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Abstract
In the context of detecting ‘paralinguistic events’ with the aim
to make classification of the speaker’s emotional state possible,
a detector was developed for one of the most obvious ‘para-
linguistic events’, namely laughter. Gaussian Mixture Mod-
els were trained with Perceptual Linear Prediction features,
pitch&energy, pitch&voicing and modulation spectrum features
to model laughter and speech. Data from the ICSI Meeting Cor-
pus and the Dutch CGN corpus were used for our classification
experiments. The results showed that Gaussian Mixture Mod-
els trained with Perceptual Linear Prediction features performed
best with Equal Error Rates ranging from 7.1%-20.0%.

1. Introduction
Traditional speech technologies have always concentrated on
extracting linguistic content from the speech signal (what is
said) without focusing on the emotional content (how it is said).
However, in human-machine interaction it becomes more and
more important and useful to identify the speaker’s emotional
state. Knowing the speaker’s emotional state contributes to the
naturalness of human-machine communication processes. For
instance, emotion recognition can be important for Interactive
Voice Response Systems (IVR) with specific applications to call
centers [1]: impatient or frustrated customers require a more
appropriate dialogue handling and angry customers should be
automatically routed to human operators. Emotion recognition
is also useful in the field of multimedia retrieval or video sum-
marization [2] and in automatic meeting transcriptions [3].

The speaker’s emotional state expresses itself in speech
through paralinguistic features such as pitch, speaking rate,
voice quality etc. For example, Nwe et al. [4] report on studies
that have shown that speaking rate is higher for the state anger
than for sadness. In our research, we concentrate on audible,
identifiable cues in the audio signal that are characteristic for
a particular emotional state or mood. Some examples of these
cues are laughter which is characteristic for joy or a humorous
state, raised voice which is characteristic for anger, and trem-
bling voice which is characteristic for nervousness. We will
refer to such cues as ‘paralinguistic events’. Our goal is to
automatically detect these ‘paralinguistic events’ with the aim
to make classification of the speaker’s emotional state or mood
possible.

In search of a suitable emotional speech database with para-
linguistic annotations we found that laughter was one of the
most often annotated paralinguistic events which occurred re-
latively frequently in recorded natural speech. On the basis of
these observations we decided to focus on the automatic detec-
tion of laughter. Several studies have focused on the character-
istics of laughter [5, 6, 7] and on automatic detection of laughter
[2, 3]. Bachorowski et al. [5] and Trouvain [6] both found that
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ter is a highly variable and complex signal whose charac-
cs are not yet unveiled. They found that there are many
ent types of laughter: voiced, unvoiced, song-like, grunt-
tc., and that although some aspects of laughter resemble
h, there are some notable differences between the two sig-
For instance, compared to speech, laughs have longer un-
d portions than voiced portions [7].
ai et al. [2] have attempted to locate laughter events
tertainment and sports videos. They modeled laughter

idden Markov Models (HMM) in combination with Mel-
ency Cepstral Coefficients (MFCCs) and perceptual fea-
such as short-time energy and zero crossing rate. Another
pt to automatic laughter detection was made by Kennedy
lis [3]. They used a Support Vector Machine classifier
d with MFCCs and their deltas, spatial cues and modu-
spectra to detect laughter events in meetings.

this study we examine the use of Perceptual Lin-
rediction (PLP) features, pitch&energy features, global

voicing features and modulation spectrum features in
sian Mixture Models (GMMs) with the goal to automat-
discriminate laughter from speech, thus to automatically

t laughter. PLP features were used to capture the per-
al and spectral characteristics of laughter. Pitch and en-
are popular features in emotion recognition and since Ba-
wski et al. [5] report on higher pitch levels for laughter
or speech, we also employed pitch&energy features in our
. Statistics of pitch and voicing features were used to cap-
lobal pitch information and information on the degree of
g. Finally, we tried to model the repetitive syllable sounds
ghter by exploring the use of the modulation spectrum.
e will describe in Section 2 the speech data that we used
classification experiments. The modelling technique and

atures used to develop the classifier are discussed in sec-
. In section 4 we describe the classification experiments
eir results. Finally, in section 5 we discuss the results and
conclusions.

2. Data
ional speech databases that contain realistic natural data
arse. Most studies use speech databases that contain eli-
emotional speech from hired actors. For realistic results,
ould like to use a spontaneous speech database that has
paralinguistic or emotional tagging included. For training
sting our classifiers, we decided to use the ICSI Meeting

rder Corpus [8] since it met our requirements: the corpus
ins text-independent, speaker-independent realistic, nat-
peech data and it contains human-made annotations of
exical vocalized sounds including laughter, heavy breath
s, coughs etc. The corpus consists of 75 recorded meet-
ith an average of 6 participants per meeting and a total



of 53 unique speakers. Each partipant wore a head-mounted
microphone and additionally, six tabletop microphones simul-
taneously recorded the audio. For our experiments, we used the
audio recorded with the head-mounted microphones. The data
was divided in training and test sets: the first 26 ICSI ‘Bmr’ sub-
set recordings were used for training and the last 3 ICSI ‘Bmr’
recordings were used for testing (these are the same data sets
as used in Kennedy & Ellis [3]). The training and test sets
contained speech from 16 and 11 speakers respectively. Ad-
ditionally, 4 ‘Bed’ subset recordings were used as test set to
avoid biased results caused by overlap between speaker identit-
ies in the training and test material. Furthermore, as an inde-
pendent test set we used spontaneous laughter and speech data
from the Dutch CGN corpus [9] which is recorded on a dif-
ferent location and under different acoustic conditions than the
ICSI corpus (note that the speech is from a different language
and that some studies report on the existence of culture- and/or
language specific paralinguistic patterns in vocal emotion ex-
pression). Testing on this independent data set would yield the
most realistic results. Laughter segments from this corpus were
selected by listening to a set of annotated non-speech sounds.

The experiments were conducted on presegmented laughter
and speech segments (determination of onset and offset was not
part of the task of the classifier) that were extracted from the
speech signal. Laughter segments were in the first place de-
termined from laughter annotations in the human-made tran-
scriptions. After closer examination of some of these annotated
laughter segments in the ICSI corpus, it appeared that not all of
them were suitable for our classification experiments: for ex-
ample, some of the annotated laughs co-occurred with speech
and sometimes the laughter was not even audible. These non-
suitable ‘bad’ laughter segments were later discarded (by 1 per-
son who listened to the laughter segments) from the training
and test data and new models were trained and tested on this
selected data. Furthermore, no distinctions were made between
different types of laughter, e.g. voiced, unvoiced, ‘snort-like’
laughter [5, 6]. Speech segments were also determined from
the orthographic transcriptions: segments that did not contain
any non-lexical vocalized sounds were labeled as speech.

In total we used 3264 speech segments with a total duration
of 110 minutes (mean = 2.02s, sd = 1.87s) and 5917 laughter
segments with a total duration of 218 minutes (mean = 2.21s,
sd = 1.79s) (for more details, see Table 1).

Training Test
Bmr Bmr Bed CGN
min/ � min/ � min/ � min/ �

Speech 81/2422 10/300 15/378 4/164
Laughter 177/4655 18/467 19/614 -/-
Selected
Laughter

83/2680 10/279 11/444 4/171

Table 1: Amount of laughter and speech data used in experi-
ments, min=minutes, � =number of segments, where ‘selected’
means: removal of ‘bad’ laughter segments.

3. Method
3.1. Modelling technique

Gaussian Mixture Models were used to train a laughter and a
speech model. The models are trained using varying numbers
of Gaussian components (varying from 2 - 256) depending on
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d criterion was used. A ‘soft detector’ score is obtained by
ining the likelihood ratio of the speech data given the

hter’ and ‘speech’ GMMs respectively.

Features

Perceptual Linear Prediction features

ptual Linear Prediction features were used to train the
s. PLP coding is similar to Linear Predictive Coding

) analysis based on the short-term spectrum of speech with
dvantage that PLP is more consistent with human hear-
0]. PLP modifies the short-term spectrum of the speech

veral psychophysically based transformations. For each
, 13 PLP coefficients were computed with a forwardshift
16s. Additionally, delta features were determined by cal-
ng the deltas of the PLP coefficients (by linear repression
5 consecutive frames) which resulted in a total of 26 fea-

Pitch and energy

features that are often used in emotion recognition re-
h are prosodic features, such as pitch. Studies also men-
nergy among the most useful features for emotion recog-
. Both of these features were examined as well. For each
with a shift of 0.01s, pitch and RMS energy were meas-
sing Praat [11]. The deltas of pitch and RMS energy were

lated as well which resulted in a total of 4 features.

Global pitch and voicing-related features

dition to pitch measurements per frame, we examined the
f more global pitch features such as mean and standard
tion of pitch, pitch excursion (maximum pitch � minumum
and the averaged local variability in pitch (mean absolute
of pitch). Bickley & Hunnicutt [7] found that the ratio of
ced to voiced frames is greater in laughter than in speech.
fore, we also calculated the fraction of locally unvoiced
s and the degree of voice breaks, which is the total dura-
f the breaks between the voiced parts of the signal divided
total duration of the analysed part of the signal. A total of
al features per segment were calculated using Praat [11].

Modulation spectrum

ied to capture the rhythm and the repetitive syllable sounds
ghter, which may differ from speech, with the help of the
lation spectrum. The modulation spectra of speech and
ter were calculated by first obtaining the amplitude en-
e via a Hilbert transformation. The envelope was further
ass filtered and downsampled. The power spectrum of the
ope is then calculated and the first 16 spectral coefficients
ulation spectrum range up to 25.6 Hz) are used as features.

4. Experiments and results
erformances of the classifiers, each trained with differ-
ature sets (PLP, pitch&energy, pitch&voicing and modu-
spectrum features) were evaluated by testing them on the

029’, ‘Bmr030’ and ‘Bm031’ subsets of the ICSI Corpus.
sed the same data sets as in Kennedy & Ellis [3] to make
er comparison between the results possible. In addition to
‘Bmr’ subsets, we applied the laughter detection model to
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Figure 1: Results of GMM laughter detection model trained
with PLP features (256 Gaussians), trained with Bmr data and
tested on Bmr (bmr-plp), Bed (bed-plp) and selected CGN (cgn-
selection-plp) data, where ‘selection’ means: removal of ‘bad’
laughter segments.

4 ‘Bed’ subsets of the ICSI corpus, which contained speakers
that were not present in the training data. And for even more
realistic results, we applied the model to data from the Dutch
CGN corpus. Fig. 1 shows performances of the laughter detec-
tion model trained with PLP features, applied to 3 ICSI ‘Bmr’
sets (bmr-plp), 4 ICSI ‘Bed’ sets (bed-plp) and a small selection
of CGN data (cgn-selection-plp).

We can observe in Fig. 1 that the performance of the clas-
sifier decreases as the dissimilarity between training and test
data increases. However, from Fig. 1 it appears that our loss
of performance caused by dissimilarities between training and
test data is not as large as was reported in a previous study on
laughter detection [3]: we obtain Equal Error Rates (EERs) of
13.4%, 15.5% and 17.6% on ‘Bmr’, ‘Bed’, and CGN data re-
spectively.

The GMM laughter and speech models were also trained
and tested on a selection of the data where ‘bad’ laughter seg-
ments (that contained speech or inaudible laughter) were dis-
carded. Expectedly, the performance of the classifier increased
(compare Fig. 1 to Fig. 2) because the data contained less
‘noise’ after selection. However, in this case, the dissimilar-
ities between training (‘Bmr’) and test set (‘Bed’, CGN) did
lead to a considerable loss in performance for the CGN test set
but not for the ‘Bed’ test set (see Fig. 2). There are pros and
cons to such a clearer laughter detection model; the choice for
it depends on the type of task or application that the laughter
detection model will be used for.

In the subsequent classification experiments we decided to
use the selected laughter and speech material for training and
testing. Fig. 3 and Fig. 4 show results that were achieved
with a laughter and speech model trained with pitch&energy
and pitch&voicing features respectively. Although there are less
data points available for training (the pitch&voicing features are
extracted per segment and not per frame), the models trained
with global pitch&voicing features (EERs 19.0% - 37.3%) per-
form better than the models trained with pitch&energy features
(EERs 23.2% - 59.7%). Fig. 5 shows that the modulation spec-
trum features do not perform well (EERs 37.7% - 44.5%) in
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e 2: Results of GMM classifier trained with PLP features
aussians), trained with selection of Bmr and tested on se-

n of Bmr (bmr-selection-plp), Bed (bed-selection-plp) and
(cgn-selection-plp) data.

minating laughter from speech: the use of these features
res further investigation.
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e 3: Results of GMM classifier trained with pitch&energy
es (2 Gaussians), trained with selection of Bmr and tested
lection of Bmr (bmr-selection-pe), Bed (bed-selection-pe)
GN (cgn-selection-pe) data.

5. Discussion and conclusions
an conclude that GMMs trained with spectral PLP fea-
outperform other GMMs trained with pitch&energy,
voicing and modulation spectrum features in automatic

tion of laughter. Moreover, compared to the other fea-
that we have tried, PLP features are relatively robust
the models are applied to data that was recorded on

erent location (CGN data). The models trained with
voicing features measured globally per segment per-

better than pitch&energy features measured per frame;
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Figure 4: Results of GMM classifier trained with global pitch
and voicing-related features (4 Gaussians), trained with selec-
tion of Bmr and tested on selection of Bmr (bmr-selection-gpv),
Bed (bed-selection-gpv) and CGN (cgn-selection-gpv) data.
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Figure 5: Results of GMM classifier trained with modulation
spectrum features (4 Gaussians), trained with selection of Bmr
and tested on selection of Bmr (bmr-selection-mod), Bed (bed-
selection-mod) and CGN (cgn-selection-mod) data.

with only 6 global measurements per segment (as opposed
to 4 pitch&energy measurements per frame per segment and
13+deltas PLP features per frame per segment), we may infer
that pitch&voicing features are relatively strong features for dis-
crimination between laughter and speech. For instance, one of
the extracted pitch&voicing features is the fraction of unvoiced
frames which appears to be larger for laughter (mean = 0.62,
sd = 0.20) than for speech (mean = 0.38, sd = 0.16); this was
also concluded in Bickley & Hunnicutt [7]. Further research is
needed to optimize the use of these promising pitch&voicing
features and to examine whether for example, a combination of
PLP features and global pitch&voicing features would improve
detection accuracy. Optimization is also needed for the Gaus-
sian Mixture Models trained with modulation spectrum features
(e.g. other choice of modulation spectrum features).
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nother suggestion for future research is to develop a
ter detection model that is also able to determine the be-
ng and end of laughter. So far, we have used presegmen-
ata to detect laughter. A laughter detection model that
rovides an automatic time alignment of laughter is a more
lex task that gives rise to additional problems such as: how
e decide when a laughter starts or ends and how do we
ate the performance of such a detection model? These are
l problems that can be addressed within an HMM frame-

e have shown that it is possible to automatically distin-
human laughter from speech. Laughter is only one ex-
of paralinguistic information that can be extracted from

eech signal. In the future, we hope to use similar meth-
s described in this paper for automatic detection of other
nguistic events to make classification of emotion in speech
ble.
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