatic detection of IDC regions in WSI in terms of F-measure and balanced
accuracy (71.80%, 84.23%), in comparison with an approach using handcrafted image features (color, texture
and edges, nuclear textural and architecture), and a machine learning classifier for invasive tumor classification
using a Random Forest. The best performing handcrafted features were fuzzy color histogram (67.53%, 78.74%)
and RGB histogram (66.64%, 77.24%). Our results also suggest that at least some of the tissue classification
mistakes (false positives and false negatives) were less due to any fundamental problems associated with the
approach, than the inherent limitations in obtaining a very highly granular annotation of the diseased area of
interest by an expert pathologist.

Keywords: Breast cancer, convolutional neural networks, deep learning, digital pathology, whole-slide imaging,
invasive ductal carcinoma, handcrafted features

Further author information: (Send correspondence to Anant Madabhushi)
Anant Madabhushi: E-mail: anant.madabhushi@case.edu, Telephone: 1 (216) 368-8619

Medical Imaging 2014: Digital Pathology, edited by Metin N. Gurcan, Anant Madabhushi,
Proc. of SPIE Vol. 9041, 904103 · © 2014 SPIE · CCC code: 1605-7422/14/$18

doi: 10.1117/12.2043872

Proc. of SPIE Vol. 9041  904103-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/19/2014 Terms of Use: http://spiedl.org/terms



1. INTRODUCTION

Invasive ductal carcinoma (IDC) is the most common phenotypic subtype of all Breast cancers (BCa) comprising
nearly 80% of them.1 This is routinely identified by pathologists through visual analysis of tissue slides stained
with hematoxylin and eosin (H&E). Assessment of disease aggressiveness (i.e. tumor grading) is usually limited
to regions containing invasive cancer.2 Hence, the first step in the histopathological characterization of resected
breast tissue is to distinguish between tissue regions corresponding to invasive tumor and non-invasive or healthy
tissues. Isolating IDC allows for further analysis of tumor differentiation via the well-known Bloom-Richardson
and Nottingham grading schemes.3 Invasive breast cancer detection is a time consuming and challenging task
primarily because it involves a pathologist scanning large swathes of benign regions to ultimately identify the
areas of malignancy. Precise delineation of IDC in WSI is crucial to the subsequent estimation of grading tumor
aggressiveness and predicting patient outcome.

Breast cancer detection in histopathology images has been previously explored by other researchers.4–9 Most
of these approaches involve segmentation of histologic primitives (e.g. nuclei) and then extracting features
characterizing the appearance or arrangement of these primitives to distinguish malignant from benign regions.
Petushi et al.4 presented a method for tissue microtexture classification of BCa by segmenting nuclei and
extracting two textural features (surface density of nuclei and spatial position). The approach was used to
distinguish between different grades of tumoral cells and stroma or adipose tissues. Naik et al.,5 presented a
methodology for automated detection and segmentation of glands and nuclei in BCa histopathology images. A
total of 51 graph-based features from Voronoi diagrams, minimum spanning tree, and Delaunay triangulation.
The nuclear centroids was employed to distinguish between regions of cancer from benign areas on whole slide
images, yielding an overall accuracy of 80% in conjunction with a support vector machine classifier. Doyle et
al.6 used the graph-based features, 15 statistics gray level features, 16 second order statistical features, 64 Gabor
filter features and 24 nuclear features per each of three color channels in HSI color space using three different
windows sizes. Dundar et al.7 presented a prototype system for automatically classifying breast microscopic
tissues to distinguish between usual ductal hyperplasia and actionable subtypes (atypical ductal hyperplasia and
ductal carcinoma in situ). Niwas et al.8 evaluated color texture features of segmented nucleus in the core needle
biopsy images by using Log-gabor complex wavelet bases. This approach results in different convolution maps
of log-gabor filters for different scales and orientations from which two set of features are extracted first order
statistical and second order statistical features.

Most of the previous approaches described above involve combining a large number of different types and
complex handcrafted features to represent the visual content of BCa histopathology images. These approaches
typically involve a series of pre-processing steps including detection, segmentation with the result that the final
classification result is dependent on the accuracy of the preceding steps. Recently, generalized representation and
feature learning approaches that do not incorporate domain knowledge have been employed in complex learning
tasks.10,11 These methods address learning tasks like a fully learn-from-data approach avoiding segmentation
and manual selection of handcrafted features.12

In recent years, deep learning (DL) architectures have gained popularity thanks to their success in different
computer vision and pattern recognition tasks. These methods are an evolution of conventional neural net-
works.10,12 These approaches typically involve multiple non-linear transformations of the data, with the goal of
yielding more abstract and ultimately more useful representations.11 These methods are becoming increasingly
popular, often outperforming traditional approaches that include handcrafted features for data representation
and machine learning methods for learning task.13–18 This has happened in the context of an unprecedented
growth of available digital data (i.e. big data) and powerful computational resources.19

Digital pathology is one of the most recent instances of big electronic data and comes from the digitalization
process of histopathology glass slides by digital scanners.20 The digitized whole slide pathology images are often
several gigabytes in size.21 While digital pathology is being routinely used for clinical diagnosis in some parts of
Europe,22 in the US there is a growing interest in asking research questions anchored in digital pathology. Deep
feature learning of very large digital pathology images provides a very unique opportunity to learn hidden patterns
that may not be discernible by visual or human examination. In fact, deep learning architectures have been shown
to be successful in the automated segmentation and classification of disease extent on digitized histopathology
images. Cruz-Roa et al. in23 presented a deep learning model based on sparse autoencoders for automated tumor
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detection and visual analysis of basal-cell carcinoma. This deep learning model comprised a visual interpretable
step to highlight relevant cancerous regions on histopathology images such as a digital staining. Other types
of deep learning models include convolutional neural networks (CNN), which are a family of multi-layer neural
networks particularly designed for use on two-dimensional data, such as images and videos.12 CNN are feed-
forward neural network whose architectures are tailored for minimizing the sensitivity to translations, local
rotations and distortions of the input image.24 Le et. al.25 applied a two-layer neural network to quantitatively
interrogate tissue sections for characterizing necrosis, apoptotic, and viable regions of Glioblastoma Multifrome
(GBM). Recently, CNN models had been also applied to challenging task of automatic mitosis detection in BCa
histopathology images.26–28

The main advantage of deep learning models is that they learn the most appropriate representation in a
hierarchical manner as part of the training process. This is akin to the way pathologists analyze a histology slide
across different resolutions and fields of view. However, most deep learning strategies involving histopathology
involve applied a pixel level classification over relative small images. Our approach on the other hand employs
a DL based classification on square tissue regions from WSI obtained by regular sampling, thereby enabling the
application of the classifier over the entire canvas of the WSI. The dataset selected comprises 162 cases of patients
diagnosed with IDC of BCa which 113 slides were selected for training and 49 slides for stand alone testing. We
compared our approach against a traditional classification approach comprising handcrafted descriptors, global
features (color and texture) and histopathology image features (nuclear textural and architectural). Our goal
was to compare handcrafted feature approaches against a feature learning approach of deep learning.

The overall framework described in Figure 1 comprises the following steps: 1) grid sampling of image patches
is performed over all tissue-containing regions in the WSI; 2) a Convolutional Neural Network is trained from
sampled patches to predict the probability of a patch belonging to IDC tissue; and 3) finally a probability map
built over the WSI highlighting the predicted IDC regions.

The rest of this paper is organized as follows: Section 2 describes the methodology; Section 3 presents the
experimental evaluation process. Section 4 presents experimental results and discussion. Section 5 concludes
with the main findings and future directions.

2. METHODOLOGY

Step 1. Image patch sampling

Each WSI is split into non-overlapping image patches of 100×100 pixels via grid sampling. Patches with mostly
fatty tissue or slide background are discarded. For training purposes, regions containing IDC are manually an-
notated by a pathologist and used to generate a binary annotation mask. An image patch is considered to be
a positive sample if at least 80% of the patch falls within the annotation mask, otherwise it used as a negative
sample. Figure 2 illustrates an example of image patch sampling involving the WSI and pathologists annotations.

Figure 1. Overall framework for automated detection of IDC in WSI using CNN comprises: 1) Image patch sampling from
WSI, 2) Convolutional Neural Networks to classify each image patch, and 3) complete probability map showing patches
predicted by CNN to contain IDC with probability > 0.29.
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Figure 2. Image patch sampling process. The original WSI with manual annotations from pathologists (left) is split into
non-overlapping image patches via grid sampling only taking the tissue regions (red and green). Red patches correspond
to positive examples of IDC and green patches correspond to negative examples.

Figure 3. 3-layer CNN architecture composed by two layers of convolutional and pooling layers, a full-connected layer and
a logistic regression classifier to predict if an image patch belongs to a IDC tissue or not.

Step 2. Convolutional Neural Networks

CNN24 involve application of local feature detectors or filters over the whole image to measure the correspondence
between individual image patches and signature patterns within the training set. Then, an aggregation or pooling
function is applied to reduce the dimensionality of the feature space. The image patches collected in Step 1 are
then used as inputs to a 3-layer CNN architecture (Figure 3) in which two layers are used for convolution and
pooling while the remaining layer is fully-connected. The detailed steps are:

1. Patch preprocessing: Each image patch is converted from RGB to YUV color space and normalized to
a mean of zero and variance of one. This step removes correlations of raw pixels, allowing to focus on
properties that are not dependent on covariances, such as sparseness.29 The motivation to do that are to
accentuate differences between input features and accelerate gradient-based learning.30

2. Convolutional layer: The convolution process is an strategy to represent larger images (i.e. more than
64 × 64 pixels) since a set of learned features working as feature detectors. To do that we apply a 2D
convolution of the input feature maps (i.e. image channels for the first layer) with a squared convolution
kernel (i.e. filters or features), is defined as yj = tanh(

∑

i

kij ∗ xi), where xi corresponds to the ith input

feature map, kij is the convolution kernel, and yj corresponds to jth output feature map. The feature
map looks like a salient map where learned features was detected. The tanh(·) function is used to rectify
non-linearities in the convolution output, a common problem in the modeling of biological processes.31 A
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contrast normalization step is applied to each yj independently to help reduce overfitting and generalize
overall performance.32

3. Pooling layer: This stage allows to reduce original large dimension of image representation through a
subsampling strategy which support local space invariances. Then, this layer applies a L2 pooling function
over feature maps by a spatial windows without overlapping (i.e. pooling kernel). L2 pooling is used to
allow for optimal learning of invariant features in each window.33

4. Fully-connected layer: This layer is typically applied in the top layer of a CNN architecture in order to
capture complex relationships between high-level features. In this stage spatial information is ignored to
learn correlation between different locations. Thus, the output of pooling layer is the input of a fully-
connected layer which mixes them into a feature vector. This is like a well known perceptron neural
network.

5. Classification layer: This final layer is a fully-connected layer with one neuron per each of the two classes
(invasive or not) activated by a logistic regression model (i.e. softmax classifier). The whole CNN model is

trained using Stochastic Gradient Descent to minimize the following loss function: L(x) = −log
[

exi
∑

j
e
xj

]

,

where xi corresponds to outputs of full-connected layer multiplied by logistic model parameters. Thus the
outputs of CNN are the log likelihoods of class membership.

Step 3. IDC probability map

The exponential function is applied to each output value obtained from positive class neuron of classified patches
by CNN to get values between 0 and 1, so that they could be interpreted as probabilities. For each patch we
have the original coordinates on WSI and its corresponding probabilities, thus we stitch them to get the IDC
probability map over WSI.

3. EXPERIMENTAL EVALUATION

3.1 Description of dataset

The data cohort comprises digitized BCa histopathology slides from 162 women diagnosed with IDC at the Hos-
pital of the University of Pennsylvania and The Cancer Institute of New Jersey. All slides were digitized via a
whole-slide scanner at 40x magnification (0.25 µm/pixel resolution). Operating on entire whole-slide histopathol-
ogy images is intractable due to their extremely large size (on the order of 1010 pixels). In this work, each WSI
was downsampled (by a factor of 16:1) to a resolution of 4 µm/pixel.

3.2 Ground truth annotation

The ground truth of IDC regions over digitized histopathology slides was obtained via manual delineation of the
cancer region by an expert pathologist. These annotations were made using the freely available viewing software
ImageScope from Aperio. Due to the large amount of time and effort needed to produce expert ground truth
annotations, this study relies on relatively coarse annotations performed at 2x magnification or less. This led to
the inclusion of some stromal and non-invasive tissue near the desired IDC tissue regions.

3.3 Image patch based dataset construction

The original data cohort of 162 slides was randomly split into three different subsets comprising 84 training
(D1) and 29 validation (D2) cases for parameter exploration, and 49 test cases for final evaluation (D3). The
patch-based datasets comprise 82,883 and 31,352 instances for training (D1) and validation (D2), i.e. 114,235
instances for full training (D1+D2), and 50,963 instances for testing (D3). Examples of positive (IDC) and
negative (non-IDC) tissue regions from the training and test sets are shown in Figure 4.
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Figure 4. Example of image patches for positive (green) and negative (red) categories of the training set. As can be
appreciated from the panels in Figure 4, substantial variability exists in the appearance of the image patches in both
categories.

Table 1. Set of state-of-the-art handcrafted features used in this work to compare against the deep learning approach.

Handcrafted feature Visual property captured

Gray Histogram (GH)34 Luminance
Fuzzy Color Histogram (FCH)35 Color
HSV Color Histogram (HSVCH)36 Color
RGB Histogram (RGBH)34,37 Color
JPEG Coefficient Histogram (JPEGCH)36 Color and Texture
Local Binary Partition Histogram (LBP)38 Texture
MPEG7 Edge Histogram (M7Edge)39 Texture
Haralick features9 Nuclear textural (NT)
Graph-based features9 Nuclear Architectural (NA)

3.4 Experimental setup

In order to evaluate our CNN based system, we compare it against a suite of state-of-the-art handcrafted features
(global features or histopathology features). The two different approaches are described below.

CNN based framework: Our system adapts a 3-layers CNN architecture employing 16, 32, and 128
neurons, for the first and second convolutional-pooling layers and the fully-connected layer respectively. For all
experiments, a fixed convolutional kernel of size 8×8 and pool kernel of size 2×2 were used.

Handcrafted features: Variety of handcrafted feature sets were selected in order to evaluate different
visual properties of histopathology images such as staining, tissue appearance, morphological and architectural
arrangement of cells by using color, texture and graph-based descriptors. The first set comprises of global features
used in computer vision to represent color and texture information of whole images, having been previously
successfully used in content-based image retrieval of natural35–37 and histopathology images.34 The second set
comprises features used to describe nuclear arrangement and morphology via using Haralick and graph-based
descriptors.9,40 Table 1 details the complete set of handcrafted features, global features and histopathology
image features, with the corresponding visual property captured by each one of them.
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Table 2. Quantitative performance for classification of IDC and healthy tissues. The performance measures showed are
Precision (Pr), Recall (Rc) or Sensitivity (Sen), Specificity (Spc), F-measure (F1) and Balanced Accuracy (BAC).

Pr Rc/Sen Spc F1 BAC
CNN 0.6540 0.7960 0.8886 0.7180 0.8423

FCH 0.7086 0.6450 0.9298 0.6753 0.7874

RGBH 0.7564 0.5956 0.9493 0.6664 0.7724

GH 0.7102 0.5240 0.9434 0.6031 0.7337

JPEGCH 0.7570 0.4646 0.9605 0.5758 0.7126

M7Edge 0.7360 0.4372 0.9585 0.5485 0.6979

NT 0.6246 0.2851 0.9547 0.3915 0.6199

LBP 0.7575 0.2291 0.9806 0.3518 0.6048

NA 0.6184 0.2413 0.9606 0.3472 0.6009

HSVCH 0.7662 0.2223 0.9821 0.3446 0.6022

Random Forest Classifier: The classifier employs a set of decision trees from a given dataset of labeled
samples where each tree is developed from a bootstrap sample in a training set. The individual decision trees
are constructed by selecting a random subset of attributes from which the best attribute is selected for the split.
The random forest classifier is constructed by voting of the majority of individual trees classifiers in the forest.
The main advantages of this method are that it is resilient to overfitting, requires few parameters to choose from
(i.e. number of trees) and guaranteed to converge.41

3.5 Performance measures

For each WSI, all patches are classified as IDC or Non-IDC with a class label, of 1 or 0 respectively. Classification
of image patches allows evaluation of IDC detection over an entire WSI. Hence, classification results are evaluated
over a validation (D2) dataset for parameters selection, and over test dataset (D3) comparing the prediction of
image patches and ground truth. By calculating true positives (TP), false positives (FP), false negatives (FN)
and true negatives (TN) we calculate a set of performance measures for IDC detection. Precision (Pr) allows
estimate the proportion of IDC detected from total actual IDC regions. Recall (Rc), Sensitivity (Sen) or true
positive rate allows estimate the proportion of IDC correctly predicted from whole IDC automatically predicted.
Specificity (Spc), or true negative rate, is defined as the proportion of Non-IDC regions correctly predicted from
total actual Non-IDC regions. The trade-off that occurs when simultaneously minimizing FP and FN can be
assessed using the advanced classification performance measures F-measure (F1) and balanced accuracy (BAC),
which are defined in equations 1 and 2 respectively.

F1 =
2 · Pr · Rc

Pr + Rc
(1)

BAC =
Sen + Spc

2
(2)

3.6 Parameter exploration

For both CNN and handcrafted features, a parameter exploration was performed using D1 and D2. For each
parameter combination, training and validation was performed over D1 and D2 respectively. The parameter
selection was done according to F1 measure. Optimal CNN parameter values for number of epochs, learning
rate, learning rate decay and classification threshold of stochastic gradient descent algorithm were found to be 25,
1e-2, 1e-7, and 0.29 respectively. For all handcrafted features, the optimal number of trees for Random Forests
(RF) classifier was found to be 200. The rest of parameters such as image patch size, step size for patch sampling
(it affects number of patches sampled) and percentage of ground truth area for labeling positive examples, were
empirically selected.
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4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Evaluation deep learning

Our totally learn-from-data approach for automated IDC tissue region detection was quantitatively evaluated on
D3, yielding a classification performance of 71.80% (F-measure) and 84.23% (BAC). This performance is detailed
in Row 1 of Table 2 including precision, recall or sensitivity and specificity with 65.40%, 79.60% and 88.86%
respectively.

The first experiment addresses the question of how similar is the ground truth manual annotation compared
to the automated estimation of IDC. Figure 5 shows three WSI examples from D3. The images on the left side
draw the manual annotations provided from pathologists of the IDC tissue regions. The images on the right side
correspond to IDC probability map produced by our approach. Note that only regions greater than the optimal
threshold of 0.29 (found during parameter exploration) are shown on each image.

Figure 9 shows the qualitative results of our CNN DL classifier, with green patches corresponding to true
positives (TP), red patches to false negatives (FN), yellow patches corresponding to false positives (FP) and
blue patches to true negatives (TN). A closer examination of the qualitative segmentation results suggests that
some misclassifications (both FP and FN errors) are a result of imperfect manual annotation. For example,
the proximity of many FP errors to TP regions suggests that some FP errors may be a result of coarse manual
annotations used in this study. Other FP errors appear to correspond to confounding tissue classes (e.g. ductal
carcinoma in situ), which can potentially be resolved by a multi-class approach. Similarly, many FN errors could
also be the result of a coarse manual annotation (e.g. Figure 9; bottom) in which image patches containing
stroma and adipose tissues are included in the annotated regions.

Because WSI was split in homogeneous tissue regions and each of them was classified as IDC with a probability
value assigned by the CNN classifier, we can quantify the number of image patches assigned similar probabilities.
This is shown in figure 6 by quantizing the range of probabilities between 0.3 and 1, all probabilities being
assigned to 10 bins. Hence, these histograms shows the distribution of confidence of IDC tissue regions in WSI.
The first column shows a small tissue sample where most of regions (squared image patches) were classified as IDC
with a probability larger than 0.8. This means that our CNN model was confident about the class belongingness
of those patches assigned a red color. The second column depicts a large tissue sample with a large tumor region
with tissue regions classified as IDC with different degrees of confidence by our CNN classifier. Again, a large
number of tissue regions were classified as IDC with a probability larger than 0.8. The third column reveals that
for the image being displayed, a large number of tissue regions were classified as IDC. These were all assigned
a large range of probability values, reflecting different degrees of confidence by the CNN classifier. Examples of
image patches classified as IDC by the CNN classifier are shown in Figure 8.

4.2 Comparison against state-of-the-art handcrafted features

In order to evaluate the efficiency of our approach, we compared it against a set of handcrafted features intended to
capture different visual properties in histology images (see Section 3.4). Table 2 shows quantitative classification
performance on D3. CNN yields the best overall performance in terms of both F-measure and BAC (71.80%,
84.23%). By comparison, the best handcrafted features are Fuzzy Color Histogram (67.53%, 78.74%) and RGB
Histogram (66.64%, 77.24%). However our approach yields improved F-measure and BAC results (by 4% and
6%, respectively) over the best handcrafted features. The remaining global features as well as the nuclear texture
and architectural features do not yield competitive results. These results are not surprising since color-based
global features are more representative of how a pathologist visually identifies IDC at lower resolutions. By
contrast, features that describe nuclear texture and nuclear architecture characterize more detailed aspects of
tissue morphology that have been shown to be important in distinguishing between different grades of IDC.9

In this work we are also interested in understanding the performance of the best hand-crafted features. Figure
7 illustrates IDC regions (dark red color) on a single WSI as identified by several different types of handcrafted
features. Note that the subimages in Figure 7 are listed in the order of decreasing classification performance with
respect to their corresponding handcrafted features as shown in Table 2. These results reveal that Fuzzy Color
Histogram and RGB Histogram are the best performing handcrafted features for IDC detection. By contrast,
textural and architectural features perform poorly and are unable to consistently detect the IDC regions.
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5. CONCLUDING REMARKS

Automated detection of invasive ductal carcinoma is a challenging and relevant problem for breast cancer di-
agnosis. Accurate and reproducible IDC detection is an important task because it is often the first step in the
diagnosis and treatment of BCa. The majority of previous works in histopathology tumor detection address this
problem by combining different types of handcrafted features and machine learning algorithms. By contrast, we
presented a novel deep learning framework for automated detection of IDC regions in WSI of BCa histopathology.

This work represents one of the first applications of deep learning models to WSI histopathology analysis.
Furthermore, we present a novel application of CNN in digital pathology for visual image analysis and compare
it against well-known handcrafted features. In addition to CNN, we show that only two color-based global
features are able to accurately identify IDC on WSI BCa images. An important characteristic of our approach is
that it is a truly learn-from-data approach for IDC detection. Our approach makes no assumptions in advance
about the relevant visual features to represent the image content associated with IDC tissue. Additionally, since
identifying regions of IDC does not perhaps require transparency or interpretability of the discriminating features
in the same way that might be needed for a classifier performing breast cancer grading. In this problem, the
reliability, confidence, speed and reproducibility of the classifier were of greater importance compared to feature
interpretability, criterion successfully achieved by our CNN classifier.

One of the more interesting findings was that the misclassified tissue regions are due mainly for not detailed
annotations from pathologists more than mistakes of our proposed method. The most remarkable characteristic
of our approach is its reproducibility in different unseen WSI data which is very close to subjective binary manual
annotations from a trained pathologist providing quantitative support of its decisions.

Future work will explore the effects of CNN models with deeper architectures (i.e. more layers and neurons)
and validation on larger cohorts. However, the most interesting future directions are how automatically learn and
identify visual features related to histopathology architecture and morphology to obtain quantitative semantic
feature, such as percentage of necrotic tissue or tumor aggressiveness highlighting the related areas in WSI.
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Figure 5. Three different BCa WSI from test dataset. The original manual annotations by pathologist (left) are very close
to the probability map prediction from our model (right). The probability map shows the highest probabilities of IDC
tissue regions in warm colors (red and orange) whereas the lowest probabilities of IDC regions in cold colors (green and
blue).
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Figure 6. Histogram distribution of IDC probabilities (top) of their corresponding IDC probability map of WSI (bottom).
These histograms depict how many tissue regions of each type of IDC tissue according to confidence to be invasive. WSIs
a) and b) had more number of IDC regions with high probability (red areas) in proportion to whole tumor area, whereas
WSI c) had a more homogenous distribution of IDC regions with different probability values into tumor.
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Figure 7. IDC tissue regions prediction (dark-red) for a WSI in descent order according to classification performance in
testing for each of handcrafted features: a) Fuzzy Color Histogram, b) RGB Histogram, c) Gray Histogram, d) JPEG
Coefficient Histogram, e) MPEG7 Edge Histogram, f) Nuclear Textural, g) Local Binary Partition Histogram , h) Nuclear
Architectural, and i) HSV Color Histogram.

Figure 8. Example of image patches classified as IDC with different values of probability from three WSI of the Figure 6.
High IDC probability 0.9 to 1.0 (top), Medium IDC probability 0.6 to 0.7 (middle), and Low IDC probability 0.3 to 0.4
(bottom).
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Figure 9. Detailed analysis of image patch classification by CNN model. The WSI on the left side shows the image patches
sampled with their corresponding classification into true-positives (TP, green), false-negatives (FN, red) and false-positives
(FP, yellow). The image patches on the right side show some examples for TP, FN and FP per each WSI.
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