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Automatic Detection of Pulmonary Embolism
In CTA Images

Henri Bouma, Jeroen J. Sonnemans, Anna Vilanova and Frans iAtd8e

Abstract—Pulmonary embolism (PE) is a common life-
threatening disorder for which an early diagnosis is desirable.
We propose a new system for the automatic detection of PE
in contrast-enhanced CT images. The system consists of candi-
date detection, feature computation and classification. Candidat
detection focusses on the inclusion of PE — even complete
occlusions — and the exclusion of false detections, such as tissue
and parenchymal diseases. Feature computation does not only (a) (b)
focus on the intensity, shape and size of an embolus, but also

on locations gnd the shape of the pulmonary vascular tree. Fig. 1. (a) In CT images, PE appears as a dark region insideuingopary
Several classifiers have been tested and the results show thatyrteries. (b) Lymphoid tissue and PE can have the same intensit

the performance is optimized by using a bagged tree classifier

with two features based on the shape of a blood vessel and the

distance to the vessel boundary. The system was trained on 38 CT

data sets. Evaluation on 19 other data sets showed that the sgst  contrast material is dissolved in blood. The embolus doés no

ge”e@ggs Wegr- 9T?e| sensitivity of 0“5 system Oﬂ_trr‘]e ﬁvamgﬂzn absorb this material, and thus it can be recognized in CTA as

r:éﬁyllggist ?oaitmp')m\?esfhgorf:ltrlxgzrpgfr dé‘tt:;:é’ I‘Q’E'f)y 22%2,.6 the 3 dark area in the pulmonary arteries (see Fig. 1a). However,
_ manual detection of the dark spots that correspond to PE in

Index Terms—Pulmonary embolism, computed tomography, CTA images is often described by radiologists as difficult
computed-aided detection. and time consuming [10]. Therefore, computer-aided diagno
(CAD) is desirable.

l. INTRODUCTION In the last years, several CAD systems for PE have been
ULMONARY EMBOLISM is the sudden obstruction of proposed, but their evaluations have some serious limitsti
a blood vessel in the lungs, usually due to a blood cldtor example, for some system [11], [12] it is uncertain how
There is more than one case of PE per 500 persons every yweall they generalize because a low number of emboli is used
in the USA [1]. Of these cases, 11% die in the first hour [2] arfdr evaluation. For another system [13], it is unclear how it
the untreated mortality of PE is estimated at 30% [3]. Thuperforms on all emboli, because only the peripheral emboli
PE is a common disorder with a high morbidity and mortalitare taken into account. And it is unknown how a system [14]
for which an early and precise diagnosis is desirable [4]. performs on representative data when only data is used with
Contrast-enhanced multi-slice x-ray computed tomograplpod opacification and without significant motion artifaots
(CT) is emerging as the preferred imaging test to diagnose p@monary diseases. (Thus it is not surprising that another
in many institutions, because it is a fast, minimally invasi evaluation of the same system with more realistic data stiowe
and high-resolution imaging technique [5]-[8] that allothe much worse results [15].) The studies of Buhmann [16],
direct depiction of a clot inside arteries. CT images can hks  Zhou [17] and Kiraly [18] are the only studies that reportee t
used to identify other disorders in a patient with chest i@jn system performance on a large database of realistic test dat
In contrast-enhanced CT (i.e., CT angiography, CTA) inthat contained breathing artifacts and parenchymal déseas
ages, the blood vessels appear to be very bright becausewftbout the exclusion of emboli based on size or location.
" , ed Julv 25 2008 revised . . However, results of Buhmann and Zhou are poor when all
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contrast (20%), a variety of thrombus load (25% with aA. Vessel Segmentation

obstruction degree above 25%) and parenchymal diseases ) ] ] ]
(40%), and none of the emboli were excluded for evaluatioft, 0Ugh selection of the lung region can be obtained in CT
This is important because the main problem of PE detection/{83€s by taking the two largest dark (below -500 Hounsfield
the separation between true PE and look-alikes, which isimddnits, HU) regions in the thorax that have a minimum
harder when the patient has no other lung abnormalities. ©verlap of 30% when they are projected on the transverse

The CAD system that we propose consists of seve%)‘ﬁis [19]. These reQ‘OWS (_:orrespond to lung parenchyma (i.e
steps, which are described in three sections. In the fif cellular suk_)stance |_nS|de the lungs). To remove hobes fr_

step, pulmonary vessels are segmented and PE candid gsgegmentatlon and include small \_/essels, a morphplogma
are detected inside the vessel segmentation (Sec. Il). TH@Sing [20] was used of 2.4 mm, which appeared to include

candidate-detection step focusses on the inclusion of RE ost small vessels. A segmentation of the mediastinum (i..e.
the exclusion of false detections, such as lymphoid tissuke dne region that contains the heart) was obtamed. by segect]n
parenchymal diseases. Subsequently, features are ccn‘npmg large region between the lungs using a row-wise operatio

on each candidate to enable classification of them (Sec. Imat _sets each p|>§el betyveen the .Iungs. A morphollog.|cal
Feature computation does not only focus on the intensi bening (6.0 mm) is applied to obtain a smooth mediastinal

shape and size of an embolus, but also on the shape of mentation. To remove tissue from theilung segmepta!bn,
pulmonary vascular tree and the location in the tree. In ty@Xels near the mediastinum segmentation (geodesic déstan

last step, classification is used to separate candidates thall MM i @ mask with intensity -300 HU) are excluded.
represent real emboli from the other. The system is optichize Th€ major pulmonary vessels can be segmented with a
with feature selection and classifier selection (Sec. I\We T threshold, because they are brighter than other objectsein t
presented system for embolus detection is then evaluatkd 4H'9S- Region growing is performed to extend the segmenta-
results are presented in Sec. V. Finally, the discussion &R to the mediastinum. This threshold is adapted to eath da

conclusions can be found in Sec. VI and VI respectively. S€t. because of varying contrast enhancement. It is selaste
the average of 0 HU and the most frequent intensity in the

region with intensities above +150 HU.

The high threshold value used for major vessels cannot be
We propose a vessel-segmentation method to reduce théiself€d for the small pulmonary vessels. Their lower intensity
area for candidate detection that includes (at least a fiati@ IS caused by the point-spread function (PSF), which makes
emboli and it excludes (most of) the false detections ank-lodt hard to create an intensity-based separation betweeselges
alikes. Examples of look-alikes that have the same intgnsnd (lymphoid) tissue. Small vessels are located in thepberi
as PE are: lymphoid tissue (Fig. 1b), parenchymal disead¥ of the lungs and most of the tissue is near the mediastinum
and partial-volume voxels on the vessel boundary. Anoth&he peripheral-vessel segmentation is selected as thenregi
focus of our method is the inclusion of ‘sudden stops’ (i.eifside the lungs that is brighter than -150 HU to exclude lung
completely embolized vessels), which are easily missed Bgrenchyma, with a radius below 2.4 mm to exclude large
common segmentation techniques. Figure 2 shows the desy§gsels, and with a distance to the mediastinum of at least
of our CAD system. The part about vessel segmentation akel MM to exclude tissue near the mediastinum.
candidate detection is discussed in this section. Tracking aims at the filling of a possible gap due to a

complete obstruction between peripheral vessels and shefre

1. VESSELSEGMENTATION AND CANDIDATE DETECTION

Crpaar [ Bowy | 1] the pulmonary vascular tree. In healthy vessels withoutadinb
3 3 the segmentations of peripheral and major vessels are well
% connected (and overlapping). However in patients with R&, t
Major Vessels Peripheral Vessels\@ obstruction can be so large that the segmentation of a periph
3 eral vessel is ‘unconnected’ to other vessels. Locally iy tma
k g impossible to make a distinction between an embolized Vesse
Area T and tissue because they have the same intensity. Therefere,
gy, Vessels] are using a tracking algorithm to find the optimal connection
1= intensiy | [ Eg. Val. | [ BotHta | H between the unconnected and other vessels. The tracking
o 1L Toe LT | % algorithm [21] uses three input segmentations. The firdtés t
g segmentation of the main tree, which includes all major and
,,,,,,,, [Connected Components] 1% peripheral vessels that are connected to the mediastinbm. T
Candidatosy second is the segmentation of the unconnected vesselsh whic
_.‘ Feature for PE Classification ‘ . .
Candidates + Features are all major and peripheral vessels that moé connected to
\ Classification | the mediastinum. The third is a search area, which is inside
Positves and between the lungs with an intensity above -150 HU. The

tracker is connecting the second region (unconnected lggsse
Fig. 2. Our CAD system for pulmonary embolism consists of vessé0 the first region (main tree) through the third region (skar
segmentation, candidate detection, feature computatiorclasdification. area). Wave-front propagation is used to compute costs for

each voxel based on intensity and distance. Paths between
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unconnected vessels and the main tree that have minirfiged for all data at 0 HU, 1 and 150 respectively to minimize
costs are selected to create the connections. The dilajexhre the cost. Variation of the cost function would have led to
around this path is combined with the segmentations of theother optimum (Fig. 3).

major and peripheral vessels using an OR-operation to formThe four different detectors respond to different projgsrti
the search area for candidate detection. The segmentationsf an embolus. The sensitivity is improved by choosing the
the tracked path and the unconnected vessels are also usathion of the separate regions. The resulting regions are ana

candidate detection and feature computation. lyzed using connected-component analysis to obtain the can
didates; each group of connected voxels in the combined mask
B. Candidate Detection is considered one candidate. Candidates smaller than 8% mm

Candidate detection aims at the extraction of a group gre removed, not because they are irrelevant, but to rediece t

voxels inside the pulmonary vessels that includes (at |eé1é{mber of FD. The results of several combinations of detscto

artially) an embolus. It reduces the search area by detectP@" Pe found in Figure 3d. All four candidates result in a
f ) y 4o gnsitivity of 89% at 41.4D/ds which is mainly obtained by

voxels and grouping connected voxels to candidate obje .
0, 331[
The area reduction allows an efficient feature computatiwh acti'e bothat and vessel tracking (3+4, 88% at ds). So,

the grouping allows classification of these objects. the two most relevant detectors for our purposes are based on

Four methods are used to detect candidate voxels insffﬁmaSt changes (bothat) and unconnected vessels (igcki

the vessel segmentation. One of them is the union of the two Semsitivity (%)
binary masks found by tracking (Sec. lI-A); the mask of the ., .- =" .-
unconnected vessels, and that of the dilated path betwesa th .~
vessels and the main tree. Both masks are combined with the, .
masks of the other detection methods using an OR-operation.s;|” »~“5¢" ..

The other three methods are intensity-based features. The, =100 .-~ .- .-~ | wl
first directly uses the CT value. Inside the vessels of CTA | .-~ .- - .-~

Sensitivity (%)
eol.- LT

’ ,,"'1’00" 0 )
AT 1500 L 501"

" FD/ds

. ~ ," . i . . FD/d . . .
images, emboli are darker than contrast-enhanced blocgl. Th 102030 40 50 60 70 ’ ooon %
CT value allows a separation between these regions. The (a) 1: CT value (b) 2: Eigenvalues
second uses the eigenvalues of the Hessian matrix (i.erixmat Sensitivity (%)
of second-order derivatives) [11]. A dark spot can be detect  Sensitivity (%) % oiFia 1424344
. " . . . P puw RS
with a positive first eigenvalue\; of the Hessian, assum- g .-+ 550 .- 23 11243
X X . . AT i L I 80 143 ..
ing that the eigenvalues are sorted by decreasing magnitudeso| .-~ .- ’
(JA1] > |A2| > |As]). We used Gaussian derivatives at= Ol /- Pl
0.9 mm, since it is the lowest scale to take reliable deseati ..~/ 6o .
on our data with voxels of 0.6 mm in each direction. d0f A s0f 1 '2 .
/\17 A1 >0 * 10 20 30 40 50 60 70 80 FD/ds ™52 30 40 0 FD/ds
Cn=1q A, A<0Oandd; >0andy; >0 (1) (c) 3: Bothat (d) Combined
0, otherwise

The third is the (grey scale) bothat (black tophat [22] omloc Fig. 3. (a-'c) FROC for the thresholds of three intelznsityelntadgtectors and
. L . d) a combination of the four detectors based on 1: CT valuejg&nvalues,
contrast [11]) with 4 mm dilations and 2 mm erosions 1g: hothat and 4: vessel tracking. Thresholds of 0 HU, 1 andvi&@ chosen
enhance the transition from bright enhanced blood to dark P&t intensity, eigenvalues and bothat respectively to mizérthe cost. The
The three features based on CT value, eigenvalues éﬁ&wed lines represent lines of equal costs. The figure sttatghe most
bothat are thresholded to create binary masks. To find the (')nﬁ'[—’ortam detectors are bothat and vessel tracking (3+4).
timal threshold for each feature, we used 38 positive dat se
with 202 PE that have been confirmed by an experienced chest-
radiologist, where discontinuous thrombi were counted as
separate lesions. The annotated PE were manually segmeiiteel previous step reduces the search area and creates PE
to simplify the matching of detections and annotations. Thendidates. However, the number of false detections ik stil
data sets were acquired with a either a Siemens Sensation #oor large to serve as output of the CAD system. These
a Philips Mx8000 four-slice CT scanner. The resulting fredalse detections are mainly caused by parenchymal diseases
response receiver-operator characteristic (FROC) cuaves the partial-volume effect on the vessel boundary, subaugti
shown in Figure 3a-c. In order to find a good balance betweeantrast enhancement, lymphoid tissue, flow voids in veins,
false negatives and false positives, a cost function wasetkfi noise and motion artifacts. To make a distinction betweah re
We used a function based on tlg-norm, which is most PE and look-alikes, features are computed in candidatebje
common. Lines of equal cost are represented in the figurethat allow classification of the candidates.
dashed lines. The lowest cost can be found in the upper-leftOnly a few attempts have been made to find discriminating
corner. We have chosen the slope of the dashed lines so fleatures. Masutani e.a. [11] proposed to use the intensity,
15 false detections per data sED{ds) are as costly as 10% local contrast, length, volume, curvilinearity of a PE ahd t
missed PE (false negatives). Threshold values for the egec vascular size for boundary removal. Zhou e.a. [17], [23]duse
based on CT value, eigenvalues and bothat were selected tmedfeatures based on intensity, edge strength, lengtbmeol

I1l. FEATURES FORPE QLASSIFICATION



1226 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 8, AUGUST 2009
and the shape of a candidate in relation to the local vessel

(roundness and compactness). Pichon e.a. [12] used the size

and intensity in a special way. The intensities inside aeless

were projected on the vessel surface by computing the first nl =
quartile of intensities on a ray between the surface and the
medial axis of a vessel.
Previous work mainly focussed on the intensity and pre- _
sumed shape of emboli, although other objects can have the
L Ly, K

same intensity as emboli and emboli can have a wide variety

of shapes. Furthermore, the shape of the embolus can be

difficult to identify in a CT image, especially if it seems te b Fig. 4. Intensity (), gradient magnitude{,,) and isophote curvaturex) of

connected to the lymphoid tissue (Fig. 1b). acCT im)ags Withﬁut egf-clipgitng (tog) 2nd of the Sa(rge Ii(r;ﬁag? Wiﬂtfppirrl]g

H ttom). Note the shape df,, and the negative (dark) values efin the

Th,e regu!ar shgpe of the pUImonary vascular tree (Whl -clipped images. Erf-clipping allows analysis of the phaf the lumen.

consist of bifurcations and tubular branches) has not yeh be

fully exploited. Therefore, we propose to use the shape of

a vessel, the shape of lumen (i.e., contrast-enhanced )bloggkasure circularity are based on the relation between area

features for the classification of PE in CT images. Hessian §2|' where \; > X2 > )\3) [25]. We propose a

For each candidate’s connected component, we compute g}8jarity based on the eigenvalues that is calculated on a
following statistics of a feature: meap)( standard deviation gjstance transform of the lumen segmentation. The distance
(o), Sth percentile rfiin) and 95th percentilenfay. For the {ransform allows the shape analysis of large vessels.
features that are not measured on the whole object, but fofrhe third feature that uses shape, does not measure the
example only on the edge of a candidate, the relative Siggape of lumen in vessels, but the shape of the vessel. It

(sizg is also computed as a coverage percentage. measures the tubularity of peripheral (segmental and srall
vessels. Common ways to measure tubularity are vessel-
A. Intensity ness [25] or stringness [26]. We propose to use stringness to

The three intensity-based features that were used fortitmtec Measure tubularity near PE candidates, because the agderin
are also used for classification. The CT value allows tif €igenvalues by value (instead of by magnitude) improves
separation of PE, dark lung parenchyma and bright lumen. THhe orientation estimation near stenoses and occlusidkes (]

eigenvalues respond to locally dark areas. The bothatftrans emboli). The stringness is important for PE classification

can in classification be used to remove noise, small flow voi§§cause many emboli can be found in peripheral vessels.
and other areas with a shallow intensity valley. Furthermore, most false detections (e.g., caused by tissue

parenchymal diseases) are less tubular than the vessels.

B. Shape

The first feature based on shape is isophote curvature, whfch Location
expresses the local shape of a surface through points of edlize first feature that uses the relative position of a candida
intensity, and it can be used to measure the shape of brigttanother structure is based on the distance-to-parerashym
lumen on its boundary. We propose this shape feature \hich is computed with a two-pass distance transform [27] to
= 0.9 mm) to distinguish the transition ‘lumen-tissue’ anthe region with an intensity below -250 HU. In CTA images,
‘lumen-PE’, because PE and tissue cannot be separated bamséohonary vessels are bright and they are surrounded by dark
on intensity (Fig. 1b). The lumen surface of healthy pulmgnaparenchyma. Due to the blurring of the the partial-volume
vessels consists of two shapes; it is ridge-shaped on aatubwffect (and the PSF) the boundary of a vessel consists of
branch and saddle-shaped on a bifurcation. The surface shimpermediate grey values, which include intensities thet a
around an embolus is like a cup or a valley. Unfortunatelggual to that of emboli. Dark spots inside vessels (and ¢anfr
the shape measurement of the transitions ‘lumen-PE’ atiee parenchyma) are not caused by the blur effect. Therefore
‘lumen-tissue’ is easily spoiled due to the much larger irthe distance-to-parenchyma can be used to discriminatelemb
tensity transition between tissue and parenchyma. Therefdrom the false detections on the vessel boundary.
we want to concentrate only on the relevant intensities: Erf The second feature that uses the location of a candidate is
clipping [24] allows us to do this, while preserving as mucbased on the distance to the mediastinum in order to indicate
edge information as possible (Fig. 4). Isophote curvatuvéhether an embolus is detected in the periphery or near the
allows the detection of the concave lumen surface at embafiediastinum. Therefore, it allows the application of other
locations. However, it will also respond to motion artifaeind features in the region for which they are optimized (e.g.,
at locations where arteries and veins touch each other.  stringness for peripheral vessels and isophote curvature i
The second feature that expresses the shape of the lumemdse proximal vessels).
its circularity (or eccentricity). The cross-section ofaltthy The third feature based on the location of a candidate is the
pulmonary vessels is circular, but an embolus inside tlwennectivity of a vessel to major vessels, which is gendriaye
vessel causes it to become non-circular. Common ways the vessel-tracking algorithm (Sec. 1I-A). Detected vepagts
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. . TABLE |
that cannot be connected to the mediastinum (unconnectefl e 1, _crror oF THE BEST SINGLE FEATURES AND FEATURE PAIRS

vessels) are marked as suspicious areas.

Not only unconnected vessels are suspected of a complete l Features [[ Li-error |
embolization, but also the tracked paths between an uncon- Size 69.7
nected vessel and the main tree may be important for embolus gl 2o
detection, because it can be caused by PE. Dist.-to-parench, 90.4

Stringness, + Dist.-to-parench 41.3
D. Size Periphe_ral-vessel +_Dist.-to-pareru;h. 50.0
Stringnesg + Dist.-to-parench, 54.2
A candidate is a group of connected voxels. Its size can b use Stringnesg + Size 57.5
as a feature to reject false detections. Due to noise and smal Es'?r‘f:gﬁéusé N E'jtcjcr’vpiiench’ e

flow voids dark regions can be detected anywhere. Areas with
a shallow intensity valley can in classification be elim@uht
with the bothat feature, but some noise-related valleysleep \yith weighto = 1/30, which is chosen so that 5 false positives
enough to be misclassified as embolus. However, if the Siggr data set (FP/ds) are as costly as 20% false negatives. The
of a candidate is only a few voxels, then the detection of thiginimum operation:in) refers to the selection of the optimal
object might be caused by noise. Therefore, size is also U?ﬁ‘ﬂnt on the FROC curve. For (F)ROC analysis, the Manhattan
as a feature to allow removal of small false candidates.  gistance =1) is most commonly used in literature.
Feature selection showed that two features are needed to

IV.  CLASSIFICATION OF PE CANDIDATES obtain anL;-norm smaller than 45: stringness and distance-
The detection step does not only detect true candidates (R&harenchyma. As example, an exploration of the cost of the
but also false candidates (look alikes). Classificationsaéih pest single and pairs of features for the tree classifierds/sh
the separation of these two so that only the true detectioRsTable I. Although others (e.g., size or isophote cunafur
will be marked as positives. An embolus is a true positiveiso contain valuable information for classification, thesto
(TP) when it contains (at least partially, at least one) fp@si result is obtained with stringness and distance-to-pémgna.
detection, otherwise it is a false negative (FN). Since assit The selection of these two is probably caused by the large
fier performs best in general, we experimentally testedraéveamount of PE inside the small tubular vessels and the large

classifiers on several features. For training and testiegjsed amount of false detections on the vessel wall (caused by.blur
38 positive data sets (202 PE). The data sets were selected to

demonstrate a variety of thrombus load, considerable Hiregqat
artifacts, sub-optimal contrast and parenchymal diseases ) ] -~ ) )
This section covers feature selection (Sec. IV-A) classifi!n this subsection, the results of classifier selection dad i

selection (Sec. IV-B) and performance estimation of the CABPtimal features are presented. To find a good classifiegriea
system (Sec. IV-C). selection was not only applied to the tree classifier (as in

Sec. IV-A), but also to the others, because each classifigr ma
need other features to obtain the optimal result.

We experimentally minimized thd.;-norm on the train-

a data with 400 iterations of 5-fold cross validation for
several commonly used classifiers from PRTools [28]. For
'€ach classifier we performed feature selection as deschibed
ubsection IV-A. Table Il shows the optimal features forheac
assifier and its corresponding costs. The results shotv tha

B. Classifier Selection

A. Feature Selection

Feature selection is used to find the best set of featurﬁ
corresponding to a classifier. For simplicity, this subisect
discusses feature selection only for one classifier: the t
classifier of PRTools [28] (with splitting based on the Fish
criterion and pruning based on the chi-squared test). For t

other classifiers we used the same feature selection ap’pro%‘fﬁerent classifiers use different features to reach tH

Those results are presented in Subsection IV-B. and that the tree classifier works better than the other used

an-lt;or-]:)r;ilz\?v(;rzeg afjrteo‘i,;?eact:ilcr)isv\t/gz Licehdmwg'ggvgaggvef;%?ssiﬁers. Furthermore, they show that the tree classifies
) ingness and distance-to-background to reach the optimu

initializations, t'o avoid getting stuck in allo'c.al 'optlmu'ffhe and that other features (such as bothat, size and path-to-
forward selection IE2r=1) was not only initialized with an

. unconnected vessels) also contain valuable information.
empty set of features, but also with other features and ffeatu In our design, the features are optimized for specific prop-

pairs. And the backward selectiof={r=2) was not only erties of true or false detections and their environmert. (e.

initialized with all features, but also with the result offeard stringness for small vessels, distance-to-parenchymahier

selection or another chosen group. ;
. S essel boundary and isophote curvature for the shape of
We used repeated runs (400) of five-fold cross-validation Omen). Furthermore, the shape of the feature distribation

estimate the performance, because this is often con5|d;3reS ows a high skew and kurtosis. This type of design and

g??ga:[f;ge;g kéﬁatsv‘vs?ﬁgr tg;ebézgna[];g]v_a[gi? ce for the probl%ne shape of the distributions indicate that symbolic leeyn

A criterion for performance estimation is .the weighteg- algonthms .(SUCh as decision t_r(_ees) are favored [32] .
norm of the classification error- Bagging improves t_h_e cIaSS|f|c_at|o_n results_ for the denisio
' tree. To avoid overtraining, bagging is used in a double loop

E =min(100 (o Z5)" + (1 — 75555)")""™) (2) In the inner loop, the aggregated tree classifier is trained
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TABLE I

COMPARISON OF CLASSIFIERS FRONPRTOOLS[28]. THE DECISION TREE oy ensitivity (%) o ensitivity (%)
(USING STRINGNESS ANDDISTANCE-TO-PARENCHYMA) PERFORMS BEST
90
[ Classifier | Optimal features [ Li ] " .
Lin. Bayes norm. Stringnesg + Dist.-to-parench. 71.8
Lin. PCA Stringnesg + Dist.-to-parench. 72.4 o A e
Lin. log. BotHat, + Size + Stringness+ ... ]
Path-to-unconn. 58.2 20 wf ST
Lin. discr. BotHat, + Stringnesg + ... : Zf
Size + Path-to-unconn. 59.6 5 10 15 20 25 30 35 ADFP/dS 2 4 6 8 10 12 1AFP/dS
Quadr. Bayes norm, Stringnesg + Dist.-to-parench. 74.3
Quadr. discr. Size + Unconn.Vessel 72.9 €)) (b)
Subspace EigVal, + 1s0.Cung e + ...
Dist-to-parench _ 65.1 Fig. 5. (a) FROC curve (solid) of the CAD system on the trajnitata with
Nearest mean BotHat, + Stringness + error bars and confidence bands (dashed) based on 68% caefititervals
Size + Path-to-unconn. || 57.9 | anq (b) detail of this ROC curve.
EM clust. (k=2) Stringnesg + Size + ...
Path-to-unconn. 60.2
k-NN (k=30) Stringnesg + Dist.-to-parench. 46.1 ) ) ) )
Decision tree Stringness, + Dist.-to-parench, || 41.6 candidate detection and feature computation. The maj@esau

for FN are: location on the boundary of vessels (65%), motion
artifacts (40%) and subtle or tiny PE (40%). The location on
with bootstrapping and in the outer loop, the performance tise boundary of vessels (related to the feature distance-to
estimated with cross validation. As the number of averagédundary) was often (50%) caused by motion artifacts. In our
trees (votes) increases, the-error decreases. The bagged tredata, 24% of the PE were tiny or subtle PE and 50% of them
classifier (32 votes) obtains the sarhe-error with a smaller were classified as positive.
training set than an unbagged tree classifier.

V. EVALUATION

C. Performance estimation Our system for the automatic detection of pulmonary em-

In this subsection, the performance of the whole system §8lism in CT images consists of vessel segmentation, candi-
estimated on the training data: the running time FROCe;ur\F‘ate detection, feature computation and classification.léVhi
analysis of complete occlusions, and the main causes foe failuning the detection system and optimizing the classifie8®n
positives and false negatives are discussed. data sets, the training data may be ‘worn out’ and the estidhat
The running time of the system is approximately 30 secon@§formance can be too optimistic [34]. Therefore, theesyst
for one patient on a machine with a Pentium Xeon (3.2 GH2Y2S evaluated on 19 positive data sets that were not used in
This is acceptable because the system is expected to dmsisffY Of the steps described until now. The evaluation resilts
radiologist after a manual inspection of the CT data. detection and classification are discussed separately.

The FROC curve is commonly used to present the per-
formance of a classifier when there is an undefined amouxt Detection Results

of true negatives. Figure 5 shows the FROC curve for Clagiaiy, 92 PE were annotated by an experienced chest-
sification pgsed_on the decision bpundary of th? bagg?é’diologist in the 19 evaluation sets (Table IIl). The most
tree classifier with the features stringness and distamce-fqyimal location of the thrombus defined its anatomic clas-
parenchyma. We usefireshold averagingo obtain the 68% jfication (main, lobar, segmental or subsegmental). In the
confidence intervals [33]. A joint confidence region (elps jatection step, 15% (14 PE) were missed by the system at
is computed for each point on the curve under the assumptigh £p/qs. However, the CAD system was also able to find

of a bivariate normal distribution based on 400 iteratiohS-o 26% (24 PE) additional PE, which have been confirmed by a
fold cross validation on the 38 training data sets. The @eraradiologist in a second ins;;ection.

performance of the system after classification is estimtded The detection step seems to work slightly better for lo-

be 70% sensitivity at 5.0 FP/ds, or 75% at 6.5 FP/ds (Fig. ), and segmental PE (both 88% sensitivity) than for sub-

16% of the PE are complete obstructions (present in 303y mental (81%). The number of annotations in the main
of the datasets). Our system is able to detect and classity 8§ imonary vessels is too low to draw a conclusion from the

as positive, of which 37% were added by vessel tracking. yeq1ts. However, based on the design, we know that emboli
The false positives and false negatives were analyzedtOine mediastinum are likely to be missed.

gain understanding of the most important causes for misclas

sification. Each of the misclassifications was assignedast le o

one cause. The three major causes for FP are: flow void$- Classification Results

or sub-optimal contrast enhancement — in the veins (35%;jgure 5 showed the FROC curve of our system on training

motion artifacts (29%) and noise in large arteries (13%)eNodata, and Figure 6 shows the same for the evaluation data.

that the most important causes for false positives of our CAThe FROC curve on evaluation data shows that the sensitivity

system (veins and movement artifacts) were not included af our CAD system is 58%, 63% and 73% at 4.0, 4.9 and

the model that was used for the current implementation ®6 FP/ds respectively. These points on the curve are within
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TABLE Il TABLE IV
PEANNOTATED BY THE RADIOLOGIST AND DETECTED BY THECAD COMPARISON OF SYSTEMS FORPEDETECTION. THE TABLE SHOWS THE
SYSTEM IN THE 19 EVALUATION DATA SETS. NUMBER OF PE, THE NUMBER OF POSITIVE DATA SETYdS) USED FOR
EVALUATION, SENSITIVITY (Sens, %), FP/d$A\ND A REMARK.
[ Vessel [[ Annotated | Detected |
Subsegmental 32 26 (81%) [ Reference [[ PE [ ds | Sens[ FP/ds| Remark
Segmental 34 30 (88%) Masutani [11] 21 11 [ 100 | 7.7 | Low #PE.
Lobar 24 21 (88%) Pichon [12] 22 3 | 86 6.3 | Low #PE.
Main 2 1 (50%) Das [13] 168 seg | 33 | 88 4 Only
Initial annotated PE 92 78 (85%) 120 sub 78 Per|phera| PE.
Additional PE found with CAD|| 24 (+26%) 24 Digumarthy [14] || 270 39 92 28 No _ motion;
Total annotated PE 116 102 (88%) No diseases
[ False Positives [ - [ 1197 (63 FP/ds)| Maizlin [15] 45 8 58 6.4 | Low sens. %;
Low #ds
Kiraly [18] 69 8 | 50 - 13% add. PE.
Zhou [17] 225 14 52 11.4 | Low sens. %
a 1.00 range of our estimation, so the evaluation does noBuhmann [16] 352 40 | 47 3.9 | Low sens. %
differ significantly from the training results. At 4.9 FP/dke [ Proposed 116 19 58 4.0 | Artif. & disease;
i . 0 p/System 63 4.9 22% add. PE.
system was able to classify correctly: 50% of lobar PE, 650 7 15 | (see Fig. 6)

of segmental and 55% of subsegmental PE (excl. additionat)-
In the introduction (Sec. 1), we already discussed the work
and results of others. This discussion is summarized in Ta-
ble IV for comparison with our results. Masutani e.a. was
one of the first who described a computerized method fi@vith our 63% sensitivity CAD system, we are able to add
detecting PE in CTA images. However, it is unclear how well2% to the manually detected PE of the radiologist. However,
this system generalizes, because it was evaluated on a lwe do not know the relevance of the additional emboli for
number of emboli. The same remark can be made about th® reasons. Most of the additional PE were found in the
system of Pichon e.a. The table also shows that the systeegmental and subsegmental (peripheral) pulmonary esteri
of Das e.a. was evaluated on a large number of patiehtewever, the clinical relevance of peripheral or small PR is
and it performs well in the region where it is important tanatter of controversy [9], [35], [36]. Although this relewze
assist the radiologist. On the other hand, it is unclear Hww tis still unclear, we believe that a higher sensitivity wékld to
system will perform on all emboli, because only the resuts fa more accurate estimation of the severity of obstructiahan
segmental and subsegmental emboli are reported. Diguynarietter patient selection. The second reason for unclabibyia
e.a. and Maizlin e.a. evaluated the same system. The re$ultthe relevance of additional emboli is related to positiagning
Digumarthy on data without sub-optimal opacification, ranti and evaluation data. Our results were obtained on a group of
artifacts and diseases are good. However, the evaluation fdmsitive data sets, which contained (on average) five PE per
Maizlin on a small number of more representative data setata set. However, for treatment, it is less relevant to find a
showed that the results of the system (both sensitivity aedtra embolus in a data set that has already been classified
FP/ds) are worse than those of our system. as positive, than to find an embolus in a data set that would
Only Zhou et al, Buhmannet al. and Kiraly et al. (apart otherwise have been classified as negative. Unfortunatedy,
from us) reported the system performance on a large databestimated added value of our CAD system cannot easily
of realistic test data that contained artifacts and diseadee extrapolated to data sets that were initially classified a
without the exclusion of PE. We are able to obtain a higheegative, because the sensitivity of the radiologist — Whic
sensitivity at a lower number of FP/ds than the detectidnfluences the added value — might not be constant. Thus,
systems of Zhou and Buhmann. At only 4.9 FP/ds, we are alti@ased on the results, it is difficult to estimate the clinical
to obtain a higher sensitivity than the visualization melthod relevance of our CAD system. Although the system can find

VI. DISCUSSION

Kiraly and a higher additional value (22% added PE). additional emboli and the performed evaluation is at thellev
of state of the art literature, extension of the evaluatiath w
Sensitivity (%) Sensitivity (%) both positive and negatives scans would allow an analysis of
100 75 the effects of our system on patient outcome.
80 70
65
60 0 VIlI. CONCLUSIONS ANDRECOMMENDATIONS

40 55

In this paper, we showed that our system for the automatic
20 * detection of PE candidates was able to find approximately
45 90% of the emboli at 41 false detections per data set. Of
the four features that were used for candidate detection —
which were based on CT values, eigenvalues of the Hessian,
@) (b) b .
othat transform and vessel tracking — the last two appeared
Fig. 6. (a) FROC curve of the CAD system on the evaluation data @d L0 improve the detection results the most. This shows that
detail of this FROC curve. contrast changes (bothat) and unconnected vessels (tgacki
are important in the detection step.

10 20 30 40 50 60 FP/ds 5 10 5 ZOFP/dS
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We also proposed new features to be used for the clag] M. Remy-Jardin and J. Remy, “Spiral CT angiography of thenmnary
sification of pulmonary embolism. We did not only focus _ circulation,” Radiology (RSNA)vol. 212, pp. 615-636, Sep. 1999.

.. 7] N. Schibany, D. Fleischmann, C. Thallinger and othersguipment
on characteristics of the embolus, but also on features tht availability and diagnostic strategies for suspected panp embolism

describe the blood vessels. The features are based oniiptens  in Austria,” European Radiologyol. 11, no. 11, pp. 2287—2294, 2001.
location, size, shape of lumen and shape of a vessel. [8] C. Fink, S.O. Schoenberg and M.F. Reiser, “MRI expandsoop in

i . lung assessmentDiagnostic Imaging Europepp. 14-19,47, Nov. 2005.
We showed that the bagged tree classifier — with thﬁ)] U. Schoepf, M.A. Kessler, C.T. Rieger e.a., “Multisli@T imaging of

features ‘distance-to-parenchyma’ and ‘stringness’ #aipes pulmonary embolism,Eur. Rad, vol. 11, no. 11, pp. 2278-2286, 2001.
the performance of the system. Other features also cowntaif®d] P- Stein, S.E. Fowler, LR. Goodman e.a., “Multidetectomputed

. . . tomography for acute pulmonary embolisniNew Engl. J. Med.vol.
valuable information but they were not able to improve the 354 o 22, pp. 2317-2327, 2006.

end-result. The selection of these two features may beerklai1] Y. Masutani, H. MacMahon, K. Doi, “Computerized detectiof pul-

to a large amount of PE inside the small tubular vessels and monary embolism in spiral CT angiography based on volumetrigéna
| t of fal d . h | Il analysis,”"IEEE T. Med. Im.vol. 21, no. 12, pp. 1517-1523, 2002.
a large amount of false detections on the vessel wa (CE\U%@H E. Pichon, C.L. Novak, A.P. Kiraly and D.P. Naidich, “fovel method

by the partial-volume effect). for pulmonary emboli visualization from high-resolution Cidges,”

Our system performs well in comparison to other CAD _ in Proc. SPIE Medical Imagingvol. 5367, 2004, pp. 161-170.
din i h | d @ [13] M. Das, A. Schneider, U. Schoepf, e.a., “Computer-aid&gjnosis of
systems presented In literature that were evaluate W&]\S peripheral pulmonary emboli” iProc. RSNAno. C02-232, 2003.

in a comparable manner. The sensitivity of the CAD systefm] S. Digumarthy, C. Kagay, A. Legasto, e.a., “Computeedidetection

is 63% at 4.9 false positives per data set, which allowed the (CAD) of acute pulmonary emboli: Evaluation in patients witho
. . . Y significant pulmonary disease,” ifroc. RSNAno. SSC04-08, 2006.
radiologist to improve the number of detected PE by 22%. [15] Z. Maizlin, P. Vos, M. Gody and P. Cooperberg, “Compuaied de-

The most important causes for false positives are: flow tection of pulmonary embolism on CT angiography: Initial expece,’
voids in veins, motion artifacts and noise due to sub-ogdtima _ in Proc. Ann. Meeting RSNA0. SSC04-04, 2006.

. . 16] S. Buhmann, P. Herzog, J. Stoeckel, M. Salganicoff, M.If\Wal.F.
contrast. The most important causes for false negatives are Reiser and C.R. Becker. “Clinical evaluation of a CAD prga for

location on the boundary of a vessel, motion artifacts and the detection of pulmonary embolism,” ECR 2006.

subtle or tiny PE. Only a small number of misclassificatior$?] €. Zhou, H.-P. Chan, S. Patel, e.a., “Preliminary inigzston of

d by fi h diasti h | computer-aided detection of pulmonary embolism in 3D CT pulmpna
was cause Yy tissue near the mediastinum, parenchyma angiography,"Ac. Rad, vol. 12, no. 6, pp. 782-792, 2005.

diseases or complete occlusions. Apparently our systefrlés g18] A. Kiraly, C.L. Novak, D.P. Naidich, e.a., “A comparisai 2D and 3D
to handle these causes successfully. evaluation methods for pulmonary embolism detection in CT irsdge

Fut h include furth Ivsis of the diff in Proc. SPIE Med. Im.vol. 6146, 2006.
uture research may Include turther analysis o ea e[rI9] J. Peijl, "Automatic detection and segmentation of thegl in CT

ence between PE in large proximal and small peripheral ves- datasets,” Master's thesis, TU Eindhoven, 2003, http:/bomt.tue.nl.
sels and it may focus on the segmentation of whole emboli. Al S Ukil and J.M. Reinhardt, “Smoothing lung segmentatiomfaces in

. . o . . 3D X-ray CT images using anatomic guidance,Hroc. SPIE Medical
artery-vein separation and the recognition of motion actt Imaging vol. 5370, 2004, pp. 1066—1075.

are also an interesting field for future research, which cgai] T. Biilow, R. Wiemker, T. Blaffert, C. Lorenz and S. Renisch, “Autic
reduce the number of misclassifications. However, thesestyp ~ extraction of the pulmonary artery tree from multi-slice CTiagiain

b icall d b | . Proc. SPIE Medical Imagingvol. 5746, 2005, pp. 730-740.
may be automatically remove (Or ecome less Iml:’ort"’“'[‘&] P. Soille,Morphological Image Analysis Springer-Verlag, 1999.

when newer CT scanners or improved scanning protocols &#& C. zhou, L.M. Hadjiiski, B. Sahiner, e.a., “Computerizeetection of
used. Another interesting topic would be to use stringness pulmonary embolism in 3D CT images: vessel tracking and segrimta

. . . techniques,” inProc. SPIE Med. Im.vol. 5032, 2003, pp. 1613-1620.
and distance-to-background in the segmentation of the:Isea[r24] L. Viiet and P.W. Verbeek, “Better geometric measuremdsased on

area, which would have excluded many false detections. This photometric information,” iHEEE Proc. Instrumentation and Measure-
might have allowed the use of other features in classifinatilf ment Technology Confvol. 3, Japan, May 1994, pp. 1357-1360.

- . ] A. Frangi, W.J. Niessen, K.L. Vincken, M.A. ViergeveiMultiscale
to iImprove the end-result. Furthermore, the evaluationicco vessel enhancement filtering,” MICCAI, ser. LNCS, vol. 2489, 1998.

be extended to a large number of positive and negative scg®$ P.-E. Danielsson, Q. Lin and Q.-Z. Ye, “Efficient defent of second-
to see whether the CAD system will change patient outcome. de_gree variations in 2D and 3D images,”Vis. Comm. Im. Represen-
tation, vol. 12, no. 3, pp. 255-305, 2001.
[27] A. Rosenfeld and J.L. Pfaltz, “Sequential operationdigital picture
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