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The aim of this study is the analysis of continuous speech signals of people with Parkinson’s dis-

ease (PD) considering recordings in different languages (Spanish, German, and Czech). A method

for the characterization of the speech signals, based on the automatic segmentation of utterances

into voiced and unvoiced frames, is addressed here. The energy content of the unvoiced sounds is

modeled using 12 Mel-frequency cepstral coefficients and 25 bands scaled according to the Bark

scale. Four speech tasks comprising isolated words, rapid repetition of the syllables /pa/-/ta/-/ka/,

sentences, and read texts are evaluated. The method proves to be more accurate than classical

approaches in the automatic classification of speech of people with PD and healthy controls. The

accuracies range from 85% to 99% depending on the language and the speech task. Cross-language

experiments are also performed confirming the robustness and generalization capability of the

method, with accuracies ranging from 60% to 99%. This work comprises a step forward for the de-

velopment of computer aided tools for the automatic assessment of dysarthric speech signals in

multiple languages.VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4939739]

[CYE] Pages: 481–500

I. INTRODUCTION

Parkinson’s disease (PD) is a neurological disorder that

affects functions of the basal ganglia and it is characterized

by the progressive loss of dopaminergic neurons in the sub-

stantia nigra of the midbrain.1 It is estimated that PD affects

1% to 2% of the people older than 65.2 The problems

induced by PD include motor deficits such as bradykinesia,

rigidity, postural instability, and resting tremor. Non-motor

deficits include negative effects on the sensory system, sleep,

behavior, cognition, and emotion.3 The neurological state of

patients with PD is clinically evaluated using the unified

Parkinson’s disease rating scale (UPDRS)4 and Hoehn &

Yahr staging scale.5 These scales consider motor and non-

motor symptoms; however, the evaluation of speech repre-

sents just one item. According to the literature, the majority

of patients with PD feature some voice and speech impair-

ments including reduced loudness, monopitch, monoloud-

ness, reduced stress, breathy, hoarse voice quality, and

imprecise articulation. These impairments are called hypoki-

netic dysarthria.3,6

There are several types of dysarthria that appear due to

different neurological disorders and the research community

has shown interest in characterizing them in order to support

the diagnosis process. Darley et al.7 presented a comprehen-

sive study of different types of dysarthria with origins in

seven neurological conditions including bulbar palsy, pseu-

dobulbar palsy, amyotrophic lateral sclerosis, cerebellar
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lesions, Parkinsonism, dystonia, and choreoathetosis. The

authors considered thirty patients in each group (thirty-two

with Parkinsonism). Most of the participants read a standard

paragraph with all English phonemes. In some cases, a sam-

ple of conversational speech was used, and in a very few

cases, it was necessary to ask the speaker to repeat sentences

spoken by the examiner. The speech samples were perceptu-

ally assessed by three experts who considered a total of

thirty-eight speech dimensions to evaluate the recordings.

The ratings are given on a seven point scale of severity (1

representing normal speech and 7 representing very severe

deviation from normal). The agreement among judges was

evaluated considering a total of 150 patients and 37 of the

dimensions. The judges agreed perfectly or up to one point

on the scale in 84% of the evaluations. Two hundred and

five of the 212 patients exhibited imprecise articulation, 180

showed irregular speech rate and reduced intelligibility.

Monotonicity was observed in 177 patients, and 174 exhib-

ited a harsh voice. The authors conclude that it is possible to

differentiate among different types of dysarthria and the

observed occurrence or co-occurrence of the analyzed

speech dimensions can be used as diagnostic aids to identify

different neurological disorders. This work is highly relevant

to the study of dysarthric speech signals because it provides

a very detailed and comprehensive revision of the character-

istics of different types of dysarthria. There are other studies

in the literature that analyze several phenomena in dysarthric

speech. For instance, Green et al.8 considered the duration of

pauses and speech timing in recordings of ten patients with

amyotrophic lateral sclerosis (ALS) and 10 healthy controls

(HCs). Each participant read a 60-word paragraph and the

authors observed that pauses are significantly longer and

more variable in ALS speakers than in HCs. Automatic and

manual measures were compared and no significant differen-

ces were observed, thus the authors conclude that the auto-

matic approach could be suitable to extract and analyze

pauses from continuous speech signals of different speech

impairments. Similarly, Wang et al.9 analyzed the suitability

of several automatic measurements calculated from record-

ings of the rapid repetitions of syllables such as /p@/ and /k@/

[diadochokinetic evaluation (DDK)], to aid the clinical diag-

nosis processes. A total of 21 individuals with ataxic dys-

arthria were considered and the set of measures included in

the analysis comprises, among others, average DDK period,

average DDK rate, and average DDK peak intensity. The

features are calculated using the diadochokinetic rate analy-

sis protocol of the Kay-PENTAX motor speech profile. The

automatic analyses are compared with respect to manual

measures. Strong correlations between these two approaches

are found, indicating that DDK analysis could be suitable to

assess dysarthric speech; however, the relatively small num-

ber of speakers does not allow strong conclusions. Another

contribution in the automatic assessment of dysarthric

speech signals is presented by Paja et al.10 The authors con-

sidered a set of 765 isolated words uttered by ten speakers

with spastic dysarthria [from the universal access (UA-

Speech) audio-visual database11] and applied several acous-

tic and prosodic features to model the speech signals. The

authors perform automatic discrimination between two

levels of dysarthria (mid-to-low vs mid-to-high) and also the

prediction of the intelligibility level. The authors report

accuracies of up to 95% in the binary classification experi-

ments, and Pearson’s correlations (r) of up to 0.96 between

the original dysarthria levels and the predicted ones. This

study shows the suitability of automatic speech analysis to

evaluate intelligibility in dysarthric speech; however, it is

important to highlight that the validation strategy addressed

in this work, which consisted of a randomized bootstrap with

15-folds, can lead to highly optimistic results and biased

conclusions because the speaker independence is not

satisfied.

This paper is focused on the automatic discrimination of

speech of people with hypokinetic dysarthria due to PD and

healthy speakers. The study of PD is particularly relevant

because it is the second most prevalent neurological disor-

der, affecting more than 4� 106 people worldwide.12

Additionally, PD has significant impact in the social, psy-

chological, and physical interaction of patients. According to

the Royal College of Physicians, in order to relieve such

impact, in addition to the pharmacological treatment, PD

patients should have access to a set of services and therapies

including specialized nursing care, physiotherapy, and

speech and language therapy;13 however, it is estimated that

only 3% to 4% of PD patients receive speech therapy.14

Medical therapies and surgery procedures such as deep

brain stimulation have shown significant improvements in

motor functions of patients with PD,13 however, their impact

on speech production remains unclear.14,15 As the evaluation

of speech of people with PD is performed non-objectively

(perceptually) by clinicians, there is a general interest in the

research community to develop accurate and robust method-

ologies to objectively assess the speech of PD patients.16,17

The impact of PD on the speaking skills of the patients

can be characterized by three principal “dimensions” of

speech: phonation, articulation, and prosody.18 Phonation is

defined as the vibration of vocal folds to produce sound,

articulation comprises the modification of the position,

stress, and shape of organs and tissues involved in speech

production, and prosody is the variation of loudness, pitch,

and timing to produce natural speech.19

From the clinical point of view, phonation problems are

related to vocal fold bowing and incomplete closing of vocal

folds.20 Articulation deficits are manifested as reduced am-

plitude and velocity of the articulatory movements of lips,

jaw, and tongue,16 and prosody impairments are manifested

as monopitch, monoloudness, and changes in speech rate

and pauses,18 and difficulties to express emotions through

speech.21

The evaluation of different aspects or characteristics of

speech with discriminative criteria is important to quantify

and to understand their role in the automatic classification of

PD patients and HCs from both the clinical and the engineer-

ing points of view. This paper considers contributions from

the engineering side by reviewing different studies that

address the problem of automatic classification of speech of

people with PD and HCs using techniques based on statistics

and/or machine learning. The link with the clinics is consid-

ered in this paper by reviewing methods in the literature that
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analyze phonation, articulation, and/or prosody in speech.

Additionally, the methodology presented here to characterize

the speech signals is motivated by previous clinical and neu-

rological observations.

In the following, several contributions performed from

the engineering and machine learning points of view are pre-

sented to understand different clinical aspects of dysarthric

speech signals.

Little et al.22 applied different standard and non-

standard phonation measures to discriminate between people

with PD and HCs. The methodology applied by the authors

is based on several characteristics of speech mainly used to

detect dysphonia. The authors calculated a total of seventeen

features, including different standard measures and others

which are based on the nonlinear content of speech signal.

After a systematic search through all pairs of features, those

that are highly correlated (with a correlation coefficient

greater than 0.95) were excluded. The final subset was com-

posed of ten features, six standard and four nonlinear. The

standard features were calculated using the software PRAAT.23

The set comprised two versions of jitter (absolute and aver-

age absolute difference between cycles), the amplitude per-

turbation quotient, shimmer (calculated as the average

absolute difference between the amplitudes of consecutive

periods), harmonics to noise ratio (HNR), and noise to har-

monics ratio (NHR). The nonlinear analysis included recur-

rence period density entropy (RPDE),24 detrended

fluctuation analysis (DFA),24 correlation dimension,25 and

the pitch period entropy (PPE), which is a novel measure of

dysphonia introduced in Ref. 22. Additionally, the authors

performed a second round of exhaustive search through this

set of ten features, and the resulting subset of features

included HNR, RPDE, DFA, and PPE. The discriminative

capability of this reduced set of features was tested by the

authors by performing an automatic classification of 23

patients with PD and 8 HCs. All of the participants uttered

the English vowel /ˆ/ in a sustained manner. The reported

accuracy considering the subset with four measures is 91%.

Sapir et al.26 evaluated the articulation capability of 38

patients with PD and 14 HCs considering different spectral

features such as vowel space area (VSA), formant centraliza-

tion ratio (FCR), natural logarithm of VSA, and the quotient

F2i=F2u. F2i and F2u are the values of the second formants

extracted from the vowels /i/ and /u/, respectively. All of the

participants were English native speakers, and they were

asked to repeat three sentences several times per day during

at least 2 or 3 days before and after receiving voice treatment

based on the Lee Silverman voice treatment (LSVT).27 The

set of three sentences includes (1) “the blue spot is on the

key,” (2) “the potato stew is in the pot,” and (3) “the stew

pot is packed with peas.” The vowels /ˆ/, /i/, and /u/ were

extracted from the recordings to perform the measurements.

According to the reported results, FCR and F2i=F2u are

highly correlated (r¼�0.90) and both can differentiate

between dysarthric and non-dysarthric speech signals.

Skodda et al.15 measured different prosodic features on

four sentences uttered by 138 patients with PD and 50 age

matched HCs, all of the participants were German native

speakers. The calculated features are based on estimations of

the fundamental frequency of speech (F0) performed using

the standard software PRAAT.23 The set of measures includes

mean value of F0, the standard deviation of F0 (F0SD) in Hz,

and the difference of F0SD calculated from the first and the

fourth sentences. Additionally, the analysis of speech rate

was performed by measuring the length of each syllable and

each pause, respectively, based on the spectrogram of the

sound pressure signal, and the net speech rate (NSR) was

measured in syllables per second related to the net speech

time in milliseconds. Further, the authors introduced the con-

cept of articulatory acceleration as the difference between

the NSR of the first and the fourth sentences. The authors

performed several statistical tests to consider information

from all of the measures and recordings. According to the

results, the variation of F0 is lower in PD patients than in

HCs. The authors also observed that there is a correlation

between several PD symptoms and prosody variables, such

as the number of pauses in speech. The articulation ability

of people with PD is also analyzed and the authors intended

to reveal possible correlations among vowel articulation,

global motor performance, and the stage of disease. A total

of 68 patients with PD and 32 HCs were included in the

study. The participants read a text and the values of the first

two formants (F1 and F2) were measured from the vowels

/a/, /i/, and /u/. The articulation analysis performed was

based on measures of the triangular vowel space area (tVSA)

and vowel articulation index (VAI). The authors performed

several statistical tests and concluded that VAI in PD

patients is significantly reduced compared to HC.

Additionally, they indicate that tVSA is only reduced in

male PD speakers. No correlations were found between

vowel articulation and the extent of the disease.

Rusz et al.18 considered recordings from a total of 46

participants (23 with PD and 23 HCs). Voice recordings

comprised six different tasks including (1) isolated vowels

pronounced in a sustained manner, (2) rapid repetition of

/pa/-/ta/-/ka/ syllables, also called DDK evaluation, (3) read

text of 136 words, (4) one monologue of at least 90 s, (5)

read sentences, and (6) rhythmically read text of 34 words (8

rhymes followed by an example given by the examiner).

These speech tasks were characterized considering three

dimensions of speech: phonation, articulation, and prosody.

Phonation features were evaluated on the sustained vowels

and the set of measures includes the variation of F0, different

versions of jitter and shimmer, and noise content quantified

through HNR and NHR. The evaluation of articulation was

mostly performed considering the DDK task, and the fea-

tures include the number of vocalizations of /pa/-/ta/-/ka/ per

second, the ability to maintain a constant rate of C-V combi-

nations in the pronunciation of /pa/-/ta/-/ka/, and different

spectral-based measures of energy. Additionally, the authors

included the vowel space area (VSA) measured from the sus-

tained phonation of the vowels /a/, /i/, and /u/.26

The prosody evaluation was performed considering

reading texts, sentences, and the monologue. The set of pros-

ody features includes variation of F0, percent pause time,

articulation rate, number of pauses, standard deviation of the

intensity, and the ability to reproduce perceived rhythm. The

authors concluded that 78% of the patients evidenced speech
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problems; articulation was the second most affected dimen-

sion of speech while prosody was the most affected even in

the initial stage of the disease. They also found that the vari-

ation of the fundamental frequency measured on the mono-

logues and emotional sentences contained very useful

information for separating HCs from PD speakers.

Tsanas et al.28 evaluated phonation of people with PD

considering 132 measures from sustained phonations of the

English vowel /ˆ/. A total of 263 speech samples were

recorded from 43 subjects (33 with PD and 10 HCs). The set

of measures included different estimations of jitter and

shimmer, different variants of noise measures, Mel fre-

quency cepstral coefficients (MFCCs), and nonlinear meas-

ures.29 The authors applied four different feature selection

techniques to find the best subset of features that separates

between phonations of PD patients and HCs. They followed

a tenfold cross validation (CV) strategy. The feature selec-

tion process was applied to the training sets to avoid overfit-

ting. The final subset had selected features comprised of a

total of ten measures, which were selected applying a voting

scheme. Two different classification strategies were com-

pared: random forest (RF) and support vector machine

(SVM) with Gaussian kernel. The 263 phonations were split

into two subsets: a training subset with 90% of the data (237

phonations), and a testing subset with the remaining 10% of

the data (26 phonations). The process was repeated 100

times randomly permuting the subsets prior to splitting into

training and testing. Errors over the 100 repetitions were

averaged. The authors reported performances from 94.4% to

98.6%, depending on the feature selection technique.

According to the validation methodologies for auto-

matic classification systems, training and testing subsets

must be separated during the entire experiment and the vali-

dation process must be speaker-independent to avoid bias

and to find more realistic results.30 Note that the database

used by Tsanas et al.28 contains 263 phonations from 43 sub-

jects, i.e., each subject repeated the phonation several times,

thus speaker independence is not guaranteed in the experi-

ments because all of the recordings are mixed into training

and testing subsets. This methodological issue can lead to

optimistic results and possible biased conclusions. In partic-

ular, since the target (the detection of PD) is constant per

speaker, there is a chance for the system to decide by recog-

nizing the speaker rather than recognizing the pathology.

Bocklet et al.31 performed automatic classification of

speech from patients with PD and HCs considering three dif-

ferent strategies to model the speech signal, articulation,

prosody, and phonation, along with a set of 1582 acoustic

features extracted using the OPENSMILE toolkit.32 Articulation

modeling was performed using the 13 MFCCs and their first

and second order derivatives, forming a feature vector with

39 components per voice frame. Feature vectors were mod-

eled using Gaussian mixture models (GMMs), such that one

GMM was created for each speaker by the universal back-

ground modeling (GMM-UBM) technique. The GMM was

created using a total of 128 Gaussians trained on the whole

training set using the expectation-maximization (EM) algo-

rithm. The means of the UBM were adapted by relevance

maximum a posteriori (MAP) adaptation to find specific

mixtures per speaker. Finally, the means of each Gaussian

were used as speaker-specific features, forming 4992-

dimensional (128� 39) feature vectors per speaker. Prosodic

modeling is performed using measures derived from F0,

energy, duration, pauses, jitter, and shimmer.33 Feature vec-

tors were formed computing mean, minimum, maximum,

and standard deviation of a total of 73 features per voiced

segment (292 dimensional). Phonation modeling was based

on the estimation of physical parameters of the glottis. The

two-mass vocal fold model was used with the aim of finding

physically meaningful parameters.34 A total of nine features

were derived from the model. Stevens34 presented the math-

ematical description of such parameters. The experiments

included utterances of 176 German native speakers, 88 with

PD and 88 HCs. The set of speech tasks comprises spontane-

ous speech, read text, read sentences, isolated words, sus-

tained vowels, and the repetition of the syllable /pa/. The

results were reported in terms of the correct classification

per class and of unweighted average recall (UA). The highest

classification rate was reached considering only articulation

models (MFCCs and GMM-UBM). The recognition rate of

PD patients was 86.5%, evaluating only the read sentences,

while the highest UA was 81.9% when all of the tasks were

combined.

The highest recognition achieved of phonations from

people with PD (specificity) was 94.3%.

Phonation of PD patients was evaluated by Orozco-

Arroyave et al.35 through nonlinear dynamic features. The

authors considered a group with 40 participants (20 with PD

and 20 age-matched HCs). All of them uttered the five

Spanish vowels (/a/, /e/, /i/, /o/, and /u/). The set of features

included correlation dimension, largest Lyapunov exponent,

Lempel-Ziv complexity, Hurst exponent, RPDE, DFA, ap-

proximate entropy, approximate entropy with Gaussian ker-

nel, sample entropy, and sample entropy with Gaussian

kernel. Accuracies ranging from 70.2% to 76.8% (depending

on the vowel) were reported. The highest accuracy was

obtained with the vowel /i/. The combination of all phona-

tions did not improve the performance of the system. This

work allowed the authors to determine the real contribution

of nonlinear features separating PD patients and HCs.

According to the results, more measures, such as HNR,

NHR, jitter, and shimmer, need to be added to the set

described by Tsanas et al.28 to achieve higher accuracies

when only sustained vowels are evaluated.

Bayestehtashk et al.36 evaluated the speech of 168

patients with PD. The speech tasks considered included (1)

sustained phonations of the English vowel /a+/, (2) DDK

evaluation, and (3) reading text. The aim of the authors was

to perform an automatic evaluation of the neurological state

of the patients through speech. The set of features was com-

prised of a total of 1582 measures calculated using the

OPENSMILE toolkit.32 The accuracy of the model was tested

using three different regression techniques to evaluate the se-

verity of the disease according to the motor section of the

UPDRS scale.4 The authors report that ridge regression per-

forms better than lasso and support vector regression.

According to the results, features extracted from the reading

texts are the most effective and robust to quantify the extent
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of the disease. The mean absolute error obtained with respect

to the motor section of the UPDRS scale is about 5.5, with a

baseline of 8.0. The authors followed a leave-one-out cross-

validation strategy to optimize the parameters and to mea-

sure the performance of the system. The authors claim that

further work is required to present the information to clini-

cians in a useful and interpretable manner. Additionally,

they conclude that different speech characteristics such as

imprecise articulation, short rushes of speech and language

impairments are still not modeled in the literature of PD.

Apparently the authors were not aware of the study reported

by Chenausky et al.,37 where several articulation phenomena

were modeled. In the study the authors considered a total of

ten patients with Parkinson’s disease and twelve healthy

speakers. All the PD patients underwent a deep-brain-stimu-

lation surgery (DBS) and their speech was recorded both on-

stim and off-stim, i.e., with the electrical stimulator turned

on and turned off. The participants were asked to produce

rapid repetitions of the syllables /pa/ and /ka/. The authors

studied several articulation phenomena in those speech tasks

including syllable rate and syllable-length variability, sylla-

ble length patterning, vowel fraction, voice onset time

(VOT) variability, and stop consonant spirantization.

According to their findings, these articulation-based meas-

ures are suitable to assess speech-related improvements after

the DBS surgery. This study provides a set of suitable meas-

ures that describe the articulation capability of PD patients.

The features presented in this study describe articulatory def-

icits mainly from the duration point of view, e.g., syllable

duration, vowel fraction, and VOT, and motivate further

research on articulatory features considering energy-based

measures calculated upon unvoiced frames.

Rusz et al.38 considered a group with 20 early PD

patients and 15 HCs (Czech native speakers). The authors

analyzed vowel articulation across different speaking tasks

including sustained phonations of the vowels /a/, /i/, and /u/

, sentence repetition, reading text, and monologue. The set

of features was comprised of measures of the first (F1) and

the second formant (F2), VAI, VSA, and the quotient F2i/

F2u. The authors claim that sustained phonations are not

appropriate to evaluate vowel articulation in PD patients,

while monologue is the most sensitive task to differentiate

between PD patients and HC. The results indicate that it is

possible to separate between PD patients and HCs with

classification scores of about 80% when different articula-

tion measures (i.e., VSA and F2i/F2u) are applied on the

monologue.

Recently, Tsanas et al.17 analyzed the impact of LSVT

(Ref. 27) in the speech therapy of patients with PD. The

authors measured a total of 309 dysphonia features to

assess whether a sustained phonation is “acceptable” or

“unacceptable” according to the clinical criteria of six experts.

The system was evaluated on 126 phonations of the vowel /ˆ/

uttered by 14 PD patients. The LOGO (fit locally and think

globally) feature selection algorithm was applied to find the

most discriminant subset of features. The subset was selected

following a tenfold CV strategy. The feature selection process

was repeated 100 times on the training sets to avoid overfit-

ting. The final subset of features was formed following a

voting scheme. RF and SVM were used to discriminate

between “acceptable” and “unacceptable” phonations. The

authors reported a classification score of 90% considering a

subset of features with 10 measures. Although the system was

tested following a CV strategy with 10 folds, note that in this

study the speaker independence is not guaranteed, leading to

optimistic results.

Novotn�y et al.39 presented a study where different artic-

ulatory deficits in speech of people with PD were modeled.

The authors considered a total of 46 speakers, 24 of them

with PD (20 male and 4 female). The group of HCs includes

15 males and 7 females. All participants (PD and HCs) had

no history of speech therapy. The speech task performed by

the speakers consisted of the rapid repetition of the syllables

/pa-ta-ka/. The task was repeated twice per speaker. No lim-

its in the number of repetitions were imposed. The authors

calculated 13 features to describe six different articulatory

aspects of speech, including vowel quality, coordination of

laryngeal and supralaryngeal activity, precision of consonant

articulation, tongue movement, occlusion weakening, and

speech timing. The authors reported a classification result of

88% in separating speech signals of PD patients and HCs.

The results reported in this study confirm previous observa-

tions made by other authors who reported imprecise articula-

tion as the most predominant characteristic of PD-related

dysarthria. These results represent a step forward in the auto-

matic evaluation of articulation in PD speech, not only

because they were obtained automatically, but also because

the evaluation is performed with a discriminative criterion,

which allows the analysis of accuracy, specificity, and sensi-

tivity of the method. The drawback of this study is that it

was performed with a relatively small number of partici-

pants, thus further experiments considering more patients are

required in order to obtain more conclusive results.

In the same year, Orozco-Arroyave et al.40 performed

automatic classification of speech signals from people with

PD and HCs considering three different languages: German,

Czech, and Spanish. The set of recordings considered in the

three languages includes (1) 6 words uttered by 176 German

native speakers (88 with PD and 88 HCs), (2) 13 words spo-

ken by a total of 100 Spanish native speakers from Colombia

(50 with PD and 50 HCs), and (3) the rapid repetition of the

syllables set /pa/-/ta/-/ka/ (DDK analysis), which was uttered

by 42 Czech speakers as well as by the Colombian and

German ones. The authors presented a method based on the

systematic separation of voiced and unvoiced segments of

speech. The characterization and classification processes

were performed considering each kind of segment sepa-

rately. For voiced sounds, the authors calculated 12 MFCCs,

three different noise measures, and the first two formants,

while the unvoiced sounds were modeled using 12 MFCCs

and the energy measured over 25 bands scaled according to

the Bark scale.41 The authors reported results from the

voiced and unvoiced sounds separately. For the case of

unvoiced sounds, the maximum reported accuracies obtained

with Spanish and German words were 99% and 96%, respec-

tively. For the case of /pa/-/ta/-/ka/, accuracies of 97% for

German and Czech were reported, while for Spanish, 99%

was reached. The highest accuracy reported using voiced
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sounds on Spanish data was 84% with the word “petaka.”

For the case of German recordings, the highest accuracy

obtained with voiced sounds was 73% with the word

“perlenkettenschachtel.” The results with voiced sounds of

/pa/-/ta/-/ka/ were 90%, 69%, and 80% for Czech, German,

and Spanish, respectively.

Note that the data considered in that work included

recordings of the three languages but only with DDK analy-

sis and isolated words. Although this task allows the assess-

ment of different articulators, namely, lips, tongue, and

velum, these recordings do not correspond to continuous

speech and do not contain articulatory and prosody informa-

tion of each particular language. The analysis of continuous

speech signals in different languages has not been addressed

in the literature.

From the reviewed literature it is possible to identify

different aspects in the evolution of the speech processing to

model dysarthric signals.

(1) The phonation dimension of speech has been widely

covered and analyzed considering different sets of fea-

tures including analysis of stability, periodicity, noise

content, nonlinear structure, spectral wealth, and others.

(2) Articulation has also been addressed in different papers;

however, most of them were focused on vowel articula-

tion. Thus, considering that PD patients develop prob-

lems in the correct pronunciation of stop and voiceless

consonants,42 further research is required to model con-

sonant sounds, unvoiced frames, and other speech units

that require the control of different muscles and limbs

involved in the speech production process. Such uncon-

trolled production of consonants affects communication

skills of PD patients and has additional impact on the

prosody and fluency of their speech.36 There are studies

on quantitative analyses of articulation in speech of PD

patients, however, more research is required to analyze

specific phenomena observed during the production of

consonants, especially unvoiced sounds. A couple of

appropriate and insightful papers that motivated this

research were presented by Chenausky37 and Stevens.43

Additionally, further research is also required to develop

computer aided tools that help clinicians, speech thera-

pists, and patients to evaluate and improve their perform-

ance during the therapy and to detect problems in the

pronunciation of specific sounds.36

(3) Prosodic characteristics provide information about

speech rate, pause, intonation, and general communica-

tion skills of people. These characteristics must be

included in the evaluation of people with PD for a better

understanding of the impact of the disease on speech.44

(4) One aspect that has not been widely addressed in the lit-

erature is the reliability of characterization and classifi-

cation methods to assess speech of people with PD in

different languages. The main challenge of such an anal-

ysis is the need for databases with recordings of different

languages.

Furthermore, from the clinical and neurological points

of view, it has been observed that people suffering from

dysarthria (most PD patients) develop problems controlling

the vagus and hypoglossal nerves, inducing problems pro-

nouncing consonants that require pressure build-up in the

mouth and lingual movements, respectively.45 The most seri-

ous pronunciation problems occur mainly in the plosives /p/,

/t/, /k/, /b/, /d/, and /g/, due to the developed impairments to

control nerves and muscles involved in the movement of dif-

ferent articulatory organs, such as the lips, tongue tip, center

of the tongue, tongue base, jaw, epiglottis, and larynx.46

Notwithstanding the evidence reported by clinicians, the

research community has been mainly focused on modeling

voiced frames. One possible reason is that the vocal folds

comprise the most important subset of muscles and tissues

involved in speech production. The scientists have modeled

their movements and the glottal source accurately, however,

as highlighted in several works,42,45,46 for the case of dys-

arthric speech, there is also important information in the

frames where the vocal folds should not vibrate. The model-

ing of such loss of control to produce these kind of frames

(unvoiced sounds) should improve the modeling of dysarth-

ric speech signals such as those produced by patients with

PD.

The contributions of this paper include a simple, useful,

and robust methodology to classify between speech of peo-

ple with PD and HCs. The method consists of modeling the

energy content of the unvoiced sounds in different speech

recordings. Four speech tasks are considered: (1) isolated

words, (2) DDK evaluation, (3) sentences, and (4) reading

text. The speech tasks were uttered in three different lan-

guages: Czech, German, and Spanish (spoken in Colombia).

As the recordings from each language were captured sepa-

rately, the robustness and the validity of the methods pre-

sented here are tested not only in three languages, but also in

different technical conditions, i.e., different microphones,

sound cards, sampling frequencies, noise conditions, etc.

Besides the experiments with recordings of the three lan-

guages, the method is validated through cross-language tests,

i.e., the system is trained with one language and tested in

another one. Experiments with all of the six possible combi-

nations of the three languages for training and testing are

performed, yielding promising results and opening the possi-

bility to design computer aided tools to evaluate speech of

people with PD in different languages. To the best of our

knowledge, this is the first paper that addresses the problem

of automatic classification of PD and HC speakers including

continuous speech uttered in three different languages and

also cross-language experiments.

The rest of the paper is organized as follows. Section II

presents the details of all of the methods applied in this pa-

per, including the methodology that is proposed here to char-

acterize speech of people with PD and a brief description of

the speech tasks. In Sec. III, details of the three databases

with recordings in Spanish, German, and Czech are pre-

sented. Section IV includes details of the experiments and

the obtained results. Section V includes the discussion about

the evaluated speakers and the results obtained in the experi-

ments. Finally, Sec. VI includes conclusions derived from

this paper and shows potential applications and the limita-

tions of the proposed method.
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II. METHODS

The methodology of this study is comprised of three

main stages: (i) preprocessing, (ii) speech modeling, and (iii)

classification. The first stage consists of manual and auto-

matic segmentations of the utterances. Manual segmentation

is performed to remove the silence at the beginning and end

of each recording; the automatic segmentation consists of

the estimation of voiced regions to separate each utterance

into voiced and unvoiced segments. Pauses and unvoiced

frames shorter than 40ms are excluded from the recordings.

The second stage includes four different approaches for

speech modeling:

(a) The utterances are recorded without the voiced/

unvoiced (v/uv) separation, only pauses are removed,

and feature vectors formed by MFCCs are modeled

using the GMM-UBM approach.31

(b) Prosody analysis is performed on the voiced frames

using different measures including those extracted

from F0, energies, duration, and pauses.33

(c) Noise content, MFCCs, and formant measures are

extracted from voiced segments.

(d) The unvoiced segments are characterized by MFCCs

and the energy of the signal distributed in 25 Bark

bands, namely, Bark band energies (BBEs).41

The third stage of the methodology consists of the deci-

sion on whether a recording belongs to a speaker with PD or

a HC; this decision is computed using a radial basis SVM

with parameters c and C. The described methodology is sum-

marized in Fig. 1.

A. Preprocessing

Silences in the recordings were removed manually from

the beginning and the end of each voice register. Then, the

recordings were automatically segmented using the software

PRAAT.23 Before the estimation of features, the speech frames

were windowed using Hamming windows of 40ms with

20ms of overlap.

B. Speech modeling

1. Modeling based on MFCC-GMM supervectors

This modeling was performed following the same

approach presented by Bocklet et al.31 Hamming windows

with 25ms and time shifts of 10ms were applied to the

speech signal. A total of 13 MFCCs were taken (including

C0). MFCCs are standard features for speech recognition.

They are a coarse representation of the short-time spectrum

and have been shown to be appropriate to model irregular

movements in the vocal tract.47 MFCCs have been applied to

model several speech pathologies such as dysphonia,47 hyper-

nasality,48 and dysarthria.18 The feature vector was formed

with first and second order derivatives of the MFCCs (39-

dimensional). Afterwards, the feature vector was modeled

using the GMM-UBM strategy, i.e., a class-independent

GMM with 128 Gaussians was trained on the whole data set

by means of the EM algorithm. The mean values of the UBM

were adapted by relevance MAP adaptation, finding speaker-

and speech task-specific GMMs. The means of the Gaussians

were then used as speaker- and task-specific features, forming

4992-dimensional (128� 39¼ 4992) feature vectors.

2. Prosody analysis

Prosodic features were computed using the Erlangen

prosody module.33 For the sake of comparisons with the

approaches presented in Secs. II B 3 and II B 4, the same seg-

ments with voiced frames are considered to be processed by

the prosody module.

The set of features extracted with the prosody module

comprises a total of 64 features. Seventeen of them are based

on the utterances duration, 28 are based on the F0 contour,

and 18 are based on energy measures. The duration-based

subset includes, among others, measures of the number of

voiced frames, average duration of voiced frames, maximal

length, and fraction of voiced frames. The subset with F0-

based features includes measures of the mean squared error

(MSE) measured relative to the regression curve, and the

regression coefficient of the F0 contour within a frame, mean

value of F0, minimum and maximum of F0, its value in the

onset and offset, its temporal variation (jitter), its variation in

amplitude (shimmer), and others. Referring to the energy-

based features, this subset includes measures of the absolute

value of energy within the words, maximum and minimum

values of energy, MSE of the normalized energy curve rela-

tive to the regression curve, position of the maximum energy,

and others. The detailed description of the features developed

in the prosody module is presented by Zeibler et al.33

The features were grouped into one feature vector and

four functionals were calculated: mean value (m), standard

deviation (std), kurtosis (k) and skewness (sk), forming a 256-

dimensional (64� 4¼ 256) feature vector per recording.

3. Noise content, formant measures, and cepstral
analysis of voiced frames

Voiced frames are characterized considering a set with

17 features. Three measures of noise content including HNR,

normalized noise energy, and glottal to noise excitation ratioFIG. 1. Proposed methodology to address the experiments.
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along with the first two formants in Hz (F1 and F2), and 12

MFCCs. Voiced frames shorter than 40ms were excluded

from the analysis.

The four functionals (m, std, k, and sk) were also calcu-

lated from the measures, forming a 68-dimensional feature

vector per recording.

4. Cepstral analysis and energy content of unvoiced
frames

The main hypothesis of this paper is the existence of

discriminant information in unvoiced frames to discriminate

between people with PD and HC. One of the cues to state

this hypothesis is that patients with PD develop problems

pronouncing consonant sounds in the right moment due to

their lack of control of different articulators like tongue, lips,

and jaw.45 Additionally, their mispronunciation problems

are also related to impaired control of respiratory and laryn-

geal muscles, inducing the lack of intratracheal pressure

while producing speech.49 In order to model these articula-

tory and respiratory dysfunctions, the energy content of the

unvoiced frames is modeled using 12 MFCCs and 25

BBEs.41

The four functionals (m, std, k, and sk) were also calcu-

lated here, forming feature vectors with 148 components

(37� 4¼ 148).

5. Classification and validation

The classification was performed with a radial basis

SVM, with margin parameter C and a Gaussian kernel with

parameter c. The parameters C and c were optimized through

a grid-search with 1<C< 104 and 1< c< 103. The selection

criterion was based on the obtained accuracy on test data. A

tenfold cross-validation strategy was employed for experi-

ments with German and Spanish recordings, in which train-

ing and testing subsets never contained the same speakers. In

the case of the Czech database, a leave-one-speaker-out

strategy was followed.40

It is important to note that the folds are randomly

assembled with the constraint of the balance of age and gen-

der of the speakers in German and Spanish data.

Additionally, the speaker independence is guaranteed during

the training and testing. Thus although the selection criteria

of the SVM parameters can lead to slightly optimistic accu-

racy estimates, the bias effect is minimal.

An SVM is used here due to its validated success in sim-

ilar works related to automatic detection of pathological

speech signals.25,50

C. Speech tasks

The database of each language includes different utter-

ances distributed into four speech tasks, including (1) read-

ing text, (2) sets of sentences (six uttered in Spanish, five in

German, and three in Czech), (3) diadochokinetic evaluation

through the rapid repetition of the syllables /pa/-/ta/-/ka/, and

(4) sets of isolated words (13 uttered in Spanish, 6 in

German, and 11 in Czech). Further details with the texts of

each speech task are provided in the Appendix.

The texts evaluated on each language are balanced. The

participants were asked to read the texts at their normal into-

nation and speech rate. The average duration in seconds for

the recordings of patients and controls are, respectively,

18.66 6.3 and 17.76 3.8 for Spanish, 46.06 11.3 and

46.46 7.4 for German, and 37.86 6.2 and 38.26 4.4 for

Czech. The sets of sentences uttered in Spanish and German

are simple from the syntactic and lexical points of view. The

three Czech sentences differ only in some words among

them. The DDK evaluation allows the assessment of the

capability of PD patients to do the correct occlusion of

the oral cavity, performed by the lips in the case of /pa/, by

the tongue in the case of /ta/, and by the velum in the case of

/ka/.51 Note that these recordings would even allow the eval-

uation of speech signals independent of native language of

the patients. Isolated words are included because in a com-

putational tool, the therapist or patient can determine more

accurately which kind of articulatory movements are being

evaluated with a particular word or set of words.

III. EXPERIMENTAL SETUP

A. The data

1. Spanish

This database contains speech recordings of 50 patients

with PD and 50 HCs sampled at 44.1 KHz with 16

resolution-bits. These recordings were captured in noise con-

trolled conditions, in a sound proof booth. All of the speak-

ers are balanced by gender and age. The age of the 25 male

patients ranges from 33 to 77 (mean 62.26 11.2) and the

age of the 25 female patients ranges from 44 to 75 (mean

60.16 7.8). For the case of the HCs, the age of the 25 men

ranges from 31 to 86 (mean 61.26 11.3) and the age of the

25 women ranges from 43 to 76 (mean 60.76 7.7). All of

the patients were diagnosed and labeled by neurologist

experts. The labels of their neurological evaluation were

assigned according to the UPDRS-III and Hoehn & Yahr

scales,5 with mean values of 36.76 18.7 and 2.36 0.8,

respectively. The average duration of the disease prior to re-

cording (in years) was 10.76 9.2. The speech samples were

recorded with the patients in the ON-state, i.e., no more than

3 h after the morning medication. None of the people in the

HC group has a history of symptoms related to Parkinson’s

disease or any other kind of neurological disorder. Further

details of this database are provided by Orozco-Arroyave

et al.52

2. German

This corpus consists of 176 German native speakers.

The set of patients includes 88 persons (47 men and 41

women). The age of male patients ranges from 44 to 82

(mean 66.76 8.4), while the age of the female patients

ranges from 42 to 84 (mean 66.26 9.7). The HC group con-

tains 88 speakers (44 men, 44 women). The age of the men

ranges from 26 to 83 (mean 63.86 12.7), and the age of the

women is from 54 to 79 (mean 62.66 15.2). The mean val-

ues of the neurological evaluation performed on all of the

patients according to the UPDRS-III and Hoehn & Yahr
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scales are 22.76 10.9 and 2.46 0.6, respectively. The aver-

age duration of the disease prior to recording (in years) is

7.16 5.8. The speech samples were also recorded with the

patients in the ON-state. The voice signals were sampled at

16 kHz with 16 resolution-bits. Skodda et al.15 describe this

corpus in more detail.

3. Czech

A total of 36 Czech native speakers were recorded (all

were men), 20 of them were diagnosed with idiopathic PD

and their age ranges from 41 to 60 (mean 616 12). The age

of the HC speakers range from 36 to 80 (mean 61.86 13.3).

The mean values of the neurological evaluation of the

patients, according to the UPDRS-III and Hoehn & Yahr

scales, are 17.96 7.3 and 2.26 0.5, respectively. All of the

patients included in this database were newly diagnosed with

PD, and none of them had been medicated before or during

the recording session. The voice signals were sampled at 48

KHz with 16 resolution-bits. The average duration of the dis-

ease prior to recording (in years) is 2.46 1.7. Since the

Czech participants were diagnosed with PD in the same

moment of the recording session, this disease duration was

obtained as a self report of patients according to the occur-

rence of the first motor impairment symptoms. Further

details of this database are described by Rusz et al.38

Figure 2 shows the age distribution of the participants

from the three databases, the distribution of the UPDRS-III

values, and the distribution of time after PD diagnosis.

IV. EXPERIMENTS AND RESULTS

The utterances of each speech task are evaluated inde-

pendently per language. Additionally, cross-language experi-

ments are performed following a two-step strategy, i.e., (1)

the system is trained with recordings of one language and

tested on the other ones, and (2) subsets of the target lan-

guage are included in the training set (another language) and

excluded from the test set incrementally (from 10% to 80%)

while maintaining strict separation between the list of speak-

ers in the train and test sets. With this incremental procedure

it is possible to observe the evolution of the system accuracy

while more samples from a second language are added to the

training stage.

The results obtained on each experiment are presented

in the following Secs. IVA–IVE and are discussed in terms

of the area under the ROC curve (AUC) values, allowing

objective comparisons among the different systems.30

A. Results on reading texts

Results obtained with each text read in the three lan-

guages are presented in Table I. The features applied on

voiced segments show AUC values ranging from 0.78 to

0.85. These results are consistent with previous observations,

indicating both the presence of noise and the articulatory

problems of people with PD evaluated using reading texts.53

Since the AUC values obtained with the prosodic modeling

are 0.79, 0.83, and 0.76 on Spanish, German, and Czech

recordings, respectively, impairments in the speech rate,

intonation, and general prosodic features are also evidenced

in the recordings of the three databases. Results obtained

with the GMM-UBM modeling approach are around 0.80 in

the three databases, indicating that this acoustic modeling

can also be used to screen speech impairments in PD

patients. The accuracies obtained with German data are con-

sistent with previous studies31 where a similar approach is

addressed and general accuracies of 81.9% are reported

using the same data set. Regarding the results obtained with

the proposed modeling on unvoiced frames, note that in all

of the languages this approach exhibited the highest AUC

values: 0.99, 0.93, and 0.85 for Spanish, German, and Czech

FIG. 2. Age, UPDRS-III, and time after PD diagnosis distribution for the three databases.
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recordings, respectively. These results show that there is dis-

criminant information in unvoiced sounds, and it can be

extracted using energy-based features.

Results are summarized in Fig. 3, which includes ROC

curves of the results obtained from the texts read in the three

languages. Note that the best performance is shown by the

system that is based on the modeling of the energy content

of the unvoiced segments.

Further experiments were performed in order to

understand which of the features included here to charac-

terize the voiced and unvoiced frames are giving the infor-

mation about the presence or absence of the disease.

Different combinations of features were tested. First, the

feature matrices obtained from voiced and unvoiced seg-

ments were merged, and second, MFCCs and BBEs calcu-

lated from unvoiced segments and from utterances without

the v/uv segmentation were tested separately. As the

obtained results in all of the additional experiments ranged

below or around the same accuracies compared to those

obtained with MFCCs and BBEs calculated on the

unvoiced segments, we decided to perform all of the

remaining experiments (with sentences, words, DDK anal-

ysis, and cross-language) considering the same characteri-

zation approaches.

TABLE I. Results obtained with read texts of the three languages and modeled using the four feature sets studied in this paper.

Accuracy (%) Sensitivity (%) Specificity (%) AUC

Spanish NoiseþF1&F2þMFCC 826 10.3 886 13.9 766 24.6 0.84

Prosody 776 12.5 866 9.7 686 21.5 0.79

GMM-UBM 826 13.2 866 13.5 786 28.9 0.78

Unvoiced 976 4.8 986 6.3 966 8.4 0.99

German NoiseþF1&F2þMFCC 78.46 5.2 76.16 14.3 80.96 12.8 0.78

Prosody 83.96 8.1 77.16 12.2 90.86 7.2 0.83

GMM-UBM 78.96 9.7 70.66 15.0 87.46 11.9 0.80

Unvoiced 94.36 3.9 95.46 7.9 93.36 7.8 0.93

Czech NoiseþF1&F2þMFCC 78.36 25.3 1006 0.0 56.76 50.6 0.85

Prosody 78.76 25.3 82.76 38.7 74.76 44.0 0.76

GMM-UBM 80.66 24.4 69.46 46.7 86.16 35.1 0.83

Unvoiced 85.06 23.4 76.76 43.6 93.36 18.9 0.85

FIG. 3. ROC curves obtained from

read texts modeled using the four dif-

ferent characterization approaches

studied in this paper.
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B. Results on sentences

The ROC curves obtained with sentence 2 in Spanish

(“Los libros nuevos no caben en la mesa de la oficina”), sen-

tence 4 in German (“Das Fest war sehr gut vorbereitet”),

and sentence 1 in Czech (“Kolik m�ate ted u sebe asi

pen�ez?”) are depicted in Fig. 4.

The results reported here suggest that the characteriza-

tion approach proposed in this paper is better than others typ-

ically addressed in the literature. The methodology proves to

be robust and highly accurate, since it is tested on continuous

speech signals and on different technical conditions and con-

texts, i.e., with utterances recorded independently in three

different languages.

Further details with the results obtained on each sen-

tence are provided in the Appendix.

C. Results on DDK evaluation

The results obtained with the DDK evaluation performed

on the three languages are shown in Table II. Note that high-

est AUC values are again reached with the characterization

approach based on unvoiced segments. The values are above

0.95 in all three languages, suggesting that the method is ro-

bust and accurate for discriminating between PD and HC

speakers from recordings of the rapid repetition of syllables

with stop consonants. With the other three approaches, the

AUC values are below 0.90, except for the Czech utterances

characterized with the GMM-UBM approach where results

reach 0.93. These results are summarized in Fig. 5.

D. Results on words

Although the methodology proposed in this paper is

conceived to be applied in continuous speech signals, several

experiments with isolated words were also performed in

order to evaluate its robustness and accuracy on specific syl-

labic groups. A total of 31 isolated words are evaluated here;

13 in Spanish, 6 in German, 12 in Czech. This set includes

the same Spanish and German words previously evaluated

by Orozco-Arroyave et al.40 In this paper, Czech words and

two additional characterization approaches are included.

The details with the results obtained on each word are

presented in the Appendix. In general, the results suggest

that the method proposed in this paper also performs better

on isolated words. The AUC values obtained in 23 of the 31

words spoken in the three languages are above 0.90, indicat-

ing that the method is also robust for the automatic classifi-

cation of PD and HC speakers from isolated words.

However, these results on words should be taken carefully

because the analysis of isolated words reveal limitations on

the proposed method. For instance, in utterances where the

FIG. 4. ROC curves of different sentences uttered in the three languages and modeled with the four approaches studied in this paper.

TABLE II. Results of the DDK evaluation with recordings in Spanish, German, and Czech.

Accuracy (%) Sensitivity (%) Specificity (%) AUC

Spanish NoiseþF1F2þMFCC 806 9.4 906 14.1 706 19.4 0.82

Prosody 806 6.7 886 13.9 726 13.9 0.84

GMM-UBM 826 9.2 966 8.4 686 21.5 0.84

Unvoiced 996 3.2 996 0.0 986 6.3 0.99

German NoiseþF1F2þMFCC 69.86 9.5 61.76 24.9 77.26 15.1 0.68

Prosody 73.26 11.4 75.86 15.9 70.66 11.9 0.72

GMM-UBM 70.96 8.3 64.36 19.8 77.16 15.7 0.70

Unvoiced 97.86 2.9 98.96 3.5 96.56 5.6 0.98

Czech NoiseþF1F2þMFCC 81.16 24.7 79.36 41.8 82.96 38.3 0.65

Prosody 84.66 23.9 71.46 46.9 97.96 28.1 0.83

GMM-UBM 86.96 22.0 97.26 16.7 69.46 46.7 0.93

Unvoiced 93.66 16 99.36 2.7 87.96 31.4 0.96
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unvoiced segments are not long enough to provide several

windows of 40ms, it is not possible to calculate the statistics

of the features, or the estimates of statistics are not stable.

E. Results on cross-language experiments

The generalization capability of the proposed approach

is tested through several cross-language experiments per-

formed considering read texts and the DDK evaluation on

each language. To address these experiments, all of the

recordings were re-sampled to 16 kHz. Additionally, the

cepstral mean subtraction process is applied in order to per-

form a channel normalization, avoiding possible bias intro-

duced by the microphones and sound cards.

The experiments consisted on training the system with

recordings of one language and testing with recordings of

another one. Additionally, the improvement of the accuracy

is analyzed when moving portions of the data in the target

language to the data in the training set. The recordings of the

target language are included in the test set and excluded

from the training set to avoid bias. The results are summar-

ized in Figs. 6 and 7. Note that the performance of the sys-

tem improves from 60% to 99% depending on the task, the

added fraction of the target language, and the combination

of the training and test sets.

Figure 6 shows the results on read texts. When the system

is trained with Spanish recordings and tested on German (part

a), only 30% of the German recordings are required to be

moved from the test set to the training set to reach accuracies

of 90%. The resulting training set contains 152 recordings,

66% of them correspond to Spanish and the remaining 34%

correspond to German. Conversely, the accuracies obtained

when testing on the Czech set are above 80% when 50% of

the test recordings are added to the train set and excluded

from the test set (part a). This 50% of the Czech data repre-

sents 15% of the resulting training set when the train language

is Spanish and 9% when the train language is German. When

the system is trained with the German data and tested on

Spanish, 50% of the test set needs to be added to the training

set to reach accuracies above 90%. Note that the added data

represent 22% of the resulting training set. Similarly, when

the system is trained with the Spanish recordings and tested

on Czech, at least 80% of the Czech samples need to be added

to the train set to obtain accuracies of around 80% (part b). In

this case those additional recordings represent 22% of the

resulting training set. Finally, when the system is trained with

Czech recordings and tested on Spanish or German the behav-

ior is similar, i.e., the accuracy begins at 60% and increases

incrementally up to 90% when recordings of the target lan-

guage are added to the test set and excluded from the train

sets (part c).

The results on the rapid repetition of the syllables /pa/-/

ta/-/ka/ (DDK evaluation) are shown in Fig. 7. Note that

when the system is trained with Spanish and tested on

German, it reaches accuracies of 90% when adding only

20% of the test recordings, which means that 35% of the

training set is formed with recordings of the target language

(those recordings are excluded from the test subset). When

20% of the Czech recordings are moved to the test set

(Spanish), the system reaches around 80% accuracy (part a).

FIG. 5. ROC curves obtained with DDK evaluation in Spanish, German, and Czech. The results of the four modeling approaches studied in this paper are

included.

FIG. 6. ROC curves obtained with

cross-language experiments from read

texts.
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Note also that when the system is trained with German and

tested on Spanish (part b), it can reach accuracies of 95%

adding 20% of the test recordings, which represents 10% of

the resulting training set. On the other hand, when the system

is tested on the Czech recordings, it needs more than 60% of

the test data to reach accuracies above 90%. Finally, if the

system is trained with the Czech recordings and tested on

Spanish or German (part c), it only needs to move 20% of

the test set to the train set to reach accuracies of about 95%.

Further details with the values of accuracy, sensitivity, speci-

ficity, and AUC are provided in the Appendix.

V. DISCUSSION

A. The patients

Three different data sets were used in this work.

Considering that each data set was built independently, the

most important biological aspects of the participants should

be discussed in order to analyze their influence on the

obtained results.

From parts a, b, and c in Fig. 2 it is possible to observe the

balance in the age of the participants of the three databases.

Regarding the neurological state of the participants, parts d, e,

and f of Fig. 2 show that Czech patients are in early to middle

stage of the disease (they were diagnosed in the same session

where the recording took place) with UPDRS-III values rang-

ing from 5 to 32. German patients exhibited UPDRS-III values

around 23, ranging from 5 to 55, while Colombian patients

have UPDRS-III values distributed from 5 to 92. As the impair-

ments of speech increase with the extent of the disease,53 one

can expect that the speech of Colombian speakers is more com-

promised than the speech of German and Czech participants.

This point can explain in some way the highest accuracies

obtained with recordings uttered in Spanish. Another important

aspect to be highlighted is that Czech patients were in the OFF

state, while German and Colombian patients were in the ON-

state. Theoretically, patients in the OFF-state should perform

worse than patients in the ON-state, however, our experiments

do not show this. It is worth noting that the impact of the medi-

cation on the speech of PD patients is not clear yet.14,15

Finally, Parts g, h, and i in Fig. 2 indicate the time after

PD diagnosis. In Czech patients this time is 0 years, while

German and Colombian participants were diagnosed about 7

and 10 years ago, respectively. Since PD is a progressive dis-

order, time after its diagnosis can be considered as another

cue to state that Colombian patients were in a more advanced

stage compared to the German and Czech participants.

B. The results

1. Results in read texts

The robustness of the proposed approach is validated in

texts read in three different languages, with data sets

recorded independently, and with different technical condi-

tions, e.g., sampling frequency, microphones, and sound

cards, among others. The approach proposed in this paper

yields the highest accuracies in the three databases. Spanish

and German recordings of the read texts exhibited accuracies

of 97% and 94.3%, respectively. Note that the difference of

the accuracies in Spanish and German is less than 3 percent-

age points, while results in Czech are around 85%.

As pointed out in the discussion about the patients, this

difference can be explained by the fact that Czech patients

were all in the early to middle stages of the disease, none of

them had been diagnosed before the recording session.

Regarding the results obtained with the other three char-

acterization approaches, the prosody module exhibited accu-

racies above 83% on German recordings, while the classical

approach, based on noise measures, the first two formants,

and the MFCCs, reaches accuracies of around 82% in

Spanish. The best approach on Czech samples was that based

on the GMM-UBM modeling.

According to the results obtained with the unvoiced fea-

tures, it seems like the hypokinetic dysarthria suffered by PD

patients is being modeled more accurately by the proposed

characterization approach.

2. Results in sentences

The robustness of the proposed method is also validated

in the experiments performed with sentences in Spanish and

German; however, this behavior changes with Czech record-

ings. Three sentences were evaluated on this language, and

the main difference among them was a couple of words and

syllables. Highest accuracies are obtained with the prosody

module on second and third sentences.

3. Results in DDK evaluation

This task shows accuracies above 90% in the three lan-

guages when the proposed approach was applied. For Spanish

and German, the results are 99% and 97.8%, respectively,

while for Czech recordings, the accuracy reaches 93.6%,

which is one of the highest obtained along the evaluated

speech tasks. Czech patients were in early to middle stages of

the disease, while German and Spanish patients ranged from

FIG. 7. ROC curves obtained with

cross-language experiments from the

DDK evaluation.
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middle to advanced stages. Results indicates that the proposed

approach is able to perform automatic detection of PD in early

and middle stages of the disease.

4. Results in isolated words

Specific movements in the vocal tract can be assessed

through isolated words. In Spanish, the word “campana”

shows a very high classification score. Since the production

of this word requires the movement of the lips in the phone

/p/ and the velum in the phone /mp/, the nasal-bilabial com-

bination /mp/ allows the assessment of the movement in the

lips and the velum. A similar analysis can be done when the

German word “Toilettenpapier” is evaluated. This word also

yields high classification results and its production also

requires a nasal-bilabial combination (/np/).

The set of Czech words also showed high classification

results. For instance, the production of the word kuk�a allows

the evaluation of the velar movement to produce the phone /k/

and the tongue movement to produce the vowels /u/ and /a/.

The results presented in this paper seem to show that the

evaluation of isolated words is worthwhile for the assess-

ment of specific movements in the vocal tract. Further

experiments are required to draw stronger conclusions, i.e.,

grouping words with similar syllabic groups or grouping syl-

lables that require similar movements for their production,54

which may lead to methods for screening specific articula-

tory movements in the vocal tract.43

5. Results in the cross-language experiments

The results discussed above show the robustness of the

proposed method in different databases with speech samples

recorded in different technical conditions. Additionally, the

generalization capability of the method is tested by crossing

the three databases. The results in the cross-language experi-

ments show that incrementally adding samples from the test

language into the training set quickly helps to improve the per-

formance of the system. In general, the accuracies range from

60% to 100% when recordings of the language that is going to

be tested are moved from testing and added to training.

According to the results in read texts, higher accuracies

are reached when Spanish recordings are used for training

and German samples for testing. In the same way, when

German recordings are used for training and Spanish sam-

ples are used for testing, the highest accuracies are reached.

When Czech recordings are used for training the behavior on

both test sets (Spanish and German) is similar, and at least

60% of the test samples are required in the training set to

reach accuracies around 90%.

The results on the DDK evaluation show that Czech

samples are the most appropriate to be used in training

because only 20% of the test samples (either Spanish or

German) are required in training to reach accuracies above

90%. When tests are performed on Czech recordings, the

behavior is similar with any training set (German or

Spanish), requiring at least 60% of the test samples in train-

ing to reach accuracies of about 90%. The need for such a

high number of recordings from the target language data

could be explained by the fact that Czech patients were all in

early to middle stages of the disease and thus, probably ex-

perience less impact on their articulatory capability. This

apparent contradiction needs to be analyzed in more detail in

further research. On the other hand, the Czech patients were

all in the OFF-state, so articulatory deficits should have been

reflected more clearly in the experiments. Further experi-

ments comparing speech of early PD patients with advanced

PD patients in the ON- and OFF-states could be interesting.

VI. CONCLUSIONS

An innovative and robust methodology for the characteriza-

tion of continuous speech of people with Parkinson’s disease is

presented. The methodology is based on the automatic segmen-

tation of voiced and unvoiced segments, voiced being defined as

those frames where the vocal folds vibrate and unvoiced frames

as those where vocal folds do not vibrate. The energy content of

the unvoiced sounds is modeled using 12 MFCCs and 25 BBEs.

The method is tested on different speech tasks per-

formed by speakers in Spanish, German, and Czech. The

recordings contain four speech tasks, including read texts,

sentences, isolated words, and the rapid repetition of the syl-

lables /pa/-/ta/-/ka/.

The proposed approach is directly compared with other

“standard” approaches classically used for speech modeling,

such as (1) noise measures, MFCCs, and vocal formants

extracted from voiced segments, (2) MFCCs extracted from

the utterances without pauses and modeled using a GMM-

UBM strategy, and (3) different prosodic features extracted

with the Erlangen prosody module.

According to the results, our method proves to be more

accurate than the classical approaches, reaching accuracies

that range from 85% to 95% (depending on the language,

severity of the disease, and the speech task) in the automatic

classification of speech of people with PD and HCs.

Czech patients were in early to middle stages of the dis-

ease, while German and Spanish patients were ranging from

middle to advanced stages. This indicates that the proposed

approach is able to perform automatic detection of PD in

early and middle stages of the disease.

The data of each language were recorded using different

microphones, sound cards, sampling frequencies, noise con-

ditions, etc., indicating that the method is also robust against

different technical conditions, and is a promising alternative

for future implementations of computer aided tools to per-

form the automatic evaluation of dysarthric speech signals.

The recordings of read texts and the DDK evaluations

of the three languages are also evaluated on cross-language

experiments, validating the robustness and reliability of the

method. The generalization capability of the method is evi-

denced in both tasks, read texts and DDK, thus it can be

stated that it can be used to screen information of speech in

continuous speech signals and in particular, articulatory

exercises like the DDK evaluation.

DDK evaluation seems to be more appropriate than the

read texts to evaluate Parkinsonian speech signals in cross-

language tests. This could be due to its simplicity to pro-

nounce and its ability to make the speaker produce specific

movements in the vocal tract.
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From the results presented here it is possible to address

further experiments in read texts and sentences. For instance,

grouping syllables that require the movement of the same

articulators, assessing the capability of a patient to move par-

ticular parts of the vocal tract.

The method presented in this paper has several limita-

tions. For instance, when it is applied to isolated words and

the unvoiced segments are not long enough to contain sev-

eral windows of 40ms length, is not possible to calculate the

statistics of the features or the estimates are not stable.

Another limitation of this study is that we only considered

speech recordings of PD patients and HCs. We did not

include patients with other type of neurological diseases,

thus the suitability of the methods presented here is only

demonstrated in hypokinetic dysarthria due to Parkinson’s

disease but not from any other neurological disorder.

The method suggests the possibility to address further

analysis of disordered speech considering the borders

between voiced and unvoiced sounds, making possible the

evaluation of specific movements of the articulators or tis-

sues in the vocal tract.

The method presented here seems to be a very promis-

ing alternative for the development of computer aided tools

for the accurate evaluation of different speech disorders that

affect the movement of several articulators during the speech

production process.
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APPENDIX

1. Reading texts

Spanish: “Ayer fui al m�edico. Qu�e le pasa? Me pre-

gunt�o. Yo le dije: Ay doctor! Donde pongo el dedo me duele.

Tiene la u~na rota? S�ı. Pues ya sabemos qu�e es. Deje su che-

que a la salida.”

German: “Schildkr€oteninvasion: Von einer gewaltigen,

von den Beh€orden gesch€utzten Invasion wird zur Zeit die

Golf- und Pazifikk€uste Mexikos heimgesucht: Wie allj€ahrlich

im Juni kommen Hunderttausende von Schildkr€oten aus dem

Meer, um an Land ihre Eier abzulegen. Allein in der N€ahe

von Tampico wurden etwa 5000 Schildkr€oten beobachtet.

Insgesamt wird in den kommenden Wochen mit einer Invasion

von mehr als einer halben Million Schildkr€oten gerechnet.

Die mexikanischen Beh€orden lassen die Legepl€atze sorgf€altig

bewachen, um den Diebstahl von Eiern zu verhindern und

ausreichend Schildkr€otennachwuchs sicherzustellen.”

Czech: “Kdy�z člov�ek po prv�e vsad�ı do zem�e sazeničku,

chod�ı se na ni d�ıvat t�rikr�at denn�e: takco, povyrostla u�z nebo

ne? I taj�ı dech, nakl�an�ı se nad n�ı p�ritlač�ı trochu půdu u

jej�ıch ko�r�ınků, načechr�av�a j�ı l�ıstky a vůbec ji obt�e�zuje

různ�ym kon�an�ım, kter�e pova�zuje za u�zitecčnou p�eči. A kdy�z

se sazenička p�resto ujme a roste jako z vody, tu člov�ek �zasne

nad t�ımto divem p�r�ırody, m�a pocit čehosi jako z�azraku a

pova�zuje to za jeden ze sv�ych nejv�et�s�ıch �usp�echů.”

2. Sentences

Spanish:

(1) Laura sube al tren que pasa.

(2) Los libros nuevos no caben en la mesa de la oficina.

(3) Luisa Rey compra el colch�on duro que tanto le gusta.

(4) Mi casa tiene tres cuartos.

(5) Omar, que vive cerca, trajo miel.

(6) Rosita Ni~no, que pinta bien, don�o sus cuadros ayer.

TABLE III. Results obtained from sentences spoken in Spanish.

Accuracy

(%)

Sensitivity

(%)

Specificity

(%) AUC

Sentence 1

NoiseþF1&F2þMFCC 746 12.7 846 18.4 646 32.4 0.69

Prosody 816 9.90 886 16.9 746 26.8 0.81

GMM-UBM 866 11.7 906 14.1 826 17.5 0.86

Unvoiced 926 13.2 946 9.70 906 19.4 0.93

Sentence 2

NoiseþF1&F2þMFCC 786 9.20 846 15.8 726 16.9 0.80

Prosody 766 10.7 806 23.1 726 16.9 0.78

GMM-UBM 856 8.50 866 13.5 846 18.4 0.84

Unvoiced 976 4.80 986 6.30 966 8.40 0.97

Sentence 3

NoiseþF1&F2þMFCC 816 11.9 886 13.9 746 18.9 0.83

Prosody 846 12.6 846 26.3 846 15.8 0.83

GMM-UBM 846 10.8 826 14.8 866 16.5 0.83

Unvoiced 946 6.90 946 9.70 946 13.5 0.95

Sentence 4

NoiseþF1&F2þMFCC 786 11.4 786 17.5 786 17.5 0.79

Prosody 736 8.20 886 13.9 586 22.0 0.73

GMM-UBM 866 12.7 806 18.9 926 10.3 0.86

Unvoiced 906 9.42 906 14.1 906 14.1 0.90

Sentence 5

NoiseþF1&F2þMFCC 776 11.6 806 13.3 746 21.2 0.81

Prosody 786 7.90 946 13.5 626 22.0 0.87

GMM-UBM 816 11.0 786 23.9 846 12.7 0.83

Unvoiced 816 7.40 846 18.4 786 14.8 0.82

Sentence 6

NoiseþF1&F2þMFCC 796 11.0 846 12.7 746 21.2 0.82

Prosody 776 12.5 866 9.70 686 25.3 0.82

GMM-UBM 886 13.2 886 13.8 886 19.3 0.89

Unvoiced 906 9.40 926 10.3 886 13.9 0.91
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TABLE IV. Results obtained from sentences spoken in German.

Accuracy

(%)

Sensitivity

(%)

Specificity

(%) AUC

Sentence 1

NoiseþF1&F2þMFCC 71.66 7.1 71.76 13.2 71.86 10.4 0.70

Prosody 72.56 12.1 73.86 16.4 71.46 17.4 0.71

GMM-UBM 70.36 10.1 57.16 22.3 84.36 11.9 0.69

Unvoiced 93.16 5.3 91.96 7.7 94.26 8.5 0.94

Sentence 2

NoiseþF1&F2þMFCC 72.16 4.4 60.96 17.2 83.16 13.3 0.73

Prosody 76.16 7.6 77.46 14.7 756 11.7 0.76

GMM-UBM 71.56 6.5 60.06 15.7 82.86 16.2 0.71

Unvoiced 85.86 6.2 83.86 13.9 87.46 14.1 0.86

Sentence 3

NoiseþF1&F2þMFCC 77.46 10.1 77.76 12.1 77.86 15.6 0.75

Prosody 81.76 6.1 86.16 11.1 76.96 12.7 0.84

GMM-UBM 72.26 7.9 67.16 10.9 77.16 15.7 0.72

Unvoiced 96.16 5.4 95.46 5.9 96.76 7.5 0.96

Sentence 4

NoiseþF1&F2þMFCC 72.76 9.3 69.46 12.9 76.16 12.2 0.76

Prosody 80.16 6.3 78.96 19.2 80.76 14.9 0.79

GMM-UBM 74.96 7.9 67.26 15.9 82.96 12.1 0.77

Unvoiced 96.76 5.9 95.66 7.7 97.86 7 0.97

Sentence 5

NoiseþF1&F2þMFCC 78.46 8.9 80.66 10.8 76.36 15.9 0.77

Prosody 81.26 8.2 78.36 11.5 84.36 9.3 0.81

GMM-UBM 74.46 6.7 65.96 11.5 83.16 11 0.73

Unvoiced 94.36 5.4 97.66 4.9 90.86 10.6 0.95

TABLE V. Results obtained from sentences spoken in Czech.

Accuracy

(%)

Sensitivity

(%)

Specificity

(%) AUC

Sentence 1

NoiseþF1&F2þMFCC 77.56 25.4 71.36 45.8 83.86 37.2 0.79

Prosody 71.96 24.2 51.96 50.9 91.96 23.9 0.79

GMM-UBM 77.36 24.9 66.76 47.8 94.46 23.2 0.88

Unvoiced 93.16 17.5 88.86 32.3 97.56 10 0.95

Sentence 2

NoiseþF1&F2þMFCC 77.86 25.4 77.56 42.8 78.16 41.7 0.78

Prosody 89.76 20.3 84.46 36.8 956 18.4 0.89

GMM-UBM 81.66 24.1 66.76 47.8 86.16 35.1 0.83

Unvoiced 86.36 22.6 79.46 41.2 93.16 19.3 0.80

Sentence 3

NoiseþF1&F2þMFCC 81.66 24.7 94.46 20.9 68.86 47.1 0.91

Prosody 94.46 16.2 93.86 25.0 95.06 20.0 0.93

GMM-UBM 78.96 24.7 91.76 28.0 66.76 47.8 0.83

Unvoiced 85.66 23.2 87.56 34.2 83.86 37.4 0.86

TABLE VI. Results obtained from the isolated words of the Spanish data.

Accuracy

(%)

Sensitivity

(%)

Specificity

(%) AUC

Atleta

NoiseþF1F2þMFCC 826 9.2 866 13.5 786 19.9 0.79

Prosody 836 11.6 966 8.4 706 21.6 0.87

GMM-UBM 766 11.7 926 13.9 606 26.7 0.80

Unvoiced 996 3.2 986 6.3 996 0.0 0.99

Campana

NoiseþF1F2þMFCC 736 11.6 866 13.5 606 23,1 0.76

Prosody 746 10.8 806 13.3 686 28.6 0.76

GMM-UBM 706 11.5 866 21.2 546 31.3 0.69

Unvoiced 996 3.2 986 6.3 996 0.0 0.99

Gato

NoiseþF1F2þMFCC 766 15.1 846 15.8 686 16.9 0.76

Prosody 766 12.6 706 14.1 826 19.9 0.80

GMM-UBM 866 9.7 906 10.5 826 14.8 0.86

Unvoiced 986 6.3 986 6.3 986 6.3 0.98

Petaka

NoiseþF1F2þMFCC 846 10.8 886 16.9 806 16.3 0.82

Prosody 816 9.9 866 13.5 766 20.7 0.82

GMM-UBM 826 10.3 966 8.4 686 16.9 0.87

Unvoiced 976 4.8 966 8.4 986 6.3 0.98

Braso

NoiseþF1F2þMFCC 756 8.5 866 13.5 646 27.9 0.74

Prosody 726 13.2 826 17.5 626 23.9 0.74

GMM-UBM 706 11.5 686 35.5 726 31.6 0.70

Unvoiced 966 8.4 996 0.0 926 16.9 0.98

Caucho

NoiseþF1F2þMFCC 806 16.3 866 13.5 746 25 0.83

Prosody 736 8.2 786 14.8 686 19.3 0.75

GMM-UBM 796 11.9 886 16.8 706 25.4 0.80

Unvoiced 966 5.1 926 10.3 996 0.0 0.95

Presa

NoiseþF1F2þMFCC 816 8.8 806 13.3 826 19.9 0.81

Prosody 736 12.5 786 22 686 25.3 0.72

GMM-UBM 756 9.7 826 11.4 686 21.5 0.72

Unvoiced 956 9.7 926 13.9 986 6.3 0.94

Apto

NoiseþF1F2þMFCC 786 13.2 806 16.3 766 18.4 0.78

Prosody 776 14.2 806 16.3 746 16.5 0.77

GMM-UBM 776 11.6 806 16.3 746 21.2 0.73

Unvoiced 956 7.1 986 6.3 926 13.9 0.95

Flecha

NoiseþF1F2þMFCC 766 11.7 766 26.3 766 27.9 0.76

Prosody 786 10.3 786 17.5 786 19.9 0.78

GMM-UBM 816 9.9 866 18.9 766 15.8 0.78

Unvoiced 946 6.9 986 6.3 906 14.1 0.93

Trato

NoiseþF1F2þMFCC 776 6.8 906 14.1 646 22.7 0.83

Prosody 786 10.3 766 18.4 806 13.3 0.79

GMM-UBM 726 12.3 766 24.6 686 25.3 0.75

Unvoiced 946 6.9 996 0.0 886 13.9 0.95
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TABLE VI. (Continued.)

Accuracy

(%)

Sensitivity

(%)

Specificity

(%) AUC

Coco

NoiseþF1F2þMFCC 766 11.7 746 31 786 14.8 0.69

Prosody 836 11.6 826 17.5 846 18.4 0.80

GMM-UBM 786 12.3 906 10.5 666 21.2 0.81

Unvoiced 936 8.2 986 6.3 886 16.9 0.94

Plato

NoiseþF1F2þMFCC 696 5.7 746 18.9 646 22.7 0.64

Prosody 726 10.3 786 17.5 666 23.2 0.76

GMM-UBM 756 9.7 886 10.3 626 19.9 0.75

Unvoiced 886 13.2 926 16.9 846 18.3 0.92

Pato

NoiseþF1F2þMFCC 766 8.4 866 13.5 666 16.5 0.75

Prosody 846 8.4 866 13.5 826 17.5 0.82

GMM-UBM 776 10.6 926 10.3 626 23.9 0.79

Unvoiced 846 8.4 906 10.5 786 14.8 0.83

TABLE VII. Results obtained from the isolated words of the German data.

Accuracy

(%)

Sensitivity

(%)

Specificity

(%) AUROC

Bahnhofsvorsteher

NoiseþF1F2þMFCC 72.26 11.3 66.96 14.9 77.66 17.3 0.72

Prosody 86.96 8.6 82.86 14.6 90.66 12.5 0.91

GMM-UBM 71.76 7.7 65.06 18.1 78.26 9.0 0.74

Unvoiced 96.66 2.9 95.66 5.7 97.66 4.9 0.97

Rettungsschwimmer

NoiseþF1F2þMFCC 68.76 8.8 58.96 24.5 78.86 18.4 0.66

Prosody 76.16 10.9 77.56 12.9 74.96 18.2 0.75

GMM-UBM 68.26 8.3 62.66 19.8 73.66 11.3 0.71

Unvoiced 95.96 4.8 93.16 8.4 98.86 3.9 0.96

Toilettenpapier

NoiseþF1F2þMFCC 70.96 9.6 69.26 15.2 72.86 12.9 0.70

Prosody 73.16 9.5 69.16 9.6 77.16 13.9 0.75

GMM-UBM 74.96 9.5 70.66 18.1 79.66 23 0.72

Unvoiced 94.86 5.1 97.66 4.9 91.96 7.7 0.95

Bundesgerichtshof

NoiseþF1F2þMFCC 61.96 8.3 33.16 16.5 90.96 10.3 0.65

Prosody 75.66 13.6 61.46 23 90.06 11.1 0.78

GMM-UBM 74.96 13.2 69.46 20.9 80.86 20.4 0.74

Unvoiced 93.76 1.9 94.46 5.9 93.26 7.9 0.95

Bedienungsanleitung

NoiseþF1F2þMFCC 67.56 8.6 656 28.2 69.36 21.9 0.61

Prosody 88.26 7.1 85.36 10.5 90.96 7.1 0.90

GMM-UBM 73.26 10.4 54.46 21.1 91.96 5.6 0.74

Unvoiced 89.86 5.1 80.16 11.8 98.86 3.9 0.92

Perlenkettenschachtel

NoiseþF1F2þMFCC 73.36 11.6 66.56 21.3 79.76 14.7 0.70

Prosody 79.66 10.7 76.46 14.3 83.16 16.9 0.77

GMM-UBM 71.16 8.9 57.26 22.8 85.36 14.1 0.73

Unvoiced 84.16 8.7 89.96 8.2 78.26 14.8 0.85

TABLE VIII. Results obtained from the isolated words of the Czech data.

Accuracy

(%)

Sensitivity

(%)

Specificity

(%) AUC

pepa

NoiseþF1F2þMFCC 86.66 22.7 73.16 45.4 1006 0 0.90

Prosody 76.36 25.7 62.56 49.8 90.06 30.2 0.81

GMM-UBM 82.16 23.9 69.46 46.7 86.16 35.1 0.90

Unvoiced 91.66 18.9 84.46 36.6 98.86 35 0.92

fouk�a

NoiseþF1F2þMFCC 70.66 24.8 61.96 49.9 79.46 40.5 0.67

Prosody 83.86 23.8 92.56 26.8 756 43.8 0.86

GMM-UBM 80.66 24.4 80.66 40.1 66.76 47.8 0.88

Unvoiced 95.96 13.9 996 0.0 91.96 27.8 0.96

sada

NoiseþF1F2þMFCC 85.36 23.1 98.16 7.5 72.56 45.3 0.86

Prosody 84.46 23.6 96.96 12.5 71.96 45.9 0.79

GMM-UBM 85.46 22.7 80.66 40.1 77.86 42.1 0.82

Unvoiced 94.76 15.7 89.46 31.4 996 0.0 0.94

tik�a

NoiseþF1F2þMFCC 78.86 25.4 83.86 37.7 73.86 44.5 0.71

Prosody 88.86 21.1 93.16 25.9 84.46 36.2 0.87

GMM-UBM 89.26 20.6 80.66 40.1 94.46 23.2 0.86

Unvoiced 906 20.4 98.86 5 81.36 39.9 0.90

kuk�a

NoiseþF1F2þMFCC 77.26 25.4 76.96 43.4 77.56 41.8 0.68

Prosody module 85.66 23.2 80.66 40.4 90.66 29.3 0.79

GMM-UBM 74.16 25 72.26 45.5 83.36 37.8 0.78

Unvoiced 96.66 12.9 93.86 25 99.46 2.5 0.96

chata

NoiseþF1F2þMFCC 67.26 24.2 806 39.9 54.46 50 0.73

Prosody module 806 24.9 79.46 40.4 80.66 39 0.82

GMM-UBM 86.46 22.3 756 43.9 97.26 16.7 0.86

Unvoiced 84.76 23.3 86.96 34.2 82.56 37.4 0.84

tči

NoiseþF1F2þMFCC 78.76 25.3 726 45.9 85.36 35.6 0.74

Prosody module 806 25.2 74.76 44.6 85.36 35.1 0.83

GMM-UBM 89.46 20.5 91.76 28 97.226 16.7 0.94

Unvoiced 90.36 20.3 92.76 26.8 886 33 0.89

vzhůru

NoiseþF1F2þMFCC 68.46 24.8 57.56 50.1 79.46 40.9 0.68

Prosody 81.96 24.6 83.16 38.5 80.66 39.9 0.84

GMM-UBM 78.76 24.7 66.76 47.8 69.46 46.7 0.72

Unvoiced 89.16 21.2 78.86 42.1 99.46 2.5 0.88

sdru�zit

NoiseþF1F2þMFCC 796 25.4 806 41.4 786 42.4 0.79

Prosody module 726 25.3 87.36 34.3 56.76 50.6 0.71

GMM-UBM 83.76 23.5 77.86 42.1 94.46 23.2 0.84

Unvoiced 89.76 20.7 94.76 20.7 84.76 36.2 0.90

funkčn�ı

NoiseþF1F2þMFCC 80.66 24.9 90.66 28.9 70.66 46.8 0.86

Prosody module 80.96 24.8 93.86 25 68.16 47.5 0.91

GMM-UBM 86.96 22 97.26 16.7 77.86 42.1 0.88

Unvoiced 96.36 13.4 93.86 25 98.86 25 0.95
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German:

(1) Peter und Paul essen gerne Pudding.

(2) Das Fest war sehr gut vorbereitet.

(3) Seit seiner Hochzeit hat er sich sehr ver€andert.

(4) Im Inhaltsverzeichnis stand nichts €uber Lindenbl€utentee.

(5) Der Kerzenst€ander fiel gemeinsam mit der Blumenvase

auf den Plattenspieler.

Czech:

(1) Kolik m�ate ted u sebe asi pen�ez?

(2) Kolikpak m�ate tedka u sebe asi pen�ez?

(3) Kolikpak m�ate tedka u sebe asi tak pen�ez?

3. Words

Spanish: atleta, campana, gato, petaka, braso, caucho,

presa, apto, flecha, trato, coco, plato, pato.

German: Bahnhofsvorsteher, Rettungsschwimmer,

Toilettenpapier, Bundesgerichtshof, Bedienungsanleitung,

Perlenkettenschachtel.

Czech: pepa, fouk�a, sada, tik�a, kuk�a, chata, tči, vzhůru,

sdru�zit, funkčn�ı, cukr�a�rstv�ı, vst�r�ıc.

4. Tables with results

Results in read texts: Tables III, IV, and V in this

appendix include results obtained in sentences spoken in

Spanish, German, and Czech, respectively. Note that in

Spanish and German recordings the best results are obtained

TABLE IX. Details of the results obtained in cross-language experiments. Accuracy (Acc.), sensitivity (Sens.), specificity (Spec.), and area under the ROC

curve (AUC).

Train Spanish German Czech

Test Acc.(%) Sens.(%) Spec.(%) AUC Acc.(%) Sens.(%) Spec.(%) AUC Acc.(%) Sens.(%) Spec.(%) AUC

Spanish þ 0% train — — — — 57 82 32 56 55 80 30 55

German þ 0% train 60 42 77 58 — — — — 58 57 60 59

Czech þ 0% train 69 47 85 68 77 53 95 78 — — — —

Spanish þ 10% train — — — — 67 68 66 68 71 74 68 71

German þ 10% train 85 84 85 85 — — — — 75 79 71 75

Czech þ 10% train 76 59 89 77 78 52 96 81 — — — —

Spanish þ 20% train — — — — 74 77 70 74 75 86 65 77

German þ 20% train 89 89 90 89 — — — — 82 84 81 82

Czech þ 20% train 74 52 90 74 83 86 80 82 — — — —

Spanish þ 30% train — — — — 79 78 80 80 81 77 85 80

German þ 30% train 91 88 94 91 — — — — 86 89 83 86

Czech þ 30% train 78 64 89 76 79 61 91 81 — — — —

Spanish þ 40% train — — — — 88 85 90 88 86 88 84 84

German þ 40% train 93 92 94 94 — — — — 88 91 85 88

Czech þ 40% train 79 64 90 80 78 58 93 81 — — — —

Spanish þ 50% train — — — — 90 90 90 90 88 90 86 88

German þ 50% train 94 93 95 94 — — — — 88 90 86 89

Czech þ 50% train 83 73 90 81 81 60 95 83 — — — —

Spanish þ 60% train — — — — 92 94 91 93 91 92 91 92

German þ 60% train 95 93 97 95 — — — — 93 94 91 94

Czech þ 60% train 86 77 94 87 79 58 94 81 — — — —

Spanish þ 70% train — — — — 93 91 94 94 91 89 93 91

German þ 70% train 95 94 96 95 — — — — 91 91 92 92

Czech þ 70% train 83 73 90 86 89 78 97 89 — — — —

Spanish þ 80% train — — — — 95 94 96 95 92 92 91 91

German þ 80% train 96 95 97 97 — — — — 94 94 95 95

Czech þ 80% train 84 67 98 86 80 60 95 84 — — — —

TABLE VIII. (Continued.)

Accuracy

(%)

Sensitivity

(%)

Specificity

(%) AUC

cukr�a�rstv�ı

NoiseþF1F2þMFCC 80.36 24.9 73.16 45.5 87.56 30.6 0.88

Prosody 76.96 25.6 78.86 41.6 756 44.5 0.80

GMM-UBM 83.36 23.6 77.86 42.1 91.76 28 0.84

Unvoiced 86.96 22.5 86.36 35.1 87.56 33.6 0.86

vst�r�ıc

NoiseþF1F2þMFCC 80.96 24.5 81.36 38.9 80.66 37.9 0.84

Prosody 79.16 25.3 756 44.7 83.16 38.1 0.87

GMM-UBM 87.86 21.5 77.86 42.2 88.96 31.9 0.85

Unvoiced 86.66 22.7 81.36 40.3 91.96 25.9 0.87
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with the unvoiced characterization approach proposed in this

paper. In two of the three Czech sentences the results

obtained with the prosody module were higher.

It can be observed from Table III that in general, results

obtained in the Spanish sentences modeled with the other

three approaches (NoiseþF1&F2þMFCC, prosody, and

GMM-UBM) are below 0.90 of AUC, with values mostly

around 0.80. For the German sentences, the results with

these approaches are below 0.80, except for two cases, sen-

tences 3 and 5, where the prosody module reached AUC of

0.84 and 0.81, respectively. In the Czech sentences the

results are slightly different. In the sentence 1 the obtained

AUC value is 0.95 using the unvoiced features, while the

GMM-UBM approach gives 0.90, and the other two

approaches are below 0.80. In the sentences 2 and 3 the high-

est AUC values are obtained with the prosody module (0.89

and 0.93, respectively). The other methods exhibited AUC

values below 0.90, except for the “NoiseþF1&F2þMFCC”

approach, which reaches 0.91 in the third sentence (the high-

est result obtained with this approach).

Results in isolated words: A total of 31 isolated words

are evaluated on this work. Tables VI, VII, and VIII include

results obtained with 13 words uttered in Spanish, 6 in

German, and 12 in Czech, respectively.

Results in cross-language experiments: Table IX

includes results obtained in the cross-language experiments.

A portion of the target language is included in the training

set incrementally, beginning with 0% up to 80% in steps of

10%. Note that the accuracy of the system improves very

quickly, indicating that it has a good generalization capabil-

ity that can be used to deploy computer-aided tools for the

automatic assessment of speech of people with Parkinson’s

disease in different languages.
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