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Automatic Detection of Pulmonary Embolism
in CTA Images

Henri Bouma, Jeroen J. Sonnemans, Anna Vilanova and Frans A. Gerritsen

Abstract—Pulmonary embolism (PE) is a common life-
threatening disorder for which an early diagnosis is desirable.
We propose a new system for the automatic detection of PE
in contrast-enhanced CT images. The system consists of candi-
date detection, feature computation and classification. Candidate
detection focusses on the inclusion of PE – even complete
occlusions – and the exclusion of false detections, such as tissue
and parenchymal diseases. Feature computation does not only
focus on the intensity, shape and size of an embolus, but also
on locations and the shape of the pulmonary vascular tree.
Several classifiers have been tested and the results show that
the performance is optimized by using a bagged tree classifier
with two features based on the shape of a blood vessel and the
distance to the vessel boundary. The system was trained on 38 CT
data sets. Evaluation on 19 other data sets showed that the system
generalizes well. The sensitivity of our system on the evaluation
data is 63% at 4.9 false positives per data set, which allowed the
radiologist to improve the number of detected PE by 22%.

Index Terms—Pulmonary embolism, computed tomography,
computed-aided detection.

I. I NTRODUCTION

PULMONARY EMBOLISM is the sudden obstruction of
a blood vessel in the lungs, usually due to a blood clot.

There is more than one case of PE per 500 persons every year
in the USA [1]. Of these cases, 11% die in the first hour [2] and
the untreated mortality of PE is estimated at 30% [3]. Thus,
PE is a common disorder with a high morbidity and mortality
for which an early and precise diagnosis is desirable [4].

Contrast-enhanced multi-slice x-ray computed tomography
(CT) is emerging as the preferred imaging test to diagnose PE
in many institutions, because it is a fast, minimally invasive
and high-resolution imaging technique [5]–[8] that allowsthe
direct depiction of a clot inside arteries. CT images can also be
used to identify other disorders in a patient with chest pain[9].

In contrast-enhanced CT (i.e., CT angiography, CTA) im-
ages, the blood vessels appear to be very bright because the
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Fig. 1. (a) In CT images, PE appears as a dark region inside the pulmonary
arteries. (b) Lymphoid tissue and PE can have the same intensity.

contrast material is dissolved in blood. The embolus does not
absorb this material, and thus it can be recognized in CTA as
a dark area in the pulmonary arteries (see Fig. 1a). However,
manual detection of the dark spots that correspond to PE in
CTA images is often described by radiologists as difficult
and time consuming [10]. Therefore, computer-aided diagnosis
(CAD) is desirable.

In the last years, several CAD systems for PE have been
proposed, but their evaluations have some serious limitations.
For example, for some system [11], [12] it is uncertain how
well they generalize because a low number of emboli is used
for evaluation. For another system [13], it is unclear how it
performs on all emboli, because only the peripheral emboli
are taken into account. And it is unknown how a system [14]
performs on representative data when only data is used with
good opacification and without significant motion artifactsor
pulmonary diseases. (Thus it is not surprising that another
evaluation of the same system with more realistic data showed
much worse results [15].) The studies of Buhmann [16],
Zhou [17] and Kiraly [18] are the only studies that reported the
system performance on a large database of realistic test data
that contained breathing artifacts and parenchymal diseases
without the exclusion of emboli based on size or location.
However, results of Buhmann and Zhou are poor when all
emboli are taken into account (with sensitivities of 47% and
52% at 3.9 and 11.4 false positives per data set respectively).
The 3D visualization method of Kiraly showed 50% sensitiv-
ity, which would improve the initial reading by 13%.

In this paper, we propose a new CAD system for automatic
detection of PE in CTA images. For the training of the system,
we used 38 positive data sets (202 PE), and for the evaluation,
19 other positive data sets (116 PE) were used. The evaluation
shows that the performance of our system is at the level
of state of the art literature. The data sets were selected to
demonstrate considerable motion artifacts (15%), sub-optimal
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contrast (20%), a variety of thrombus load (25% with an
obstruction degree above 25%) and parenchymal diseases
(40%), and none of the emboli were excluded for evaluation.
This is important because the main problem of PE detection is
the separation between true PE and look-alikes, which is much
harder when the patient has no other lung abnormalities.

The CAD system that we propose consists of several
steps, which are described in three sections. In the first
step, pulmonary vessels are segmented and PE candidates
are detected inside the vessel segmentation (Sec. II). The
candidate-detection step focusses on the inclusion of PE and
the exclusion of false detections, such as lymphoid tissue and
parenchymal diseases. Subsequently, features are computed
on each candidate to enable classification of them (Sec. III).
Feature computation does not only focus on the intensity,
shape and size of an embolus, but also on the shape of the
pulmonary vascular tree and the location in the tree. In the
last step, classification is used to separate candidates that
represent real emboli from the other. The system is optimized
with feature selection and classifier selection (Sec. IV). The
presented system for embolus detection is then evaluated and
results are presented in Sec. V. Finally, the discussion and
conclusions can be found in Sec. VI and VII respectively.

II. V ESSELSEGMENTATION AND CANDIDATE DETECTION

We propose a vessel-segmentation method to reduce the search
area for candidate detection that includes (at least a part of) the
emboli and it excludes (most of) the false detections and look-
alikes. Examples of look-alikes that have the same intensity
as PE are: lymphoid tissue (Fig. 1b), parenchymal diseases
and partial-volume voxels on the vessel boundary. Another
focus of our method is the inclusion of ‘sudden stops’ (i.e.,
completely embolized vessels), which are easily missed by
common segmentation techniques. Figure 2 shows the design
of our CAD system. The part about vessel segmentation and
candidate detection is discussed in this section.
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Fig. 2. Our CAD system for pulmonary embolism consists of vessel
segmentation, candidate detection, feature computation andclassification.

A. Vessel Segmentation

A rough selection of the lung region can be obtained in CT
images by taking the two largest dark (below -500 Hounsfield
Units, HU) regions in the thorax that have a minimum
overlap of 30% when they are projected on the transverse
axis [19]. These regions correspond to lung parenchyma (i.e.,
the cellular substance inside the lungs). To remove holes from
the segmentation and include small vessels, a morphological
closing [20] was used of 2.4 mm, which appeared to include
most small vessels. A segmentation of the mediastinum (i.e.,
the region that contains the heart) was obtained by selecting
the large region between the lungs using a row-wise operation
that sets each pixel between the lungs. A morphological
opening (6.0 mm) is applied to obtain a smooth mediastinal
segmentation. To remove tissue from the lung segmentation,all
voxels near the mediastinum segmentation (geodesic distance
< 11 mm in a mask with intensity> -300 HU) are excluded.

The major pulmonary vessels can be segmented with a
threshold, because they are brighter than other objects in the
lungs. Region growing is performed to extend the segmenta-
tion to the mediastinum. This threshold is adapted to each data
set, because of varying contrast enhancement. It is selected as
the average of 0 HU and the most frequent intensity in the
region with intensities above +150 HU.

The high threshold value used for major vessels cannot be
used for the small pulmonary vessels. Their lower intensity
is caused by the point-spread function (PSF), which makes
it hard to create an intensity-based separation between vessels
and (lymphoid) tissue. Small vessels are located in the periph-
ery of the lungs and most of the tissue is near the mediastinum.
The peripheral-vessel segmentation is selected as the region
inside the lungs that is brighter than -150 HU to exclude lung
parenchyma, with a radius below 2.4 mm to exclude large
vessels, and with a distance to the mediastinum of at least
15 mm to exclude tissue near the mediastinum.

Tracking aims at the filling of a possible gap due to a
complete obstruction between peripheral vessels and the rest of
the pulmonary vascular tree. In healthy vessels without emboli,
the segmentations of peripheral and major vessels are well
connected (and overlapping). However in patients with PE, the
obstruction can be so large that the segmentation of a periph-
eral vessel is ‘unconnected’ to other vessels. Locally it may be
impossible to make a distinction between an embolized vessel
and tissue because they have the same intensity. Therefore,we
are using a tracking algorithm to find the optimal connection
between the unconnected and other vessels. The tracking
algorithm [21] uses three input segmentations. The first is the
segmentation of the main tree, which includes all major and
peripheral vessels that are connected to the mediastinum. The
second is the segmentation of the unconnected vessels, which
are all major and peripheral vessels that arenot connected to
the mediastinum. The third is a search area, which is inside
and between the lungs with an intensity above -150 HU. The
tracker is connecting the second region (unconnected vessels)
to the first region (main tree) through the third region (search
area). Wave-front propagation is used to compute costs for
each voxel based on intensity and distance. Paths between
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unconnected vessels and the main tree that have minimal
costs are selected to create the connections. The dilated region
around this path is combined with the segmentations of the
major and peripheral vessels using an OR-operation to form
the search area for candidate detection. The segmentationsof
the tracked path and the unconnected vessels are also used in
candidate detection and feature computation.

B. Candidate Detection

Candidate detection aims at the extraction of a group of
voxels inside the pulmonary vessels that includes (at least
partially) an embolus. It reduces the search area by detecting
voxels and grouping connected voxels to candidate objects.
The area reduction allows an efficient feature computation and
the grouping allows classification of these objects.

Four methods are used to detect candidate voxels inside
the vessel segmentation. One of them is the union of the two
binary masks found by tracking (Sec. II-A); the mask of the
unconnected vessels, and that of the dilated path between these
vessels and the main tree. Both masks are combined with the
masks of the other detection methods using an OR-operation.

The other three methods are intensity-based features. The
first directly uses the CT value. Inside the vessels of CTA
images, emboli are darker than contrast-enhanced blood. The
CT value allows a separation between these regions. The
second uses the eigenvalues of the Hessian matrix (i.e., matrix
of second-order derivatives) [11]. A dark spot can be detected
with a positive first eigenvalueλ1 of the Hessian, assum-
ing that the eigenvalues are sorted by decreasing magnitude
(|λ1| > |λ2| > |λ3|). We used Gaussian derivatives atσ =
0.9 mm, since it is the lowest scale to take reliable derivatives
on our data with voxels of 0.6 mm in each direction.

Cλ1
=







λ1, λ1 > 0
λ3, λ1 ≤ 0 andλ2 > 0 andλ3 > 0
0, otherwise

(1)

The third is the (grey scale) bothat (black tophat [22] or local
contrast [11]) with 4 mm dilations and 2 mm erosions to
enhance the transition from bright enhanced blood to dark PE.

The three features based on CT value, eigenvalues and
bothat are thresholded to create binary masks. To find the op-
timal threshold for each feature, we used 38 positive data sets
with 202 PE that have been confirmed by an experienced chest-
radiologist, where discontinuous thrombi were counted as
separate lesions. The annotated PE were manually segmented
to simplify the matching of detections and annotations. The
data sets were acquired with a either a Siemens Sensation 4 or
a Philips Mx8000 four-slice CT scanner. The resulting free-
response receiver-operator characteristic (FROC) curvesare
shown in Figure 3a-c. In order to find a good balance between
false negatives and false positives, a cost function was defined.
We used a function based on theL1-norm, which is most
common. Lines of equal cost are represented in the figure as
dashed lines. The lowest cost can be found in the upper-left
corner. We have chosen the slope of the dashed lines so that
15 false detections per data set (FD/ds) are as costly as 10%
missed PE (false negatives). Threshold values for the detectors
based on CT value, eigenvalues and bothat were selected and

fixed for all data at 0 HU, 1 and 150 respectively to minimize
the cost. Variation of the cost function would have led to
another optimum (Fig. 3).

The four different detectors respond to different properties
of an embolus. The sensitivity is improved by choosing the
union of the separate regions. The resulting regions are ana-
lyzed using connected-component analysis to obtain the can-
didates; each group of connected voxels in the combined mask
is considered one candidate. Candidates smaller than 8.6 mm3

are removed, not because they are irrelevant, but to reduce the
number of FD. The results of several combinations of detectors
can be found in Figure 3d. All four candidates result in a
sensitivity of 89% at 41.4FD/ds, which is mainly obtained by
the bothat and vessel tracking (3+4, 88% at 39.4FD/ds). So,
the two most relevant detectors for our purposes are based on
contrast changes (bothat) and unconnected vessels (tracking).
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Fig. 3. (a-c) FROC for the thresholds of three intensity-based detectors and
(d) a combination of the four detectors based on 1: CT value, 2:eigenvalues,
3: bothat and 4: vessel tracking. Thresholds of 0 HU, 1 and 150were chosen
for intensity, eigenvalues and bothat respectively to minimize the cost. The
dashed lines represent lines of equal costs. The figure showsthat the most
important detectors are bothat and vessel tracking (3+4).

III. F EATURES FORPE CLASSIFICATION

The previous step reduces the search area and creates PE
candidates. However, the number of false detections is still
too large to serve as output of the CAD system. These
false detections are mainly caused by parenchymal diseases,
the partial-volume effect on the vessel boundary, sub-optimal
contrast enhancement, lymphoid tissue, flow voids in veins,
noise and motion artifacts. To make a distinction between real
PE and look-alikes, features are computed in candidate objects
that allow classification of the candidates.

Only a few attempts have been made to find discriminating
features. Masutani e.a. [11] proposed to use the intensity,
local contrast, length, volume, curvilinearity of a PE and the
vascular size for boundary removal. Zhou e.a. [17], [23] used
the features based on intensity, edge strength, length, volume
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and the shape of a candidate in relation to the local vessel
(roundness and compactness). Pichon e.a. [12] used the size
and intensity in a special way. The intensities inside a vessel
were projected on the vessel surface by computing the first
quartile of intensities on a ray between the surface and the
medial axis of a vessel.

Previous work mainly focussed on the intensity and pre-
sumed shape of emboli, although other objects can have the
same intensity as emboli and emboli can have a wide variety
of shapes. Furthermore, the shape of the embolus can be
difficult to identify in a CT image, especially if it seems to be
connected to the lymphoid tissue (Fig. 1b).

The regular shape of the pulmonary vascular tree (which
consist of bifurcations and tubular branches) has not yet been
fully exploited. Therefore, we propose to use the shape of
a vessel, the shape of lumen (i.e., contrast-enhanced blood)
inside these vessels, and the location of a candidate as new
features for the classification of PE in CT images.

For each candidate’s connected component, we compute the
following statistics of a feature: mean (µ), standard deviation
(σ), 5th percentile (min) and 95th percentile (max). For the
features that are not measured on the whole object, but for
example only on the edge of a candidate, the relative size
(size) is also computed as a coverage percentage.

A. Intensity

The three intensity-based features that were used for detection
are also used for classification. The CT value allows the
separation of PE, dark lung parenchyma and bright lumen. The
eigenvalues respond to locally dark areas. The bothat transform
can in classification be used to remove noise, small flow voids
and other areas with a shallow intensity valley.

B. Shape

The first feature based on shape is isophote curvature, which
expresses the local shape of a surface through points of equal
intensity, and it can be used to measure the shape of bright
lumen on its boundary. We propose this shape feature (σ
= 0.9 mm) to distinguish the transition ‘lumen-tissue’ and
‘lumen-PE’, because PE and tissue cannot be separated based
on intensity (Fig. 1b). The lumen surface of healthy pulmonary
vessels consists of two shapes; it is ridge-shaped on a tubular
branch and saddle-shaped on a bifurcation. The surface shape
around an embolus is like a cup or a valley. Unfortunately,
the shape measurement of the transitions ‘lumen-PE’ and
‘lumen-tissue’ is easily spoiled due to the much larger in-
tensity transition between tissue and parenchyma. Therefore,
we want to concentrate only on the relevant intensities. Erf-
clipping [24] allows us to do this, while preserving as much
edge information as possible (Fig. 4). Isophote curvature
allows the detection of the concave lumen surface at embolic
locations. However, it will also respond to motion artifacts and
at locations where arteries and veins touch each other.

The second feature that expresses the shape of the lumen is
its circularity (or eccentricity). The cross-section of healthy
pulmonary vessels is circular, but an embolus inside the
vessel causes it to become non-circular. Common ways to

L Lw κ

Fig. 4. Intensity (L), gradient magnitude (Lw) and isophote curvature (κ) of
a CT image without erf-clipping (top) and of the same image with erf-clipping
(bottom). Note the shape ofLw and the negative (dark) values ofκ in the
erf-clipped images. Erf-clipping allows analysis of the shape of the lumen.

measure circularity are based on the relation between area
and perimeter or the ratio between the eigenvalues of the
Hessian (|λ2|

|λ3|
, where λ1 ≥ λ2 ≥ λ3) [25]. We propose a

circularity based on the eigenvalues that is calculated on a
distance transform of the lumen segmentation. The distance
transform allows the shape analysis of large vessels.

The third feature that uses shape, does not measure the
shape of lumen in vessels, but the shape of the vessel. It
measures the tubularity of peripheral (segmental and smaller)
vessels. Common ways to measure tubularity are vessel-
ness [25] or stringness [26]. We propose to use stringness to
measure tubularity near PE candidates, because the ordering
of eigenvalues by value (instead of by magnitude) improves
the orientation estimation near stenoses and occlusions (like
emboli). The stringness is important for PE classification
because many emboli can be found in peripheral vessels.
Furthermore, most false detections (e.g., caused by tissueor
parenchymal diseases) are less tubular than the vessels.

C. Location

The first feature that uses the relative position of a candidate
to another structure is based on the distance-to-parenchyma,
which is computed with a two-pass distance transform [27] to
the region with an intensity below -250 HU. In CTA images,
pulmonary vessels are bright and they are surrounded by dark
parenchyma. Due to the blurring of the the partial-volume
effect (and the PSF) the boundary of a vessel consists of
intermediate grey values, which include intensities that are
equal to that of emboli. Dark spots inside vessels (and far from
the parenchyma) are not caused by the blur effect. Therefore,
the distance-to-parenchyma can be used to discriminate emboli
from the false detections on the vessel boundary.

The second feature that uses the location of a candidate is
based on the distance to the mediastinum in order to indicate
whether an embolus is detected in the periphery or near the
mediastinum. Therefore, it allows the application of other
features in the region for which they are optimized (e.g.,
stringness for peripheral vessels and isophote curvature in
more proximal vessels).

The third feature based on the location of a candidate is the
connectivity of a vessel to major vessels, which is generated by
the vessel-tracking algorithm (Sec. II-A). Detected vessel parts
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that cannot be connected to the mediastinum (unconnected
vessels) are marked as suspicious areas.

Not only unconnected vessels are suspected of a complete
embolization, but also the tracked paths between an uncon-
nected vessel and the main tree may be important for embolus
detection, because it can be caused by PE.

D. Size

A candidate is a group of connected voxels. Its size can be used
as a feature to reject false detections. Due to noise and small
flow voids dark regions can be detected anywhere. Areas with
a shallow intensity valley can in classification be eliminated
with the bothat feature, but some noise-related valleys aredeep
enough to be misclassified as embolus. However, if the size
of a candidate is only a few voxels, then the detection of this
object might be caused by noise. Therefore, size is also used
as a feature to allow removal of small false candidates.

IV. CLASSIFICATION OF PE CANDIDATES

The detection step does not only detect true candidates (PE)
but also false candidates (look alikes). Classification aims at
the separation of these two so that only the true detections
will be marked as positives. An embolus is a true positive
(TP) when it contains (at least partially, at least one) positive
detection, otherwise it is a false negative (FN). Since no classi-
fier performs best in general, we experimentally tested several
classifiers on several features. For training and testing, we used
38 positive data sets (202 PE). The data sets were selected to
demonstrate a variety of thrombus load, considerable breathing
artifacts, sub-optimal contrast and parenchymal diseases.

This section covers feature selection (Sec. IV-A), classifier
selection (Sec. IV-B) and performance estimation of the CAD
system (Sec. IV-C).

A. Feature Selection

Feature selection is used to find the best set of features
corresponding to a classifier. For simplicity, this subsection
discusses feature selection only for one classifier: the tree
classifier of PRTools [28] (with splitting based on the Fisher
criterion and pruning based on the chi-squared test). For the
other classifiers we used the same feature selection approach.
Those results are presented in Subsection IV-B.

To find the best set of features the technique ofl-forward
and r-backward feature selection was used. We tried several
initializations, to avoid getting stuck in a local optimum.The
forward selection (l=2,r=1) was not only initialized with an
empty set of features, but also with other features and feature
pairs. And the backward selection (l=1,r=2) was not only
initialized with all features, but also with the result of forward
selection or another chosen group.

We used repeated runs (400) of five-fold cross-validation to
estimate the performance, because this is often considereda
good trade-off between the bias and variance for the problem
of feature and classifier selection [29]–[31].

A criterion for performance estimation is the weightedLn-
norm of the classification error:

E = min(100 ((α FP
ds )n + (1 − TP

TP+FN )n)1/n) (2)

TABLE I
THE L1-ERROR OF THE BEST SINGLE FEATURES AND FEATURE PAIRS.

Features L1-error

Size 69.7
Stringnessµ 72.5
Iso.curv.size 82.0

Dist.-to-parench.σ 90.4
Stringnessµ + Dist.-to-parench.σ 41.3

Peripheral-vessel + Dist.-to-parench.σ 50.0
Stringnessµ + Dist.-to-parench.µ 54.2
Stringnessµ + Size 57.5
Eigenvalueµ + Dist.-to-parench.σ 59.5
Stringnessµ + Iso.curv.size 59.6

with weightα = 1/30, which is chosen so that 5 false positives
per data set (FP/ds) are as costly as 20% false negatives. The
minimum operation (min) refers to the selection of the optimal
point on the FROC curve. For (F)ROC analysis, the Manhattan
distance (n=1) is most commonly used in literature.

Feature selection showed that two features are needed to
obtain anL1-norm smaller than 45: stringness and distance-
to-parenchyma. As example, an exploration of the cost of the
best single and pairs of features for the tree classifier is shown
in Table I. Although others (e.g., size or isophote curvature)
also contain valuable information for classification, the best
result is obtained with stringness and distance-to-parenchyma.
The selection of these two is probably caused by the large
amount of PE inside the small tubular vessels and the large
amount of false detections on the vessel wall (caused by blur).

B. Classifier Selection

In this subsection, the results of classifier selection and its
optimal features are presented. To find a good classifier, feature
selection was not only applied to the tree classifier (as in
Sec. IV-A), but also to the others, because each classifier may
need other features to obtain the optimal result.

We experimentally minimized theL1-norm on the train-
ing data with 400 iterations of 5-fold cross validation for
several commonly used classifiers from PRTools [28]. For
each classifier we performed feature selection as describedin
Subsection IV-A. Table II shows the optimal features for each
classifier and its corresponding costs. The results show that
different classifiers use different features to reach the optimum
and that the tree classifier works better than the other used
classifiers. Furthermore, they show that the tree classifieruses
stringness and distance-to-background to reach the optimum
and that other features (such as bothat, size and path-to-
unconnected vessels) also contain valuable information.

In our design, the features are optimized for specific prop-
erties of true or false detections and their environment (e.g.,
stringness for small vessels, distance-to-parenchyma forthe
vessel boundary and isophote curvature for the shape of
lumen). Furthermore, the shape of the feature distributions
shows a high skew and kurtosis. This type of design and
the shape of the distributions indicate that symbolic learning
algorithms (such as decision trees) are favored [32].

Bagging improves the classification results for the decision
tree. To avoid overtraining, bagging is used in a double loop.
In the inner loop, the aggregated tree classifier is trained
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TABLE II
COMPARISON OF CLASSIFIERS FROMPRTOOLS [28]. THE DECISION TREE

(USING STRINGNESS ANDDISTANCE-TO-PARENCHYMA) PERFORMS BEST.

Classifier Optimal features L1

Lin. Bayes norm. Stringnessµ + Dist.-to-parench.σ 71.8
Lin. PCA Stringnessµ + Dist.-to-parench.σ 72.4
Lin. log. BotHatµ + Size + Stringnessµ + . . .

Path-to-unconn. 58.2
Lin. discr. BotHatµ + Stringnessµ + . . .

Size + Path-to-unconn. 59.6
Quadr. Bayes norm. Stringnessµ + Dist.-to-parench.σ 74.3
Quadr. discr. Size + Unconn.Vessel 72.9
Subspace EigValµ + Iso.Curvsize + . . .

Dist-to-parenchσ 65.1
Nearest mean BotHatµ + Stringnessµ +

Size + Path-to-unconn. 57.9
EM clust. (k=2) Stringnessµ + Size + . . .

Path-to-unconn. 60.2
k-NN (k=30) Stringnessµ + Dist.-to-parench.σ 46.1
Decision tree Stringnessµ + Dist.-to-parench.σ 41.6

with bootstrapping and in the outer loop, the performance is
estimated with cross validation. As the number of averaged
trees (votes) increases, theL1-error decreases. The bagged tree
classifier (32 votes) obtains the sameL1-error with a smaller
training set than an unbagged tree classifier.

C. Performance estimation

In this subsection, the performance of the whole system is
estimated on the training data: the running time, FROC-curve,
analysis of complete occlusions, and the main causes for false
positives and false negatives are discussed.

The running time of the system is approximately 30 seconds
for one patient on a machine with a Pentium Xeon (3.2 GHz).
This is acceptable because the system is expected to assist the
radiologist after a manual inspection of the CT data.

The FROC curve is commonly used to present the per-
formance of a classifier when there is an undefined amount
of true negatives. Figure 5 shows the FROC curve for clas-
sification based on the decision boundary of the bagged
tree classifier with the features stringness and distance-to-
parenchyma. We usedthreshold averagingto obtain the 68%
confidence intervals [33]. A joint confidence region (ellipse)
is computed for each point on the curve under the assumption
of a bivariate normal distribution based on 400 iterations of 5-
fold cross validation on the 38 training data sets. The average
performance of the system after classification is estimatedto
be 70% sensitivity at 5.0 FP/ds, or 75% at 6.5 FP/ds (Fig. 5).

16% of the PE are complete obstructions (present in 30%
of the datasets). Our system is able to detect and classify 80%
as positive, of which 37% were added by vessel tracking.

The false positives and false negatives were analyzed to
gain understanding of the most important causes for misclas-
sification. Each of the misclassifications was assigned at least
one cause. The three major causes for FP are: flow voids –
or sub-optimal contrast enhancement – in the veins (35%),
motion artifacts (29%) and noise in large arteries (13%). Note
that the most important causes for false positives of our CAD
system (veins and movement artifacts) were not included in
the model that was used for the current implementation of
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Fig. 5. (a) FROC curve (solid) of the CAD system on the training data with
error bars and confidence bands (dashed) based on 68% confidence intervals
and (b) detail of this ROC curve.

candidate detection and feature computation. The major causes
for FN are: location on the boundary of vessels (65%), motion
artifacts (40%) and subtle or tiny PE (40%). The location on
the boundary of vessels (related to the feature distance-to-
boundary) was often (50%) caused by motion artifacts. In our
data, 24% of the PE were tiny or subtle PE and 50% of them
were classified as positive.

V. EVALUATION

Our system for the automatic detection of pulmonary em-
bolism in CT images consists of vessel segmentation, candi-
date detection, feature computation and classification. While
tuning the detection system and optimizing the classifier on38
data sets, the training data may be ‘worn out’ and the estimated
performance can be too optimistic [34]. Therefore, the system
was evaluated on 19 positive data sets that were not used in
any of the steps described until now. The evaluation resultsof
detection and classification are discussed separately.

A. Detection Results

Initially, 92 PE were annotated by an experienced chest-
radiologist in the 19 evaluation sets (Table III). The most
proximal location of the thrombus defined its anatomic clas-
sification (main, lobar, segmental or subsegmental). In the
detection step, 15% (14 PE) were missed by the system at
63 FP/ds. However, the CAD system was also able to find
26% (24 PE) additional PE, which have been confirmed by a
radiologist in a second inspection.

The detection step seems to work slightly better for lo-
bar and segmental PE (both 88% sensitivity) than for sub-
segmental (81%). The number of annotations in the main
pulmonary vessels is too low to draw a conclusion from the
results. However, based on the design, we know that emboli
in the mediastinum are likely to be missed.

B. Classification Results

Figure 5 showed the FROC curve of our system on training
data, and Figure 6 shows the same for the evaluation data.
The FROC curve on evaluation data shows that the sensitivity
of our CAD system is 58%, 63% and 73% at 4.0, 4.9 and
15 FP/ds respectively. These points on the curve are within
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TABLE III
PE ANNOTATED BY THE RADIOLOGIST AND DETECTED BY THECAD

SYSTEM IN THE 19 EVALUATION DATA SETS.

Vessel Annotated Detected

Subsegmental 32 26 (81%)
Segmental 34 30 (88%)
Lobar 24 21 (88%)
Main 2 1 (50%)
Initial annotated PE 92 78 (85%)
Additional PE found with CAD 24 (+26%) 24
Total annotated PE 116 102 (88%)

False Positives – 1197 (63 FP/ds)

a 1.0σ range of our estimation, so the evaluation does not
differ significantly from the training results. At 4.9 FP/ds, the
system was able to classify correctly: 50% of lobar PE, 65%
of segmental and 55% of subsegmental PE (excl. additional).

In the introduction (Sec. I), we already discussed the work
and results of others. This discussion is summarized in Ta-
ble IV for comparison with our results. Masutani e.a. was
one of the first who described a computerized method for
detecting PE in CTA images. However, it is unclear how well
this system generalizes, because it was evaluated on a low
number of emboli. The same remark can be made about the
system of Pichon e.a. The table also shows that the system
of Das e.a. was evaluated on a large number of patients
and it performs well in the region where it is important to
assist the radiologist. On the other hand, it is unclear how the
system will perform on all emboli, because only the results for
segmental and subsegmental emboli are reported. Digumarthy
e.a. and Maizlin e.a. evaluated the same system. The resultsof
Digumarthy on data without sub-optimal opacification, motion
artifacts and diseases are good. However, the evaluation by
Maizlin on a small number of more representative data sets
showed that the results of the system (both sensitivity and
FP/ds) are worse than those of our system.

Only Zhou et al., Buhmannet al. and Kiraly et al. (apart
from us) reported the system performance on a large database
of realistic test data that contained artifacts and diseases
without the exclusion of PE. We are able to obtain a higher
sensitivity at a lower number of FP/ds than the detection
systems of Zhou and Buhmann. At only 4.9 FP/ds, we are able
to obtain a higher sensitivity than the visualization method of
Kiraly and a higher additional value (22% added PE).
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Fig. 6. (a) FROC curve of the CAD system on the evaluation data and(b)
detail of this FROC curve.

TABLE IV
COMPARISON OF SYSTEMS FORPE DETECTION. THE TABLE SHOWS THE

NUMBER OF PE,THE NUMBER OF POSITIVE DATA SETS(ds) USED FOR

EVALUATION , SENSITIVITY (Sens, %), FP/ds,AND A REMARK .

Reference PE ds Sens FP/ds Remark

Masutani [11] 21 11 100 7.7 Low #PE.
Pichon [12] 22 3 86 6.3 Low #PE.
Das [13] 168 seg 33 88 4 Only

120 sub 78 Peripheral PE.
Digumarthy [14] 270 39 92 2.8 No motion;

No diseases
Maizlin [15] 45 8 58 6.4 Low sens. %;

Low #ds
Kiraly [18] 69 8 50 – 13% add. PE.
Zhou [17] 225 14 52 11.4 Low sens. %
Buhmann [16] 352 40 47 3.9 Low sens. %

Proposed 116 19 58 4.0 Artif. & disease;
system 63 4.9 22% add. PE.

73 15 (see Fig. 6)

VI. D ISCUSSION

With our 63% sensitivity CAD system, we are able to add
22% to the manually detected PE of the radiologist. However,
we do not know the relevance of the additional emboli for
two reasons. Most of the additional PE were found in the
segmental and subsegmental (peripheral) pulmonary arteries.
However, the clinical relevance of peripheral or small PE isa
matter of controversy [9], [35], [36]. Although this relevance
is still unclear, we believe that a higher sensitivity will lead to
a more accurate estimation of the severity of obstruction and a
better patient selection. The second reason for unclarity about
the relevance of additional emboli is related to positive training
and evaluation data. Our results were obtained on a group of
positive data sets, which contained (on average) five PE per
data set. However, for treatment, it is less relevant to find an
extra embolus in a data set that has already been classified
as positive, than to find an embolus in a data set that would
otherwise have been classified as negative. Unfortunately,the
estimated added value of our CAD system cannot easily
be extrapolated to data sets that were initially classified as
negative, because the sensitivity of the radiologist – which
influences the added value – might not be constant. Thus,
based on the results, it is difficult to estimate the clinical
relevance of our CAD system. Although the system can find
additional emboli and the performed evaluation is at the level
of state of the art literature, extension of the evaluation with
both positive and negatives scans would allow an analysis of
the effects of our system on patient outcome.

VII. C ONCLUSIONS ANDRECOMMENDATIONS

In this paper, we showed that our system for the automatic
detection of PE candidates was able to find approximately
90% of the emboli at 41 false detections per data set. Of
the four features that were used for candidate detection –
which were based on CT values, eigenvalues of the Hessian,
bothat transform and vessel tracking – the last two appeared
to improve the detection results the most. This shows that
contrast changes (bothat) and unconnected vessels (tracking)
are important in the detection step.
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We also proposed new features to be used for the clas-
sification of pulmonary embolism. We did not only focus
on characteristics of the embolus, but also on features that
describe the blood vessels. The features are based on intensity,
location, size, shape of lumen and shape of a vessel.

We showed that the bagged tree classifier – with the
features ‘distance-to-parenchyma’ and ‘stringness’ – optimizes
the performance of the system. Other features also contained
valuable information but they were not able to improve the
end-result. The selection of these two features may be related
to a large amount of PE inside the small tubular vessels and
a large amount of false detections on the vessel wall (caused
by the partial-volume effect).

Our system performs well in comparison to other CAD
systems presented in literature that were evaluated extensively
in a comparable manner. The sensitivity of the CAD system
is 63% at 4.9 false positives per data set, which allowed the
radiologist to improve the number of detected PE by 22%.

The most important causes for false positives are: flow
voids in veins, motion artifacts and noise due to sub-optimal
contrast. The most important causes for false negatives are:
location on the boundary of a vessel, motion artifacts and
subtle or tiny PE. Only a small number of misclassifications
was caused by tissue near the mediastinum, parenchymal
diseases or complete occlusions. Apparently our system is able
to handle these causes successfully.

Future research may include further analysis of the differ-
ence between PE in large proximal and small peripheral ves-
sels and it may focus on the segmentation of whole emboli. An
artery-vein separation and the recognition of motion artifacts
are also an interesting field for future research, which can
reduce the number of misclassifications. However, these types
may be automatically removed (or become less important)
when newer CT scanners or improved scanning protocols are
used. Another interesting topic would be to use stringness
and distance-to-background in the segmentation of the search
area, which would have excluded many false detections. This
might have allowed the use of other features in classification
to improve the end-result. Furthermore, the evaluation could
be extended to a large number of positive and negative scans
to see whether the CAD system will change patient outcome.
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