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Automatic Detection of Squats in

Railway Infrastructure
Maria Molodova, Zili Li, Alfredo Núñez, Member, IEEE, and Rolf Dollevoet

Abstract—This paper presents an automatic method for de-
tecting railway surface defects called “squats” using axle box
acceleration (ABA) measurements on trains. The method is based
on a series of research results from our group in the field of railway
engineering that includes numerical simulations, the design of
the ABA prototype, real-life implementation, and extensive field
tests. We enhance the ABA signal by identifying the characteristic
squat frequencies, using improved instrumentation for making
measurements, and using advanced signal processing. The auto-
matic detection algorithm for squats is based on wavelet spectrum
analysis and determines the squat locations. The method was
validated on the Groningen–Assen track in The Netherlands and
accurately detected moderate and severe squats with a hit rate
of 100%, with no false alarms. The methodology is also sensitive
to small rail surface defects and enables the detection of squats
at their earliest stage. The hit rate for small rail surface defects
was 78%.

Index Terms—Axle box acceleration (ABA), rail transportation
maintenance, railway monitoring, surface defects on railway rails.

I. INTRODUCTION

THE detection of anomalies in railway tracks in their early

stage and their timely maintenance can prevent failures

and traffic disruptions, and also minimize the long-term cost

of the railway infrastructure. This paper focuses on the de-

tection of squats, which are a class of short surface-initiated

track defects [1]–[3]. Squats can initiate at small indentations,

corrugations, and welds [4], [5]. When squats are detected at

an early stage and the degradation is minor, the tracks can be

easily treated by grinding a thin layer from the surface. Such

early detection significantly reduces the maintenance cost of

tracks because severe squats can lead to the replacement of the

track section. In The Netherlands, squat-related costs are more

than 5000 C/km per year. Because the railway infrastructure in

The Netherlands is one of the most intensively used systems in
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Europe, the costs related to squats are relevant for the Dutch

railway infrastructure manager (ProRail).

The Dutch railway network is approximately 2800 km long

and includes 6500 km of tracks, 4700 km of electrified tracks,

8700 switches, 4500 bridges and tunnels, 3000 level crossings,

and 380 stations. The system carries more than 1 200 000

passengers on 6000 trains per day. Thus, the prevention of op-

erational disruptions in the system is of paramount importance,

not only because of the high cost of replacing broken rails but

also because delays and derailments are undesirable to the users

of the system.

Systematic and periodical inspections must be performed

to keep the tracks in good condition. Using computer-based

tools, infrastructure managers can then systematically make

maintenance decisions to minimize the total costs and guarantee

the long-term quality of the infrastructure [6]. Several methods

are available to monitor the health of railway tracks [7]–[11].

In The Netherlands, the current methods used to detect short-

wave defects in railway tracks include visual inspections and

ultrasonic and eddy current measurements [12], [13]. However,

these types of inspections are most efficient at later stages of

degradation and are not optimal. Further visual inspections are

slow and laborious, and the results are dependent on the human

operator [14]. Thus, the development of effective monitoring

systems that assess the rail conditions more frequently, together

with automatic detection methods to locate such relevant ir-

regularities as squats, are key issues for efficient and robust

infrastructure management.

Vertical axle box acceleration (ABA) has been employed by

Dutch railways to detect such defects as corrugation and poor-

quality welds since the mid-1980s [15]. The main advantage of

ABA compared with other methods is its lower cost and ease

in maintenance. Recently, enhanced methods using accelerom-

eters have been proposed for monitoring track conditions [16]–

[19]. Lee et al. [20] described a mixed filtering approach for

estimating track irregularities using a set of accelerometers

mounted on the axle box and bogie of high-speed trains.

Well-tuned Kalman filters, compensators, and bandpass filters

allow for good-quality estimations of the lateral and vertical

irregularities. Shafiullah et al. [21] presented a communica-

tions protocol between the sensors (accelerometers) placed in a

railway–wagon system to monitor the typical dynamic behavior

of railway wagons. The protocol improved energy consumption

and is sufficiently generic to be implemented in other wireless

data communication processes. ABA measurements have been

employed to detect track defects such as corrugation, welds,

and poor-quality insulated joints whose effects can be easily ob-

served in the ABA signal [22]–[24]. The combination of a good
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Fig. 1. (a) Light squat. (b) Moderate squat. (c) Severe squat.

measurement design, proper location of the accelerometers, and

the use of intelligent methods to enhance the quality of the

signals has been crucial in demonstrating the effectiveness of

the prototypes, which is an initial step before the massive imple-

mentation of real-life railway-condition-monitoring solutions.

All of the findings available in the literature can be integrated

within a global monitoring system of railway conditions that

can detect the different classes of defects.

However, to the best of our knowledge, the potential of

this measuring method has not been fully exploited for the

detection of all classes of squats. There are several reasons for

this lack of widespread implementation, and they all present

major challenges: 1) squats are typically found randomly and

are isolated, i.e., only one squat is found in each location and

2) their response in the ABA signal (particularly light squats)

cannot be easily observed without proper instrumentation and

signal processing.

This paper presents the first results of a new methodology

for the detection of squats that is based on a prototype designed

in our group [25], and that was implemented and validated via

extensive field tests on the Dutch tracks. The plan is to mount

this prototype on in-service trains to provide an effective system

for monitoring the entire railway infrastructure on a daily basis

with continuous updates at a relatively low cost. This ability is

particularly relevant for cases of rapid degradation, in which

the typical six-month schedule of inspections is too long to

apply proper corrective measures. The implementation of this

system at a large scale will significantly enhance the safety of

railway operations and reduce the life-cycle costs of the entire

infrastructure.

The following section presents background information

about squats and the experimental setup of the real-life special-

ized measurement system for trains.

II. SYSTEM DESCRIPTION

A. Squats

Squats are rolling contact fatigue defects in rails that are

generally considered to be surface initiated. The term “squat”

originated from the defect’s typical shape, which resembles the

print that would be left behind by a very heavy gnome sitting

on the rail. Fig. 1 presents reference photographs of the three

classes of squats, i.e., light, moderate, and severe.

The bottom of the squats is typically rusty because the squats

are too deep for contact with wheels or there is a network of

cracks beneath the squat. Hence, the depth of a squat is typically

greater than 0.05 mm, which is the typical compression of

a loaded rail. Measurements of vertical–longitudinal profiles

indicate that the maximum vertical deviations of the rail surface

at squats are typically less than 0.2 mm.

The growth of squats is a result of the dynamic contact force

between wheels and rails. The wavelength of the contact force

and the consequential wavelength of the squats embodied in

the length of the typical two lungs and the corrugation-like

wave pattern of squats are a natural characteristic of the coupled

wheel–track system [26]. For the Dutch tracks, the wavelength

of the contact force and squats is typically between 20 and

40 mm. The wavelength increases with the severity of a squat,

due to changes brought about in the local track system by the

dynamic interaction at the squat; it can be up to 60 mm [1]. The

wavelength and its change will be reflected in the vibrations of

the wheels because of the dynamic wheel–rail interaction; the

vibrations can be picked up by accelerometers at the axle box.

Observations of rail surface defects have indicated that not

all defects can grow into squats. If the size of a rail surface

defect exceeds a critical size, it may grow into a squat. For

tracks in The Netherlands, the critical size for visual inspection

is 6–8 mm for both the rolling and transverse directions when

the traction and braking efforts are maximal. For this study,

rail surface defects that exceed this critical size are considered

light squats. Defects below this threshold are considered trivial

defects and will likely disappear due to wear.

B. Monitoring of the Railway Infrastructure

ProRail provides maintenance and extensions to the railway

network infrastructure in The Netherlands. To formalize the

monitoring tasks of the infrastructure, ProRail uses condition

scores to determine the status of the tracks based on several

indexes. The presence of squats decreases the score and main-

tenance measures are suggested when the score of the track

reaches certain thresholds. Let us represent the condition of the

track at time t and location x with the function H(t, x) ∈ D.

This function can take discrete values D = {S,A,B,C,N} if

the railway infrastructure at time t and coordinate x has a trivial

defect S, light squat A, moderate squat B, or severe squat C.

The value of this function is N when no squat is present at x.

The growth of squats depends on the track loading conditions

but is generally a relatively slow process (it may take months

for a squat A to evolve into a squat B). Thus, within a time

interval (typically weeks), H(t, x) is not expected to consid-

erably change. Let us define function H(t, x) during period

[t− T, t+ T ] as HT (x). To estimate function HT (x) over

the tracks within the network of interest x ∈ X, measurements

taken on train i will be used yi(t), t ∈ [t− T, t+ T ]. This set of

measurements includes the position of the train xi(t), which is

provided by a Global Positioning System (GPS); the velocity

of the train vi(t); and a set of ABA measurements ai(t) in

the vertical and longitudinal directions collected in different

bogies. The railway track system is shown in Fig. 2.

The Road and Railway Engineering Section of Delft Univer-

sity of Technology has been analyzing squats by focusing on

their causes and modeling their interactions with wheel–track

systems [26], [27]. Field experiments and studies have demon-

strated that the detection of squats requires high sensitivity,

resolution, and accuracy; hence, a more accurate and reliable
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Fig. 2. Track conditions are assessed via signal processing methods using on-
board measurements.

Fig. 3. Accelerometers mounted on the axle box in the vertical and longitudi-
nal directions.

system with higher sensitivity and resolution than previous

systems had to be developed. The implementation of the system

is described in the following section.

C. Implementation of the Measuring System

A prototype of an ABA measuring system, which is de-

scribed in a patent [25], has been installed on a specialized mea-

surement train. The system includes improved instrumentation

that is reliable for frequencies higher than 1 kHz to measure

both vertical and longitudinal ABA signals. The longitudinal

ABA signal increases the hit rate of detecting light squats

due to the high signal-to-noise ratio. We used general-purpose

uniaxial piezoelectric accelerometers that were calibrated by

the manufacturer to comply with the accuracy standards. The

sampling frequency of the ABA measurements was 25.6 kHz.

Fig. 3 presents the accelerometers mounted on one of the axle

boxes.

Three accelerometers, including one in the vertical direction

and two in the longitudinal directions, were mounted on each

of the four axles of a bogie. This design reduces the chances

that the squat will not be recorded because the wheel traveled

along a different trajectory on the rail due to its inherent

Fig. 4. Monitored track and visual inspection on the track between Groningen
and Assen, The Netherlands. Extensive field measurements provided the list of
defects and locations used to validate the methodology.

oscillatory movements (hunting) or because the squat is smaller

than the width of the rolling band (so that not every wheel will

necessarily run over it). The data recorded by the prototype

system also included the GPS coordinates and train speed.

D. Validation Data

Every six months, a measurement train collects information

about the infrastructure over the entire Dutch network in a

database called IRISsys. The database contains photographs of

the rail tops, the locations of insulated joints, switches, bridges,

viaducts, and level crossings, and other information about the

infrastructure. In this database, the locations of short track

irregularities can be identified by the GeoCode of the track

and the conventional kilometer location. The kilometer location

is also used in this study to position ABA measurements and

identify the locations of squats.

This study required the most complete and up-to-date in-

formation about the short track irregularities. Therefore, de-

tailed visual inspections were performed (see Fig. 4). These

inspections provided the following validation data: the GPS

coordinates of the defects; photographs; vertical–longitudinal

profiles of the rail, which were measured with the RAILPROF

device; and MINIPROF measurements of the cross-sectional

profile of the rail at the short track irregularities, welds, and

insulated joints.

The validated track sections were located on the track be-

tween Groningen and Assen in The Netherlands. The following

section describes how the measured ABA signals are analyzed

according to their wavelet power spectrum (WPS) response to

detect the squats.

III. WAVELET ANALYSIS AND SQUATS

A. Frequency Analysis Using the Wavelet Transform

The ABA measurements in the time domain are not sufficient

to detect small defects. The proper frequency content of the

ABA must be used to improve the detection of moderate and

light squats. Several techniques are available to investigate the
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Fig. 5. Scalogram of the ABA signal around a moderate squat located in a track section between Groningen and Assen, The Netherlands.

frequency content of the signal, but not all of these techniques

provide good information. The main drawback of the short-time

(or windowed) Fourier transform (STFT) is the selection of

the window size. For the ABA analysis, a tradeoff between the

time and frequency resolution was observed when the window

size was changed. For example, a shorter window size results

in a lower frequency resolution and higher time resolution. A

different window size was required for each type of defect to

detect the different classes of squats and assess a broader range

of track elements.

Wavelet analysis is used in this paper because, among other

reasons, it has the advantage that the time–frequency represen-

tation is not dependent on the window size. The continuous

wavelet transform (CWT) is a time–frequency analysis tool

in which the observed function is multiplied by a group of

shifted and scaled wavelet functions. The CWT can be defined

as follows [28]:

Wn(s) =

N−1
∑

n′=0

xn′ψ∗

(

(n′ − n)δt
s

)

(1)

where xn is a time series with a time step of δt; n is the time in-

dex; n′ = 0, . . . , N − 1 is the time shift operator; ψ is a mother

wavelet, which is a locally limited function; ψ∗((n′ − n)δt/s)
is a family of wavelets deduced from the mother wavelet

by different translations and scaling; ∗ indicates a complex

conjugate; s is a wavelet scale, s > 0; and Wn(s) are wavelet

coefficients.

The wavelet scale is related to the Fourier period (or inverse

frequency). The relationship for a particular wavelet function

can be derived by finding the wavelet transform of a pure cosine

wave with a known Fourier period and then computing the

scale at which the WPS reaches its maximum. According to

Parseval’s theorem of energy preservation, the energy of the

wavelet transform is equal to the energy of the original signal

in the time domain. The physical meaning of the CWT can

be described as the correlation between the original signal and

the scaled wavelet at a delay n′. The wavelet transform can be

also considered as a linear filtering operation that involves a set

of parallel filters. For a more detailed discussion on wavelets,

see [29]. The main advantage of the CWT compared with the

STFT is its high time and frequency resolutions [18]. There-

fore, wavelet analysis is appropriate for the investigation of

nonstationary phenomena with local changes in the frequency

components, such as structural damage detection and crack

identification [30]–[32]. In this paper, the Morlet function is

used as a mother wavelet. The Morlet function is defined as

ψ0(η) = π−1/4eiω0ηe−η2/2 (2)

where ω0 is a nondimensional frequency. The power spectrum

of a wavelet transform is defined as the square of the wavelet

coefficients, i.e.,

∣

∣W 2

n(s)
∣

∣ . (3)

The plot of the WPS is termed as a scalogram. A vertical

slice of a wavelet plot is a measure of the local spectrum. An

example of such a plot is shown in Fig. 5, which presents the

scalogram of the ABA signals around a moderate squat. The red

color around the zero position represents a high signal energy

level that is caused by an impact at the squat. In this study, the

scalograms are used to define the time–frequency relationship

of squats with the ABA signal.

In this paper, we propose the use of the scale-averaged

wavelet power (SAWP) for the automatic detection of squats.

This function captures the variation of the spectrum in a signal,

and thus, the system triggers the detection when the power

spectrum of the frequencies related to the squats is higher than

a given threshold. The SAWP is defined as the weighted sum of

the WPS over the scales sj1 to sj2 [33], i.e.,

W
2

n =
δjδt
Cδ

j2
∑

j=j1

|Wn(sj)|
2

sj
(4)

where n is the time index, δj is a scale step, δt is the time

step, and Cδ is an empirically derived constant for each wavelet

function. The SAWP can be used to examine fluctuations in

power over a range of scales.

To detect squats, the SAWP is calculated in the frequency

bands related to the squats, or the “signature tunes” of the

squats, which were derived from finite-element simulations in

previous research [27]. The main “signature tunes” of squats,

which are defined as a frequency with a local maximum power

spectrum, are approximately 300 Hz and 1060–1160 Hz for the

Dutch tracks and a short time–frequency response up to 2000 Hz.

In practice, the maximum power spectrum is not exactly at 300

or 1060 Hz because of the track and contact conditions and the

frequency resolution of the power spectrum.

Because the SAWP is a time series, squats can be identified

by finding the local maxima of the SAWP that exceed a certain
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Fig. 6. WPS of vertical and longitudinal ABA at light squats. (a) WPS of the vertical ABA. (b) WPS of the longitudinal ABA.

threshold. In general, a higher SAWP indicates a more severe

defect. A constant threshold of 0.5 m2/s4 was used for the

analyzed tracks. The threshold determines the performance of

the detection algorithm. Thresholds are determined to maxi-

mize the hit rate and reduce the number of false alarms. The

thresholds can be adapted to satisfy the requirements of the

infrastructure managers depending on the track properties.

In the following section, the relationship between different

classes of squats and the frequency characteristics of the ABA

are presented with wavelet scalograms. In the following sec-

tions, only real-life ABA measurements over real defects on

the track between Groningen and Assen in The Netherlands are

used as typical examples.

B. Light Squats and Trivial Defects

A frequency response of up to 2.5 kHz was observed in both

the vertical [see Fig. 6(a)] and longitudinal [see Fig. 6(b)] ABAs

at light squats. Photographs of the squats are provided at the

top of Fig. 6. There are two major frequency responses: below

approximately 800 Hz and from 800 to 2500 Hz. The frequency

response above 800 Hz is stronger in the longitudinal ABA.

Trivial defects are defects that are smaller than the critical

size of the squats (6–8 mm), and such defects will disappear

due to wear. If these small defects can be detected, larger

defects can be also detected. The scalogram of the longitudinal

ABA measurements of trivial defects displays the presence of

frequency components between 800 and 2000 Hz (see Fig. 7).

This observation confirms the similarity of the frequency char-

acteristics of trivial defects and light squats. The trivial defects

that correspond to their WPS are shown in Fig. 7. These defects

are less than 8 mm in size, and all of them subsequently

disappeared due to wear.

C. Signature Tunes of Moderate and Severe Squats

Fig. 8(a) presents examples of the WPS at moderate and

severe squats. The WPS at these squats have two areas with

strong responses: one is below 600 Hz with the maximum

around 250–350 Hz, and the other is between 600 and 2000 Hz

with the maximum at approximately 1000–1300 Hz. The squats

whose responses are presented in Fig. 8 have lengths of 30, 40,

and 50 mm. With increasing squat length, the WPS response

below 600 Hz becomes stronger, whereas the response between

600 and 2000 Hz becomes relatively weak, and the maximum

frequency decreases.

The vibrations caused by squats can be also transmitted

through the axle and measured on the opposite end of the axle
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Fig. 7. WPS at trivial rail surface defects found in The Netherlands.

Fig. 8. WPS at typical moderate and severe squats found in The Netherlands.
(a) WPS at squats. (b) WPS on the opposite axle.

[see Fig. 8(b)]. The response measured on the opposite end is

weaker, and the frequencies are lower than the response mea-

sured at the original end. This fact should be considered when

implementing the automatic detection process; the responses on

the two axle boxes must be compared to determine the rail on

which the squat is located.

Fig. 9. Detection procedure.

The following section describes how the instrumentation

presented in Section II and the wavelet analysis in Section III

are used to design the automatic detection method for squats.

IV. AUTOMATIC DETECTION

The process for detecting squats includes data acquisition,

preprocessing of the measured data to reduce the noise, detec-

tion of squats, and assessment. Fig. 9 presents the flowchart of

the detection algorithm. The main steps of this algorithm are

described below.

A. Data Acquisition

The data from the measurement train are recorded as de-

scribed in Section II-C. The information includes multiple
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Fig. 10. Data obtained from the measurement system.

vertical and longitudinal ABA signals, GPS measurements, and

the train speed. Fig. 10 provides an example of the raw data set

for a short measurement period.

B. Noise Reduction

The measured data are then processed using the following

steps.

1) Filtering of the ABA signals: The data were filtered using

the signal processing toolbox of MATLAB. A lowpass

Butterworth filter with a cutoff frequency of 2000 Hz

was applied so that the responses at squats were fully

captured.

2) Reduction of the influence of wheel damage on the ABA

signals: If the wheel is not in good condition, the signals

can still be used after additional signal processing is

applied. Wheel damages are easy to detect than squats

because they cause a periodic impact between the wheel

and rail at a wavelength of the circumference of the

wheel. The vertical ABA signal from the sensor located

closest to the damaged wheel will exhibit repetitive peaks

that appear approximately every 3 m. The excitation can

be transferred to the other wheel by the axle but not

to sensors located on the other axle. The problem of

the repetitive peaks in the vertical ABA was solved by

removing the repetitive pattern from the signal.

3) Noise reduction by coherent averaging of the repetitive

ABA signals: The coherent averaging method [34] is

based on the principle that a time signal that is measured

immediately after applying a stimulus contains the in-

variant response to the stimulus and a noise component.

When averaging several similar time signals, all of the

invariant responses are systematically added, whereas the

random noise components are summed and tend toward

zero. Noise reduction is more effective when a large num-

ber of averaged samples are used. To apply an averaging

technique, it is necessary to know the exact moment at

which each stimulus occurs. In the case of ABA mea-

surements, repeated signals were recorded on the same

track section and overlapped by cross correlation of the

signals in such a way that the responses at certain short

track defects began at the same location.

The effect of the signal processing procedure can be clearly

observed when analyzing the SAWP signal (see Fig. 11).

In Fig. 11, the peaks of the SAWP signals after processing are

more intense and evident, which makes the detection procedure

easier. The defects are denoted by red asterisks. The defect

at 3.8 m is a moderate squat with HT (3.8) = B. The other

defects at x ∈ t{1.2, 2.8, 4.0, 6.9, 9.7, 13.0, 15.3, 18.2} are all

trivial defects; hence, HT (x) = S.

C. Detection

The squats are predicted by calculating the SAWP of the

ABA signals defined in (4) in the frequency bands related to the

squats. As shown in Section III, the bands of interest vary for

different stages of squats. Therefore, to include the frequencies

with the maximum power spectrum for each class of squats,

we define the different frequency bands to calculate the SAWP:

Please cite as: M. Molodova, Z. Li, A. Núñez, and R. Dollevoet, “Automatic detection of squats in the railway infrastructures”.  

IEEE Transactions on Intelligent Transportation Systems. Volume 15, Issue 5, October 2014, Pages: 1980-1990. DOI: 10.1109/TITS.2014.2307955



8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 11. SAWP before and after signal processing. Real defects are shown with red asterisks on the horizontal axis. The detection of small defects is much easier
with the new instrumentation and method.

from 200 to 400 Hz and from 1000 to 2000 Hz for light squats

and from 200 to 400 Hz for moderate and severe squats.

The locations of the squats are predicted by the values of the

SAWP that exceed a certain threshold. A constant threshold of

0.5 m2/s4 was used for the analyzed tracks, which provided a

good tradeoff between maximizing the hit rates and minimizing

the false-alarm rate. The threshold is also exceeded by other

track components, such as welds and insulated joints. If the

locations of those components are known, they can be excluded

from the squat analysis.

The ABA signal is influenced by the train speed. The mea-

surement train used in this study had a nearly constant speed in

the range between 100 and 110 km/h. In practice, under low

speed levels, we have experienced a reduction in the power

spectrum intensity in the high-frequency range, making the

detection of small squats more difficult. However, when the

train speed varies within the range of 60–100 km/h, using 3-D

finite-element model simulation results, it has been proposed

the use of quantitative relationships with the signature tunes and

maximum ABA using a regression model [35].

D. Assessment

To validate the proposed method, the track was visually

inspected (as explained in Section II-D) to properly quantify

the false alarms and hit rate. The numbers of hits (H), misses

(M), false alarms (F ), squats, and predictions were calculated

(see Fig. 12 and Table I).

The hit rate (HR) is defined as the ratio of the number of

correct predictions to the total number of observed defects,

which is the sum of the hits and misses. The false-alarm rate

(FA) is defined as the ratio of the number of falsely predicted

defects to the total number of predicted defects, which is the

sum of the hits and the falsely predicted. They are, namely

HR =
H

H +M
(5)

FA =
F

F +H
. (6)

Fig. 12. Automatic detection method is designed to maximize the hits and
minimize the misses and false alarms.

TABLE I
ASSESSMENT OF PREDICTION

For accurate predictions, the hit rate should be maximized, and

the false-alarm rate should be minimized.

V. RESULTS

A. Detection of Light Squats and Trivial Defects

This section focuses on predicting squats using the detection

algorithm proposed above. The SAWP was calculated using

(4). To include only the frequencies that are related to squats,

the WPS was multiplied by a weight function at each moment

in time. The weight function for light squats was equal to 1

at frequencies between 200 and 400 Hz and between 1000

and 2000 Hz and 0 at other frequencies. The SAWP was then

calculated over all scales.

Six 15- to 25-m-long track sections were investigated. The sec-

tions contained 51 defects. The validation track sections were

located between Groningen and Assen in The Netherlands. Af-

ter the measurement train collected the data, a visual inspection

was performed as explained in Section II. The SAWP of the

track sections and the detected locations of the defects are

shown in Fig. 13.
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Fig. 13. SAWPs at six different sections. Real defects are denoted by red
asterisks on the horizontal axis and the predicted defects are denoted by red
stars at the SAWP peaks. If the distance between two defects is less than 1 m,
they are considered as one defect, as is indicated with the green ovals.

TABLE II
HIT RATE OF TRIVIAL DEFECTS

The red asterisks on the horizontal axis denote the real

defects in the track, and red stars at the peaks denote their

predicted locations. If the distance between two defects was less

than 1 m, they were considered as one defect. The threshold

for the detection was 0.5 m2/s4; this threshold was chosen

to maximize the number of hits and minimize the number of

false alarms using the training data. Further developments of the

methods to obtain good thresholds (track structure dependent)

and the possibility to determine which rail (right or left) has the

defect with higher accuracy, among other topics, are the subject

of future research.

Table II presents the hit rate and the numbers of correct and

false predictions. Based on the 51 defects, the hit rate is 78%,

and the false-alarm rate is 15%. Some of the defects located

at x were found to be trivial defects by visual inspection:

HT (x) = S. Light squats were easier to detect because they

are larger than these defects. Hence, the hit rate for light squats

is expected to be higher than 78%.

A visual inspection at the same location after one year

(period T ′) indicated that some of the defects were removed

by natural wear of wheel–rail contact, which changed the

condition function to HT ′(x) = N . The reasons that a defect

evolves or does not evolve into a light squat HT ′(x) = A will

be addressed in future research. The most efficient threshold

can be statistically determined by examining more defects.

Such a threshold should distinguish light squats that will grow

from trivial defects that will disappear due to wear.

B. Detection of Moderate and Severe Squats

The numerical simulations and ABA measurements indi-

cated that the most pronounced frequencies at moderate and

severe squats were between 250 and 350 Hz. To include the

frequencies related to moderate and severe squats, the SAWP

was calculated within the frequency bounds of 200–400 Hz.

The analyzed section of track between Groningen and Assen

includes five moderate and severe squats on the right rail and

one severe squat on the left rail; these squats are denoted by red

circles in Fig. 14. The threshold for the detection of moderate

and severe squats was chosen to be 0.5 m2/s4. Although the

threshold for moderate and severe squats is coincidentally the

same as that for trivial defects, the SAWP for detecting light

squats and the SAWP for detecting moderate and severe squats

included different frequencies. Using these thresholds, the hit

rate for squats was 100%. As expected, some of the squats were

detected in the signals from both the right and left rails.
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Fig. 14. Detection of moderate and severe squats. Red circles denote the
moderate and severe squats, yellow circles denote the moderate and severe
squats on the opposite rail, cyan asterisks denote artificial defects, green
asterisks denote insulated joints, and red stars denote predictions. (a) Right rail.
(b) Left rail.

VI. CONCLUSION

This paper has presented a new measuring system for the

automatic detection of squats. The detection algorithm relies

on the signature tunes of the squats, which were identified from

numerical simulations in a previous work and were validated by

field measurements. The detection algorithm was based on the

SAWP. The averaging of the wavelet spectrum was performed

at the frequency bands related to the squats. These frequency

bands are different for light and for moderate and severe squats:

200–400 Hz and 1000–2000 Hz for light squats and 200–

400 Hz for moderate and severe squats.

The thresholds for detecting squats on the Dutch tracks were

empirically obtained. The hit rate using automatic detection for

a mixture of trivial defects and light squats was 78%, and the

false-alarm rate was 15%. These results can be improved by

separating and ignoring the trivial defects that will disappear

due to wear from light squats that will continue to grow. Such a

distinction can be made by tuning the threshold. The hit rate for

moderate and severe squats was 100%, with zero false alarms.

Using the presented measuring system with advanced data

analysis will enable the detection of squats at their earliest

stage, when early corrective or preventive actions can be taken.

Such an effective maintenance policy can significantly reduce

the life-cycle costs of a track that is affected by squats. Future

research will focus on improvements to the algorithms and

on implementing the system on revenue trains to monitor

the network on a continuous basis. Management of the large

amount of data collected is important for continuous monitoring

because the data can be stored and postprocessed at a later date.

Moreover, the accuracy of automatic detection under various

track structures and other stochasticities are topics for further

research.
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