Automatic Detection of Knee Joints and
Quantification of Knee Osteoarthritis Severity
using Convolutional Neural Networks

Joseph Antony!, Kevin McGuinness', Kieran Moran'? and Noel E O’Connor!

Insight Centre for Data Analytics, Dublin City University, Dublin, Ireland.®
School of Health and Human Performance, Dublin City University, Dublin, Ireland.?
joseph.antony@insight-centre.org

Abstract. This paper introduces a new approach to automatically
quantify the severity of knee OA using X-ray images. Automatically
quantifying knee OA severity involves two steps: first, automatically
localizing the knee joints; next, classifying the localized knee joint
images. We introduce a new approach to automatically detect the knee
joints using a fully convolutional neural network (FCN). We train
convolutional neural networks (CNN) from scratch to automatically
quantify the knee OA severity optimizing a weighted ratio of two loss
functions: categorical cross-entropy and mean-squared loss. This joint
training further improves the overall quantification of knee OA severity,
with the added benefit of naturally producing simultaneous multi-class
classification and regression outputs. Two public datasets are used to
evaluate our approach, the Osteoarthritis Initiative (OAI) and the
Multicenter Osteoarthritis Study (MOST), with extremely promising
results that outperform existing approaches.
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1 Introduction

Knee Osteoarthritis (OA) is a debilitating joint disorder that mainly degrades
the knee articular cartilage. Clinically, the major pathological features for knee
OA include joint space narrowing, osteophytes formation, and sclerosis. Knee
OA has a high-incidence among the elderly, obese, and those with a sedentary
lifestyle. In its severe stages, it causes excruciating pain and often leads to total
joint arthoplasty. Early diagnosis is crucial for clinical treatments and pathology
[10,14]. Despite the introduction of several imaging modalities such as MRI,
Optical Coherence Tomography and ultrasound for augmented OA diagnosis,
radiography (X-ray) has been traditionally preferred, and remains the main
accessible tool and “gold standard” for preliminary knee OA diagnosis [10,15,17].

Previous work has approached automatically assessing knee OA severity
[14,17,20] as an image classification problem. In this work, we train CNNs from
scratch to automatically quantify knee OA severity using X-ray images. This



involves two main steps: 1) automatically detecting and extracting the region
of interest (ROI) and localizing the knee joints, 2) classifying the localized knee
joints.

We introduce a fully-convolutional neural network (FCN) based method to
automatically localize the knee joints. A FCN is an end-to-end network trained
to make pixel-wise predictions [9]. Our FCN based method is highly accurate
for localizing knee joints and the FCN can easily fit into an end-to-end network
trained to quantify knee OA severity.

To automatically classify the localized knee joints we propose two methods: 1)
training a CNN from scratch for multi-class classification of knee OA images, and
2) training a CNN to optimize a weighted ratio of two loss functions: categorical
cross-entropy for multi-class classification and mean-squared error for regression.
We compare the results from these methods to WND-CHARM [15,17] and our
previous study [1]. We also compare the classification results to both manual and
automatic localization of knee joints.

We propose a novel pipeline to automatically quantify knee OA severity
including a FCN for localizing knee joints and a CNN jointly trained for
classification and regression of knee joints. The main contributions of this work
include the fully-convolutional network (FCN) based method to automatically
localize the knee joints, training a network (CNN) from scratch that optimizes a
weighted ratio of both categorical cross-entropy for multi-class classification and
mean-squared error for regression of knee joints. This multi-objective
convolutional learning improves the overall quantification with an added benefit
of providing simultaneous multi-class classification and regression outputs.

2 Related Work

Assessing knee OA severity through classification can be achieved by detecting
the variations in joint space width and osteophytes formation in the knee joints
[10,14,15]. In a recent approach, Yoo et. al. used artificial neural networks (ANN)
and KNHANES V-1 data, and developed a scoring system to predict radiographic
and symptomatic knee OA [20] risks. Shamir et. al. used WND-CHARM: a
multipurpose bio-medical image classifier [11] to classify knee OA radiographs
[16,17] and for early detection of knee OA using computer aided analysis [14].
WND-CHARM uses hand-crafted features extracted from raw images and image
transforms [11,16].

Recently, convolutional neural networks (CNNs) have outperformed many
methods based on hand-crafted features and they are highly successful in many
computer vision tasks such as image recognition, automatic detection and
segmentation, content based image retrieval, and video classification. CNNs
learn effective feature representations particularly well-suited for fine-grained
classification [19] like classification of knee OA images. In our previous study [1],
we showed that the off-the-shelf CNNs such as the VGG 16-Layers network [18],
the VGG-M-128 network [2], and the BVLC reference CaffeNet [5,6] trained on
ImageNet LSVRC dataset [13] can be fine-tuned for classifying knee OA images



through transfer learning. We also argued that it is appropriate to assess knee
OA severity using a continuous metric like mean-squared error instead of binary
or multi-class classification accuracy, and showed that predicting the continuous
grades through regression reduces the mean-squared error and in turn improves
the overall quantification.

Previously, Shamir et. al. [14] proposed template matching to automatically
detect and extract the knee joints. This method is slow for large datasets such
as OAI, and the accuracy and precision of detecting knee joints is low. In our
previous study, we introduced an SVM-based method for automatically detecting
the center of knee joints [1] and extract a fixed region with reference to the
detected center as the ROI. This method is also not highly accurate and there
is a compromise in the aspect ratio of the extracted knee joints that affects the
overall quantification.

3 Data

The data used for the experiments and analysis in this study are bilateral
PA fixed flexion knee X-ray images. The datasets are from the Osteoarthritis
Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) in the University
of California, San Francisco, and are standard datasets used in knee osteoarthritis
studies.

3.1 Kellgren and Lawrence Grades

This study uses Kellgren and Lawrence (KL) grades as the ground truth to
classify the knee OA X-ray images. The KL grading system is still considered the
gold standard for initial assessment of knee osteoarthritis severity in radiographs
[10,11,12,15]. Tt uses five grades to indicate radiographic knee OA severity. ‘Grade
0’ represents normal, ‘Grade 1’ doubtful, ‘Grade 2’ minimal, ‘Grade 3’ moderate,
and ‘Grade 4’ represents severe. Figure 1 shows the KL grading system.

3.2 OAI and MOST Data Sets

The baseline cohort of the OAI dataset contains MRI and X-ray images of 4,476
participants. From this entire cohort, we selected 4,446 X-ray images based on
the availability of KL grades for both knees as per the assessments by Boston
University X-ray reading center (BU). In total there are 8,892 knee images and
the distribution as per the KL grades is as follows: Grade 0 - 3433, Grade 1 -
1589, Grade 2 - 2353, Grade 3 - 1222, and Grade 4 - 295.

The MOST dataset includes lateral knee radiograph assessments of 3,026
participants. From this, 2,920 radiographs are selected based on the availability
of KL grades for both knees as per baseline to 84-month Longitudinal Knee
Radiograph Assessments. In this dataset there are 5,840 knee images and the
distribution as per KL grades is as follows: Grade 0 - 2498, Grade 1 - 1018, Grade
2 - 923, Grade 3 - 971, and Grade 4 - 430.



Kellgren-Lawrence (KL) grading scale

Grade 1 Grade 2 Grade 3 Grade 4
CLASSIFICATION Normal Doubtful Mild Moderate Severe
Minute Definite Joint space
DESCRIPTION osteophyte: osteophyte: Moderate joint greatly reduced:
Hoctaallize pLon doubtful normal joint space reduction subchondral
significance space sclerosis

Fig. 1: The KL grading system to assess the severity of knee OA.

4 Methods

This section introduces the methodology used for quantifying radiographic knee
OA severity. This involves two steps: automatically detecting knee joints using a
fully convolutional network (FCN), and simultaneous classification and regression
of localized knee images using a convolutional neural network (CNN). Figure 2
shows the complete pipeline used for quantifying knee OA severity.

4.1 Automatically Localizing Knee Joints using a FCN

Assessment of knee OA severity can be achieved by detecting the variations in
joint space width and osteophytes formation in the knee joint [10]. Thus, localizing
the knee joints from the X-ray images is an essential pre-processing step before
quantifying knee OA severity, and for larger datasets automatic methods are
preferable. Figure 3 shows a knee OA radiograph and the knee joints: the region
of interest (ROI) for detection. The previous methods for automatically localizing
knee joints such as template matching [14] and our own SVM-based method
[1] are not very accurate. In this study, we propose a fully convolutional neural
network (FCN) based approach to further improve the accuracy and precision of
detecting knee joints.

FCN Architecture: Inspired by the success of a fully convolutional neural
network (FCN) for semantic segmentation on general images [9], we trained
a FCN to automatically detect the region of interest (ROI): the knee joints
from the knee OA radiographs. Our proposed FCN is based on a lightweight
architecture and the network parameters are trained from scratch. Figure 4 shows
the architecture. After experimentation, we found this architecture to be the
best for knee joint detection. The network consists of 4 stages of convolutions
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Fig. 2: The pipeline used for quantifying knee OA severity.

with a max-pooling layer after each convolutional stage, and the final stage
of convolutions is followed by an up-sampling and a fully-convolutional layer.
The first and second stages of convolution use 32 filters, the third stage uses 64
filters, and the fourth stage uses 96 filters. The network uses a uniform [3 x 3]
convolution and [2 X 2] max pooling. Each convolution layer is followed by a
batch normalization and a rectified linear unit activation layer (ReLU). After the
final convolution layer, an [8 x 8] up-sampling is performed as the network uses
3 stages of [2 x 2] max pooling. The up-sampling is essential for an end-to-end
learning by back propagation from the pixel-wise loss and to obtain pixel-dense
outputs [9]. The final layer is a fully convolutional layer with a kernel size of
[1 x 1] and uses a sigmoid activation for pixel-based classification. The input to
the network is of size [256 x 256] and the output is of same size.

FCN Training: We trained the network from scratch with training samples of
knee OA radiographs from the OAI and MOST datasets. The ground truth for
training the network are binary images with masks specifying the ROI: the knee
joints. Figure 4 shows an instance of the binary masks: the ground truth. We
generated the binary masks from manual annotations of knee OA radiographs
using a fast annotation tool that we developed. The network was trained to
minimize the total binary cross entropy between the predicted pixels and the
ground truth. We used the adaptive moment estimation (Adam) optimizer [7],
with default parameters, which we found to give faster convergence than standard
SGD.



Fig.3: A knee OA X-ray image with the region of interest: the knee joints.
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Fig. 4: The Fully Convolutional Network for automatically detecting knee joints.

Extracting Knee Joints: We deduce the bounding boxes of the knee joints
using simple contour detection from the output predictions of FCN. We extract
the knee joints from knee OA radiographs using the bounding boxes. We upscale
the bounding boxes from the output of the FCN that is of size [256 x 256] to
the original size of each knee OA radiograph before we extract the knee joints so
that the aspect ratio of the knee joints is preserved.

4.2 Quantifying knee OA severity using CNNs

We investigate the use of CNNs trained from scratch using knee OA data and
jointly train networks to minimize the classification and regression losses to
further improve the assessment of knee OA severity.

Training CNN for Classification: The network contains mainly five layers of
learned weights: four convolutional layers and one fully connected layer. Figure
5 shows the network architecture. As the training data is relatively scarce, we
considered a lightweight architecture with minimal layers and the network has
5.4 million free parameters in total. After experimenting with the number of



convolutional layers and other parameters, we find this architecture to be the best
for classifying knee images. Each convolutional layer in the network is followed
by batch normalization and a rectified linear unit activation layer (ReLU). After
each convolutional stage there is a max pooling layer. The final pooling layer
is followed by a fully connected layer and a softmax dense layer. To avoid over-
fitting, we include a drop out layer with a drop out ratio of 0.2 after the last
convolutional (conv4) layer and a drop out layer with a drop out ratio of 0.5 after
the fully connected layer (fc5). We also apply an L2-norm weight regularization
penalty of 0.01 in the last two convolutional layers (conv3 and conv4) and the
fully connected layer (fc5). Applying a regularization penalty to other layers
increases the training time whilst not introducing significant variation in the
learning curves. The network was trained to minimize categorical cross-entropy
loss using the Adam optimizer [7]. The inputs to the network are knee images
of size [200x300]. We chose this size to approximately preserve the aspect ratio
based on the mean aspect ratio (1.6) of all the extracted knee joints.
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Fig. 5: The network architecture for classifying knee joint images.

Jointly training CNN for Classification and Regression: In general,
assessing knee OA severity is based on the multi-class classification of knee
images and assigning KL grade to each distinct category [10,11,14,17]. As the
disease is progressive in nature, we argued in our previous paper [1] that
assigning a continuous grade (0-4) to knee images through regression is a better
approach for quantifying knee OA severity. However, with this approach there is
no ground truth of KL grades in a continuous scale to train a network directly
for regression output. Therefore, we train networks using multi-objective
convolutional learning [8] to optimize a weighted-ratio of two loss functions:
categorical cross-entropy and mean-squared error. Mean squared error gives the
network information about ordering of grades, and cross entropy gives
information about the quantization of grades. Intuitively, optimizing a network



with two loss functions provides a stronger error signal and it is a step to
improve the overall quantification, considering both classification and regression
results. After experimenting, we obtained the final architecture shown in Figure
6. This network has six layers of learned weights: 5 convolutional layers and a
fully connected layer, and approximately 4 million free parameters in total. Each
convolutional layer is followed by batch normalization and a rectified linear
activation (ReLU) layer. To avoid over-fitting this model, we include drop out
(p =0.5) in the fully connected layer (fc5) and L2 weight regularization in the
fully connected layer (fc5) and the last stage of convolution layers (Conv3-1 and
Conv3-2). We trained the model using stochastic gradient descent with Nesterov
momentum and a learning rate scheduler. The initial learning rate was set to
0.001, and reduced by a factor of 10 if there is no drop in the validation loss for
4 consecutive epochs.
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Fig. 6: The network architecture for simultaneous classification and regression.

5 Experiments and Results

5.1 Localizing the Knee Joints using a FCN

We trained FCNs to automatically localize and extract the knee joints from
knee OA X-ray images. We use the well-known Jaccard index to evaluate the
detection result. The datasets are split into a training/validation set (70%) and
test set (30%). The training and test samples from OAI dataset are 3,146 images
and 1,300 images. The training and test samples from MOST dataset are 2,020
images and 900 images. First, we trained the network with training samples from
OAI dataset and tested it with OAI and MOST datasets separately. Next, we
increased our training samples by including the MOST training set and the test



set is a combination of both OAI and MOST test sets. Before settling on the
final architecture, we experimented by varying the number of convolution stages,
the number of filters and kernel sizes in each convolution layer. The final network
(shown in Figure 4) was trained with the samples from both OAI and MOST
datasets.

Evaluation: The automatic detection is evaluated using the well-known Jaccard
index i.e. the intersection over Union (IoU) of the automatic detection and the
manual annotation of each knee joint. For this evaluation, we manually annotated
all the knee joints in both the OAI and MOST datasets using a fast annotation
tool that we developed. Table 1 shows the number (percentage) of knee joint
correctly detected based on the Jaccard index (J) values greater than 0.25, 0.5
and 0.75 along with the mean and the standard deviation of J. Table 1 also shows
detection rates on the OAI and MOST test sets separately.

Table 1: Comparison of automatic detection based on the Jaccard Index (J)

Test Data J>0.25 J>0.5 J>0.75 Mean Std.Dev
OAI 100% 99.9% 89.2% 0.83 0.06
MOST 99.5% 98.4% 85.0% 0.81 0.09

Combined OAI-MOST 99.9% 99.9% 91.4% 0.83  0.06

Results: Considering the anatomical variations of the knee joints and the imaging
protocol variations, the automatic detection with a FCN is highly accurate with
99.9% (4,396 out of 4,400) of the knee joints for J>0.5 and 91.4% (4,020 out of
4,400) of the knee joints for J>0.75 being correctly detected. Section 5.3 gives
further evidence that the FCN based detection is highly accurate by showing
that the quantification results obtained with the automatically extracted knee
joints gives results on par with manually segmented knee joints.

5.2 Classification of Knee OA Images using a CNN

We use the same train-test split for localization and quantification to maintain
uniformity in the pipeline and to enable valid comparisons of the results obtained
across the various approaches. We include the right-left flip of each knee joint
image to increase the training samples and this doubles the total number of
training samples available. As an initial approach, we trained networks to classify
manually annotated knee joint images. After experimenting, we obtained the
final architecture shown in Figure 5.

Results: we compare the classification results from our network to WND-
CHARM, the multipurpose medical image classifier [11,17,16] that gave the
previous best results for automatically quantifying knee OA severity. Table 2
shows the multi-class classification accuracy and mean-squared error of our



network and WND-CHARM. The results show that our network trained from
scratch for classifying knee OA images clearly outperforms WND-CHARM. Also
these results show an improvement over our earlier reported methods [1] that used
off-the-shelf networks such as VGG nets and the BVLC Reference CaffeNet for
classifying knee OA X-ray images through transfer learning. These improvements
are due to the lightweight architecture of our network trained from scratch with
less (5.4 million) free parameters in comparison to 62 million free parameters of
BVLC CaffeNet for the given small amount of training data. The off-the-shelf
networks were trained using a large dataset like ImageNet containing millions of
images, whereas our dataset contains much fewer (~ 10,000) training samples.
We show further improvements in the results for quantifying knee OA severity in
the next section.

Table 2: Classification results of our network and WND-CHARM.

Method Test Data  Accuracy Mean-Squared Error
Wndchrm OAI 29.3% 2.496
Wndchrm MOST 34.8% 2.112
Fine-Tuned BVLC CaffeNet OAI 57.6 % 0.836
Our CNN trained from Scratch OAI & MOST 60.3% 0.898

5.3 Jointly trained CNN for Classification and Regression

The KL grades used to assess knee OA is a discrete scale, but knee OA is
progressive in nature. We trained networks to predict the outcomes in a continuous
scale (0—4) through regression. Even though we obtained low mean-squared error
values for regression, the classification accuracy reduces when the continuous
grades are rounded. Next, to obtain a better learning representation we trained
networks that learn using a weighted ratio of two loss functions: categorical cross
entropy for classification and mean-squared error for regression. We experimented
with values from 0.2 to 0.6 for the weight of regression loss and we fixed the weight
at 0.5 as this gave the optimal results. Figure 6 shows our network jointly trained
for classification and regression of knee images. Figure 7 shows the learning curves
of the network trained for joint classification and regression. The learning curves
show a decrease in training and validation losses, and also an increase in training
and validation accuracies over the training.

Table 3: Classification of knee joints after manual and automatic localization.
Method Classification-Acc Classification-MSE Regression-MSE

Manual Localization 63.6% 0.706 0.503
Automatic Localization 61.9% 0.781 0.541
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Fig. 7: (a) Training (Tr) and validation (Val) accuracy (acc), (b) Training and
validation loss for joint classification (Clsf) and regression (Reg) training.

Comparing manual and automatic localization: We present the
classification and regression results obtained using both the manual and the
automatic methods for localizing the knee joints in Table 3 and Table 4. From
the results, it is evident that the classification and regression of the knee joint
images after automatic localization are comparable with the results after manual
localization.

Table 4: Classification metrics after localizing knee joints.

Grade Manual Localization|Automatic Localization
Precision Recall F1 [Precision Recall F1
0 0.66 0.87 0.75| 0.64 0.88 0.74
1 0.39 0.06 0.10] 0.33 0.02 0.04
2 0.52 0.60 0.56| 0.50 0.57 0.53
3 0.75 0.72 0.73| 0.73 0.73 0.73
4 0.78 0.78 0.78| 0.75 0.66 0.70
Mean| 0.60 0.64 0.59| 0.57 0.62 0.56

Comparing joint training with classification only: From the results shown
in Table 2 and 3, the network trained jointly for classification and regression
gives higher multi-class classification accuracy of 63.4% and lower mean-squared
error 0.661 in comparison to the previous network trained only for classification
with multi-class classification accuracy 60.3% and mean-squared error 0.898.
Table 5 shows the precision, recall, F; score, and area under curve (AUC) of the
network trained jointly for classification and regression and the network trained
only for classification. These results show that the network jointly trained for
classification and regression learns a better representation in comparison to the
previous network trained only for classification.



Table 5: Metrics comparing joint training for classification and regression to
network trained for classification only.

Joint training for Clsf & Reg| Training for only Clsf

Precision Recall F; AUC |Precision Recall F; AUC

0.68 0.80 0.74 0.87 0.63 0.82 0.71 0.83
0.32 0.15 0.20 0.71 0.25 0.04 0.06 0.66
0.53 0.63 0.58 0.82 0.47 0.57 0.51 0.78
0.78 0.74 0.76 0.96 0.76 0.71 0.73 0.94
4 0.81 0.75 0.78 0.99 0.78 0.77 0.77 0.99
Mean| 0.61 0.63 0.61 - 0.56 0.60 0.56 -

Grade

w N = o

Error Analysis: From the classification metrics (Table 5), the confusion matrix
(Figure 8) and the receiver operating characteristics (Figure 9), it is evident that
classification of successive grades is challenging, and in particular classification
metrics for grade 1 have low values in comparison to the other Grades.
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Figure 10 shows some examples of mis-classifications: grade 1 knee joints
predicted as grade 0, 2, and 3. Figure 11 shows the mis-classifications of knee joints
categorized as grade 0, 2 and 3 predicted as grade 1. These images show minimal
variations in terms of joint space width and osteophytes formation, making
them challenging to distinguish. Even for the more serious mis-classifications in
Figure 12, e.g. grade 0 predicted as grade 3 and vice versa, do not show very
distinguishable variations.

Even though the KL grades are used for assessing knee OA severity in clinical
settings, there has been continued investigation and criticism over the use of KL
grades as the individual categories are not equidistant from each other [3,4]. This
could be a reason for the low multi-class classification accuracy in the automatic
quantification. Using OARSI readings instead of KL grades could possibly provide
better results for automatic quantification as the knee OA features such as joint
space narrowing, osteophytes formation, and sclerosis are separately graded.
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Fig. 10: Mis-classifications: grade 1 joints predicted as grade 0, 2, and 3

Grade 1 predicted as Grade 0
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Fig. 11: Mis-classifications: other grade knee joints predicted as grade 1

6 Conclusion

We proposed new methods to automatically localize knee joints using a fully
convolutional network and quantified knee OA severity through a network jointly
trained for multi-class classification and regression where both networks were
trained from scratch. The FCN based method is highly accurate in comparison
to the previous methods. We showed that the classification results obtained with
automatically localized knee joints is comparable with the manually segmented
knee joints. There is an improvement in the multi-class classification accuracy,
precision, recall, and F} score of the jointly trained network for classification
and regression in comparison to the previous method. The confusion matrix and
other metrics show that classifying Knee OA images conditioned on KL grade 1
is challenging due to the small variations, particularly in the consecutive grades
from grade 0 to grade 2.

Future work will focus on training an end-to-end network to quantify the knee
OA severity integrating the FCN for localization and the CNN for classification.
It will be interesting to investigate the human-level accuracy involved in assessing
the knee OA severity and comparing this to the automatic quantification methods.
This could provide insights to further improve fine-grained classification.
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Fig.12: An instance of more severe mis-classification: grade 0 and grade 3
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