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Abstract 

This paper presents an automatic detection of Dysarthria, a 

motor speech disorder, using extended speech features called 

Centroid Formants. Centroid Formants are the weighted 

averages of the formants extracted from a speech signal. This 

involves extraction of the first four formants of a speech signal 

and averaging their weighted values. The weights are 

determined by the peak energies of the bands of frequency 

resonance, formants. The resulting weighted averages are 

called the Centroid Formants. In our proposed methodology, 

these centroid formants are used to automatically detect 

Dysarthric speech using neural network classification 

technique. The experimental results recorded after testing this 

algorithm are presented. The experimental data consists of 200 

speech samples from 10 Dysarthric speakers and 200 speech 

samples from 10 age-matched healthy speakers. The 

experimental results show a high performance using neural 

networks classification. A possible future research related to 

this work is the use of these extended features in speaker 

identification and recognition of disordered speech. 

1 Introduction 

Dysarthria is a neurological motor speech disorder that affects 

the production of speech due to the weakness of the muscles 

and nerves involved [1]. These include impairment in the 

movement of the lips, larynx, vocal cords, tongue and/or nasal 

air passage [2]. The effects of dysarthria are seen in the speed, 

variability, consistency or rhythm in speech production [1]. 

Dysarthria affects the five primary speech subsystems in 

speech production. These subsystems include respiration, 

resonance, phonation, articulation and prosody. Dysarthria is 

generally characterised by slurred speech, slow speech rate, 

low voice quality, lopsided rhythm, low loudness, facial 

drooping or/and exertion in moving facial muscles [1]. 

Common causes of dysarthria include stroke, ALS 

(Amyotrophic Lateral Sclerosis), Parkinson’s disease, multiple 
sclerosis, degenerative diseases, brain injury, tumours, etc. 

 

Dysarthria in itself is not a life-threatening disorder but affects 

the standard of living of people with dysarthria (PwD) socially, 

psychologically and in day-to-day communication. PwD are 

more likely to depend on others for day to day activities such 

as communication, socialising and sometimes eating as the 

severity increases. When dysarthria is early detected, the 

patients can be put on therapy sessions that will aid their 

communication and mitigate the effect of the disorder on their 

standard of living. Early detection of Dysarthria is therefore 

very curial in Dysarthria management [3]. 

 

The first technique involves the use of an invasive tool, such as 

fiberscope, to physically examine the patient’s vocal folds and 
other speech production organs [4, 5]. This method causes 

discomfort to patients. Screening sessions using this method 

can also take a long while to be completed due to the clinical 

procedures involved. Automatic acoustic analysis for the 

detection of Dysarthria, on the other hand, is non-invasive and 

very useful during initial screening. 

 

However, the physical examination is a subjective screening 

method whose results are based on the medical practitioner’s 
perceptual analysis capabilities and experience [6, 7]. This 

results in inconsistent and unquantifiable outcomes.  At the 

early onset of dysarthria, it is very difficult to identify certain 

diagnostic features by perceptual analysis only. This is because 

there is no quantitative measure of the features that are 

perceptually analysed. This leads to a high probability of error 

and thus a possibility of not detecting the speech disorder early. 

There is, therefore, a need to acoustically detect certain 

features that characterise the early occurrence of dysarthria. In 

this research, we are exploring objective ways of automatically 

detecting dysarthria in speech using a non-invasive acoustic 

analysis technique. 

 

Objective techniques for voice screening have been proposed 

in recent studies based on time-domain [8], spectral [9] and 

cepstral analysis [10], [11]. These techniques include the use 

of amplitude, pitch, Mel-cepstral frequency, perturbation-

shimmer, perturbation-jitter and harmonic to noise ratio. The 

performance of perturbation measures depends on the accuracy 

of pitch tracking algorithm which is one of the challenges of 

disordered speech analysis [12]. Mel-cepstral frequency 

measures, on the other hand, is a function of the number of 

Mel-frequency cepstral coefficients (MFCC) used.  
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In this paper, an extended linear prediction coding (LPC) 

measurement, called Centroid Formants, is used as an 

alternative technique as they are independent on pitch 

estimation accuracy and are less prone to noise, unlike MFCC-

based techniques. The next sections of this paper are arranged 

as follows. The LPC based formants extraction algorithm is 

described in section 2. The proposed methodology for the 

automatic detection of dysarthria is discussed in section 3 after 

which the experimental results and analysis are presented in 

Section 4. The last section includes the conclusion from this 

research work and recommendations for future research. 

2 The LPC Algorithm 

Linear Prediction Coding, also known as LPC, is a spectral 

analysis technique used for encoding a signal in a way that the 

current value at a particular time t is taken as a linear function 

of the previous values at a time less than t [13]. The LPC 

analysis is based on the assumption that the human vocal tract 

can be modelled as a tube with varying diameter. This results 

in a mathematical model which is an approximation of the 

human vocal tract response [14]. In simplifying this model, an 

optimisation problem is reached which minimises the 

estimation error over time. This optimisation function is given 

by:  

 �̇�𝑒 = 𝐸{𝑒2[𝑛]} = 𝐸 {(𝑥[𝑛] − ∑ 𝑎𝑘𝑥[𝑛 − 𝑘]𝑁
𝑘=1 )2}       (1)  

 

where ak is the kth LPC coefficient, N is the order of the linear 

prediction and x[n] is the speech signal.  

 

The speech sample x[n] is represented as a weighted linear sum 

of Nth previous samples; given that N is the order of the LPC 

estimation. This results in a prediction system where the next 

sample is predicted by the sum of N preceding samples. The 

resulting coefficients of the LPC are used in estimating the 

formants; the frequency characteristics of a speech signal over 

time. Formants are also frequencies within the speech spectrum 

where acoustic energy are concentrated [15]. 

 

The linear prediction filter reduces the bit rate of the speech 

signal thereby reducing the quality of the signal [13]. This 

results in reduced speech quality. For example, a speech signal 

sampled at 8kHz and with encoded at 8 bit per sample will have 

a bit rate of 64kbits/sec. However, performing a linear 

prediction will reduce the rate to 24kbits/sec. This is one of the 

limitations of LPC analysis.  

 

Furthermore, research [16], [17] has shown that even though 

the bit rate is reduced during linear prediction coding, the 

estimated speech signal remains audible and comprehensible. 

Due to this attributes, the LPC is useful in speaker 

identification and also in speech coders with low or medium 

bit rate [18]. The LPC also offers a robust and reliable way of 

estimating the main frequency components of speech signals 

(formants) [18].  

 

In addition, the LPC analysis will be useful in considering the 

frequency characteristics of the dysarthria speech. The 

accuracy of the LPC in formants estimation is high compared 

to other feature extraction techniques [19]. The LPC is robust 

to noise, unlike the MFCC feature extraction technique. Also, 

the formants estimation is useful as a tool for measuring the 

intelligibility and pronunciation features in spoken language 

[20]. 

3 Automatic Detection Algorithm  

The block diagram of the proposed algorithm is illustrated in 

Figure 1. The first stage is pre-processing followed by feature 

extraction. After extraction of the speech features, the next 

stage is classification based on neural network techniques.  

 

 

 
 

Figure 1: Block Diagram of the Proposed Algorithm  

3.1 Pre-Processing 

Pre-processing is carried out in speech processing to enhance 

the performance of the speech feature extraction algorithms. 

This includes resampling, amplitude normalisation, and 

framing [11]. For this study, all audio samples are resampled 

at 16 kHz. Due to the variations in speaker volume and 

microphone distance, the amplitude of the audio samples are 

normalised such that the dynamic range of the signal lies 

between -1.0 and +1.0 (without changing the sign of the signal 

values). Amplitude normalisation is achieved by dividing the 

signal by its maximum absolute value.   

 

Speech signals are not stationary in nature and thus it is 

essential to analyse these signals in a short time interval. The 

process of dividing an audio signal into short interval uniform 

frames is called framing. The resulting amplitude normalised 

audio signals sampled at 16 kHz are divided into overlapping 

frames of 256 samples each with 80% overlap between 

consecutive frames. Using overlapping frames is targeted 

towards improvements in the segmentation process. 

3.2 Formants Extraction 

Formants are bands of resonance in the frequency spectrum of 

a speech signal.[13] These bands of resonance are the 

significant representation of the signal. The formant extraction 

algorithm, in this proposed technique, is based on the Linear 

Prediction Coding (LPC) analysis. The LPC analysis gives a 

smoothed approximation of the power spectrum of the original 

signal [13].  

 

The formant extraction is based on the energy distribution of 

the signal in frequency domain. The formants positions are 
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chosen in such a way that they match this distribution of 

energy. These formants are prominent frequencies within the 

spectrum with bandwidths of less than 400Hz. Therefore, 

frequency bands with a high concentration of energy and 

bandwidths less than 400Hz are located as the formants of the 

speech signal. 

 

Using LPC analysis, the order of the linear prediction is a 

function of the sampling frequency of the speech signal given 

by the rule of thumb illustrated in Equation (2). 

 𝑁𝑐𝑜𝑒𝑓𝑓 = 2 + 𝐹𝑠1000                             (2) 

 

where Ncoeff is the order of the LPC and Fs is the sampling 

frequency.  

 

The estimated LPC coefficients are converted from rectangular 

form to polar form and the phases of the coefficients with 

bandwidths less than 400Hz and positive phase are extracted 

as the bands of resonance of the spectrum. These positive 

phases are called the formants. Figure 2 and Figure 3 show the 

formants extracted from ataxic dysarthric speech and health 

speech respectively for the word defer. 

 

 
 

Figure 2: Formants extracted from AT speech 

 

 
 

Figure 3: Formants extracted from healthy speech 

 

 

3.3 Centroid Formants Estimation 

Centroid formants are the weighted averages of the formants in 

each frame in the short time frequency spectrum. The formants 

are weighted by their corresponding formants energy. The 

centroid formant is a measure of where the power in the 

frequency spectrum of an audio signal is centralised. For 

instance, if the majority of the power in the spectrum resides in 

high-frequency components, then the centroid formant will lie 

in the high-frequency range. However, if most of the power 

resides in low-frequency components, the centroid formants 

will be located at low-frequency range. Figure 4 and Figure 5 

illustrates the centroid formants of the audio files showed in 

Figure 2 and Figure 3 respectively for an ataxic speaker and a 

healthy speaker. 

 

Given that F1n, F2n, F3n, and F4n (for k=1, 2, 3, 4) are the 

four formants of the nth frame of an audio signal and the 

corresponding formants energy are E1n, E2n, E3n and E4n 

respectively. The centroid formant of the nth frame is given by 

CFn as illustrated in (3). 

 
 𝐶𝐹𝑛 = 𝐸1,𝑛𝐹1,𝑛 + 𝐸2,𝑛𝐹2,𝑛 + 𝐸3,𝑛𝐹3,𝑛 + 𝐸4,𝑛𝐹4,𝑛4        (3) 

 

 
 

Figure 4: Centroid formants for AT speech 

 

 
 

Figure 5: Centroid formants for healthy speech 
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The centroid formant can be used to measure the rate of change 

of the formants and the intonation pattern of the audio signal. 

This is because as the formants changes from low frequency to 

high frequency, the centroid formants also changes in the same 

pattern. The weighting of the individual formants also ensures 

that frequency components with highest power contribution are 

given the heaviest weight. Therefore, the effects of picking 

weak peaks as formants will be reduced.    
 

In addition, there is a close relationship between pitch and 

centroid formants profiles for healthy speech. Considering the 

fact that formants are harmonics of the fundamental frequency, 

the pattern of each formant will mimic the shape of the 

fundamental frequency. If the energy contribution of each 

formant remains the same within a speech segment, the 

centroid formant will also give a pattern similar to the 

fundamental frequency.  

 

However, this similarity with pitch profile is not true for audio 

signals with rapidly changing intonation patterns, that is, in 

disordered speech. The centroid formant is very sensitive the 

rapid changes in pitch and intonation. This means that the high 

pitch variability in dysarthric speech can effectively and 

efficiently be tracked using centroid formants. Any sudden 

change in pitch or intonation is reflected.  

3.4 Classification 

The Artificial Neural Networks is used for classifying the 

disordered speech. One of the commonly used machine 

learning methods is the neural network. This classification 

technique is robust and it combines pattern recognition with 

acoustic phonetic methods [21]. In this artificial learning 

technique, knowledge of the acoustic phonetic characteristics 

of the speech is used to generate rules for classifiers [22] A 

multilayer neural network with one hidden layer was used for 

this classification. The excitations (inputs) are the centroid 

formants and the observations (outputs) indicates whether or 

not the corresponding audio sample is from the ataxic 

dysarthric speaker (0) or healthy speaker (1). In our study, 

single layer neural network with 10 neurons in a hidden layer 

was used. 

4 Results and Analysis 

4.1 Speech Corpus 

The dataset used for this study consists of 400 audio samples 

from 20 speakers, 10 of which are ataxic dysarthric speakers 

and 10 age healthy control speakers. Each speaker produced 20 

single word speech. Each group consist of 5 males and 5 

females. The participants in both groups are also age-matched. 

This corpus was taken from the dataset reported by [23]. The 

ataxic dysarthric speakers have no cognitive deficiency neither 

do they have any visual and hearing impairment. The severity 

of the ataxic dysarthric speakers varied from mild to severe 

cases as illustrated in Table 1. In addition, all of them were 

monolingual speakers of Standard Southern British English or 

Standard Scottish English.  

Participant Age Gender Etiology Intelligibility 

Score (%) 

AT_01 46 M CA 74 

AT_02 60 F CA 67 

AT_03 28 M FA 6 

AT_04 52 F CA 25 

AT_05 28 F FA 9 

AT_06 65 F SCA6 58 

AT_07 72 M CA 19 

AT_08 51 M CA 44 

AT_09 56 M SCA8 82 

AT_10 57 F FA 80 

 

Table 1: Details of participants involved in the study 

 

Moreover, the intelligibility scores for the ataxic dysarthric 

speakers varied from 6 to 82. These intelligibility scores were 

estimated from the average scores from five trained listeners 

during a passage reading task [23]. The etiologies of these 

participants are either cerebellar ataxia (50%), Friedreich’s 
ataxia (30%) or spinocerebellar ataxia (20%). 

4.2 Results 

The classification was carried out using the Neural Network 

Toolbox in MATLAB R2016b (Version 9.1) software. Using 

10 neurons and a single hidden layer, the audio samples were 

trained. The audio samples training distribution was as follows; 

70% of the audio samples were used for training, 15% for 

testing and 15% for validation. The audio samples distribution 

across these 3 groups (training, testing and validation) was 

done randomly.  

 

 
 

Figure 6: Confusion matrix for the neural networks 

classification 
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Even though a single hidden layer has been used for this 

classification, the accuracy overall accuracy recorded was 

75.6% using 10 neurons. The confusion matrix for the trained 

neural network is illustrated in Figure 6. The first two columns 

of the confusion matrixes indicate the two target classes (0 for 

normal speech and 1 for dysarthric speech) whereas the third 

column shows the positive and negative prediction values. 

Likewise, the first two rows of the confusion matrixes show the 

two output classes (0 or 1) whereas the third row shows the 

sensitivity, specificity and accuracy of the network. The 

training dataset gives an accuracy of 74.3%, the validation 

dataset gives an accuracy of 80.3%, and whereas the test data 

set gives an accuracy of 77.0% brings the total to 75.6%. 

5 Conclusion 

In this paper, we have presented an extended speech feature for 

classification of disordered speech from healthy speech using 

neural networks. The extended feature, centroid formants, 

proposed in this paper gave an accuracy of 75.6% with just one 

hidden layer and 10 neurons. This classification has been 

carried out across different levels of severity of ataxic 

dysarthria from mild to highly severe cases. Classification 

using other artificial intelligence techniques such as Deep 

Neural Networks (DNN), Support Vector Machine (SVM), 

LQV and Hidden Markov model has been left for future 

research work. We intend to investigate how pre and post 

processing of the extracted feature can be used to increase the 

performance of the classification algorithm. In addition, the 

application of centroid formants in speaker identification, 

speech recognition and emotion detection is yet to be explored. 

This extended feature can also be combined with other spectral 

and cepstral features for various classification applications. 
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