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Abstract

We present a novel method that determines whether a macula centered retinal

image is from the left or right eye and automatically detects the optic disc,

the fovea and the vascular arch by inferring the location of a set of landmarks

placed on these structures. The algorithm relies on a specific energy function

that combines global and local cues. The global cues are derived from vas-

cular atlases of the vessel orientation and thickness on the retina as well as

a vascular distance map. A fourth component models the local appearance

around each of the landmarks in the model and is able to estimate the dis-

tance between a position in the image and the target position of a landmark.

For the minimization of the energy function a combination of optimization

methods is used. We compare the results of several different system setups

and combinations of energy function components with the performance of

a second human observer. The best performing system localizes the OD in

91% of all cases, the fovea in 94% of all cases and correctly positions 74%

of all vessel landmarks. The results show that a combination of global and

local energy function components is required to obtain optimal results.

1 Introduction

The automatic determination of the position of distinctive points is an important and recur-

rent theme in medical image analysis. Knowledge about the position of such landmarks

can be used for many purposes, e.g. to initialize segmentations or to register a group of

images. In this work we are concerned with the identification of three important structures

in retinal images, namely the optic disc, the fovea and the vascular arch (see Figure 1),

which we denote with a set of 16 points. We pursue a supervised approach to the auto-

matic determination of the location of these points in new (unseen) images, that is, we use

a set of images in which these points are provided beforehand to train our algorithm.
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Figure 1: The model overlaid on a retinal image. The first two landmarks, 1 located

in the middle of the OD and 2 located on the fovea, define the main axis of the model.

Landmarks 3-6 are located on the edge of the optic disc. The remaining landmarks, 7 to

16, define the venous vascular arch.

There exist several supervised algorithms for locating landmarks in images. Well-

known examples are active shape models [4], active appearance models [2] and active

blobs [14]. A key element of these approaches is the modelling of gray-level information:

for a given image and a set of point positions, a function evaluates how well the points at

their given locations ‘fit’ to the image. Active blobs and active appearance models use a

single global measure to determine the fit, derived from all pixel values in the convex hull

of the model. Active shape models, on the other hand, employ a collection of local models

around each landmark. We argue that in many tasks, including the retinal image analysis

application considered here, a single fit function of a predetermined type is not sufficient.

Instead, a dedicated fit function is required that consists of both global and local terms,

and that should be specifically designed for the task at hand. The key contribution of this

work is to describe such a function for retinal images, to outline a general framework in

which this function can be used to determine the landmark positions and to evaluate the

algorithm on a large set of retinal image data.

2 Previous Work

The closest related previous work was done by Li et al. [9], who presented a model based

approach which starts by detecting the OD location. Then an active shape model is used

to extract the main course of the vasculature. This is followed by the fitting of a parabolic

model to the vasculature, and detection of the fovea. A full quantitative evaluation is not

given. All other previous work focuses on just one of the three tasks considered here.



3 Method

3.1 General Outline of the Method

The output of the algorithm consists of a vector s which contains the positions of a set

of n distinct points (landmarks) (xi,yi), i = 1 . . .n in a previously unseen image I. With

this output, a set of images can be co-registered by warping them to a common frame of

reference, typically given by the mean shape s̄. Using this warping function (we use a

warping algorithm based on radial basis functions [13]) any position in I can be translated

to a position in the common frame of reference.

For training, a set of images must be provided for which s is given. The algorithm

requires two models. One is a shape model, which generates a shape s from a set of shape

parameters b. There are thus two spaces, the shape space in which b lives and the image

space in which s resides. Typically the dimensionality and extent of the shape space is far

smaller than that of the image space; every b should yield a valid shape s, but not every

configuration of n points located somewhere in the image (space) is a valid shape. The

second model is an energy function F(s, I) that returns how well s fits to I. The algorithm

must find the shape parameters b that minimize F . In practice, F will have many local

minima and finding the global minimum is a difficult problem.

There are two approaches to minimizing F . The standard approach would be to choose

a standard optimization algorithm that searches the shape space. Alternatively, one could

move the points (xi,yi) individually in the image space and fit the shape model to the

resulting s. This requires that the shape model can be inverted, i.e. b can be computed

given s.

A proper choice for F is essential. A particular application will often suggest multiple

ways to measure the fitness of a solution and thus F may consist of several terms. These

terms can be global, in the sense that the complete image or a large part of it are used to

evaluate the term, or local, in that they require only one landmark and its neighborhood

in the image. It is also possible to have terms that do not depend on the image but only on

b – typically a penalty term that favors only likely shapes.

In our application, F consists of a combination of local and global terms. The min-

imization algorithm operates both in the shape and image space. The next subsections

describe the shape model, energy function and optimization strategy employed in our

application.

3.2 Shape Model

We defined a set of 16 points covering the major anatomical retinal landmarks (see Figure

1). Several constraints were introduced in the localization of the landmarks. Landmarks

1 and 2 define the main axis of the model. All the landmarks on the vascular arch (7-16)

are positioned at a fixed angle from this main axis. Two of the four landmarks (3 and 5)

on the border of the OD are defined to lie on the main axis while the other two (4 and 6)

should be located at the point where the venous vascular arch leaves the OD.

The shape model itself was obtained by computing the mean shape and the covariance

s̄ =
1

n

n

∑
i=1

si S =
1

n−1

n

∑
i=1

(si − s̄)(si − s̄)T (1)



from a set of 100 training cases, and retaining the t eigenvectors vi, i = 1 . . . t with the

largest eigenvalues λ1 . . .λt from S which span the shape space. Shape parameters bi are

defined as the projections on vi scaled by
√

λi so that bi should typically lie in a range

[−3,3] standard deviations. This simple linear type of shape model is known as a Point

Distribution Model (PDM) [4]. The shapes s are not aligned prior to the construction of

the shape model and thus the variation in location, rotation and scaling of the points is

contained in b. We choose t = 8, in which case the PDM explains 96.45% of the variation

in the training set.

3.3 Energy Function

The global terms in the proposed energy function are all derived from a map (an atlas) of

the vasculature of the retina. The vasculature in macula centered retinal images consists of

two major branches, an upper and a lower branch, which together form the vascular arch

(see Figure 1). Both branches consist of at least one major artery and at least one major

vein. Usually the vein is the thickest and darkest vessel in the branch. This described

global vascular pattern is always present on the retina.

The vascular arch defines the position of the OD which is located at its apex where

the upper and lower branch meet. The fovea is approximately at a fixed offset from the

OD and in an area devoid of vessels. Thus the locally dominant orientation of vessels,

the width of the vessels and vessel density (the distance to nearby vessels) all provide

important cues to locate these landmarks.

3.3.1 Vessel Thickness and Orientation Atlas

The general use of image orientation for model fitting has been proposed before by Cootes

[3]. The idea to use the global orientation of the retinal vasculature to locate a point on

the retina was suggested by Foraccia et al. [7]. They proposed a mathematical model of

the retinal vessel orientation which, after fitting, produced an estimate of the OD location.

Because of the variability in the vessel orientation In contrast we segment the vasculature

to construct an atlas which maps the average orientation as well as the average vessel

thickness across the image.

These atlases are constructed by a four step process: First, the vasculature in all train-

ing images is segmented and the vessel centerline pixels are found. Second, the thickness

ti and orientation θi for each centerline pixel i is determined. Third, the centerlines are

warped into a common frame of reference, given by the mean shape. Fourth, for each

pixel an average thickness and orientation is determined.

The vasculature was segmented using a pixel classification based method we previ-

ously developed [11]. This technique assigns a posterior probability to each pixel in an

image which indicates whether the pixel is part of a vessel. A threshold can be applied to

obtain a binary vessel segmentation.

Next, the binary vessel segmentation is thinned [6] to obtain the approximate vessel

centerlines. These are disconnected at the branching points (pixel has more than two

neighbors) and small segments (≤ 5 pixels) are removed.

For each centerline pixel i the orientation θi is determined by applying PCA on the

seven connected centerline pixels centered on i. The vessel thickness ti at i is defined as

the distance between the edges of the vessel at i.



Figure 2: The image on the left shows the orientation atlas, the local orientation is visual-

ized with black bars. All orientations have been mapped to the Hue circle of the HSI-color

space. On the right the vessel thickness atlas is shown.

To form the atlas, the centerline pixels of the images of the training set are warped

into a common frame of reference given by the mean shape s̄.

The final step is to calculate the average thickness and orientation for every centerline

pixel i in the atlas (see Figure 2). Any remaining “holes” in the atlas are filled with a

nearest neighbor averaging scheme. Every pixel in the atlas is assigned the mean value

of its k = 121 nearest neighbors (see Figure 2b). This value for k was determined after

preliminary experiments but is not a critical parameter.

To determine the fitness of a new shape s generated by the PDM on a new image I,

step 1 and 2 of the discussed scheme are first applied to I. Then, whenever the fit measures

for a new s are needed, step 3 with s is used. The fitness value fthickness and forientation are

calculated by

fthickness =
n

∑
i=1

|ti − tatlas
i | forientation =

n

∑
i=1

ti|θi −θ atlas
i | (2)

where n is the total number of centerline pixels, tatlas
i is the thickness value of pixel i in

the atlas and θ atlas
i is the orientation of pixel i in the atlas.

3.3.2 Sum of Inverted Distance Maps (SIDM)

The vessel landmarks (7-16) are often located on or near the thickest vessels in the vascu-

lar arch. The SIDM procedure will yield an image ISIDM in which the pixels on and close

to the thickest vessels will have higher values than pixels near to thinner vessels.

Given a binary vessel segmentation (see Section 3.3.1) IIDM is produced in two steps,

first a distance transform is applied, followed by an inversion (multiplication with -1).

Next, the binary vessel segmentation is eroded by eliminating all boundary pixels. These

two steps are repeated iteratively until all vessel pixels have been removed. After each

iteration IIDM is stored. Now the result image ISIDM and the fitness value fSIDM are calcu-

lated by:

ISIDM =
1

N

N

∑
i=1

IIDM fSIDM = −
p

∑
i=1

vi (3)

where N is the number of IIDM and where p iterates over the 10 vessel landmarks in the

PDM and vi is the pixel value in ISIDM at the position of landmark i.



3.3.3 Pixel Distance Regression

In addition to the previous global terms, a term which depends on the local gray value

appearance around the landmarks in the training set was also used. The pixel distance

regression models the local gray-value information at different distances d in a circular

region of interest ROIp around each of the landmarks p. Then given a pixel from a new

image, the distance from the pixel to any p can be estimated.

The size of ROIp is determined by its radius r. The value of r is dependent on the

scale of the object indicated by p. For example, when p is located on a vessel, r should

be smaller than when p is positioned on the fovea. We distinguish three different ROIp;

vessel, OD and fovea. The following settings for r were determined in preliminary exper-

iments; r = 10 for the vessel landmarks, r = 15 for the OD landmarks and r = 25 for the

fovea landmark.

To learn the local appearance around each of the manually indicated p in the train-

ing set, pixels in ROIp are represented by a rich set of local features, namely the out-

put of a filterbank consisting of the Gaussian filter and its 1st and 2nd derivatives (i.e.

L,Lx,Ly,Lxx,Lxy,Lyy) at multiple scales σ = 1,2,4,8,16,20.

After sampling every fourth pixel from ROIp in every training image, all samples are

normalized to zero mean and unit standard deviation. Now, given a new pixel i we use

k-nearest neighbor (kNN) regression to estimate the distance to the “correct” position of

landmark p by taking the median value of d for the k nearest neighbors in feature space.

The implementation of the kNN algorithm was developed by Arya et al. [1], it allows for

fast approximate neighbor retrieval. We set parameter k = 5.

The final fit value fdist is calculated by

fdist =
n

∑
p=1

dp (4)

where n is the number of landmark points in the model and dp is the estimated distance

from the correct position for landmark point p.

3.3.4 Component Combination

Before doing a linear combination of the four components their outputs are first normal-

ized to have a value between 0 and 1. The final output value then is

F(s, I) = ω1 fthickness +ω2 forientation +ω3 fSIDM +ω4 fdist (5)

where ωi represents the weight associated with a component, set to either 0 or 1 in our

experiments but can be set to any value.

3.4 Optimization

We evaluated three standard optimization techniques that operate in the shape space;

Simulated Annealing (SA) [8, 5], Simplex optimization [10] and Powell’s optimization

method [12]. The settings for SA were chosen such that its runtime did not exceed the

maximally allowed reasonable runtime of 10 minutes. As the Simplex algorithm was

much faster (average runtime 35 seconds) it was started six times with different starting

positions. Powell was always ran once, starting from the mean shape in the shape space.



Table 1: Overview of the different configurations that were run on the test set.

System nr. 1 2 3 4 5 6

Global cues × × × × - -

Local cues × × - - × ×
Image space optimization × - × - × -

The availability of the vessel thickness atlas, and the observation that the landmarks

7 to 16 are constrained to move along straight lines through landmark 2 suggested a

simple procedure to move these points individually. Lines are projected from landmark

2 through each of the vessel landmarks. Along these lines the thickest vessel with the

highest contrast is found and the landmark is positioned there. The local contrast of a

vessel is easily determined using the available vessel segmentation and local orientation

θi of the vessel centerline.

The described image space operation was integrated into the optimization strategy as

follows. First, one run of the optimization algorithms was executed, then vessel landmarks

were relocated using the previously described procedure. Then, shape s, the result after

fitting the PDM, was used as the starting position in shape space for a new run of the

optimization algorithm. If the value of F was lower for the shape produced after the

second run it was considered the final result, otherwise the result before image space

optimization was kept.

4 Experiments and Results

In the development of the system a total of 220 different macula centered digital color

fundus photographs were used. They were randomly selected from a set of photos ob-

tained from a diabetic retinopathy screening program in The Netherlands. Each image is

captured using 8 bits per color plane has a circular field of view of 540 pixels diameter.

The green plane of each image is used.

These 220 images were divided among a training set of 100 images, a test set of 100

images and a separate development set of 20 images reserved for preliminary experiments.

Although both a patient’s left and right eye could be included in one set, data of a single

patient was never spread among the different sets. In the training and development set all

images were mirrored when necessary to resemble photographs of the left eye (OD on the

left side of the image). The test set was left unprocessed.

In each of the images a reference standard was established by letting an observer, the

first author, mark sixteen points (see Figure 1). Then, the test set was annotated again by

a second observer, the second author.

In preliminary experiments, different optimization algorithms and several parameter

settings were tested. The best results were obtained with simplex optimization in combi-

nation with the image space optimization procedure. A total of six different systems (see

Table 1), all using simplex optimization, were run on the test set.

To distinguish between left and right eyes in the test set the model was fitted two times

to every image (normal and mirrored). The best model fit indicated the type of eye.



Table 2: Performance overview of the different systems on the test set. From left to

right, successful OD segmentation, OD center error (1), found foveae landmarks, fovea

landmark error (2), found vessel landmarks, vessel landmarks error (7-16) and the error

for the whole shape. All errors are averages and are always given in pixels.

System OD OD Fovea Fovea Vessel Vessel Total

detected error detected error detected error error

1 91.0% 10.1 94.0% 10.2 74.0% 12.9 11.8

2 88.0% 11.2 94.0% 9.8 63.0% 17.4 14.8

3 62.0% 20.0 71.0% 16.8 43.3% 23.2 21.5

4 80.0% 14.3 77.0% 14.7 56.4% 19.1 17.1

5 84.0% 11.0 96.0% 9.2 69.0% 16.2 14.2

6 81.0% 12.4 97.0% 9.6 40.5% 24.3 19.8

2nd observer 97.0% 4.9 99.0% 4.6 97.0% 5.9 5.36

Mean shape 59.0% 18.5 97.0% 11.2 26.6% 28.3 24.1

4.1 Results

Table 2 summarizes the results. We determined that all the presented systems were able

to distinguish left from right eyes for all images in the test set.

Performance was measured separately for each of the three groups of landmarks (i.e.

OD, vessel and fovea). For the OD points, both overlap as well as the difference in the

localization of the OD center were chosen as the evaluation measures. We define that

an OD localization is successful if there is at least 55% overlap. The OD surface was

estimated by fitting a circle through landmarks 3-6. Vessel and fovea points are consid-

ered successfully placed if they are located within a certain distance from the reference

standard. This distance is determined for each landmark separately, and is defined as the

maximum distance between the reference standard and the second observer. Before mea-

suring the maximum distance all clear outliers (e.g. cases in which the second observer

selected a different vessel) were excluded.

5 Conclusion & Discussion

A new method has been presented that determines whether a macula centered retinal im-

age is a left or right eye and automatically detects the optic disc, the fovea and the vascular

arch by inferring the location of a set of landmarks placed on these structures. The algo-

rithm relies on a specific energy function that combines global and local cues. The results

show that a combination of global and local energy function components is needed to

obtain the best system performance. Also the success of a combined optimization method

in both the shape space as well as the image space is evident from the results.

Figure 3 shows the model fitted to three images. One successful case and two cases

demonstrating typical errors. The middle image illustrates a case in which the average

pixel distance between the fit and the reference standard will be large, but the generated

shape seems a correct “alternative” to the reference standard. In the rightmost image a

more serious error is shown, where the vascular arch was found but due to an incorrect



Figure 3: Three example model fits, with the original images at the top and the images

with both the model fit (white) and the reference standard (black) on the second row. The

left image illustrates a good result, the other two images demonstrate typical errors. In the

case of the middle image, a different branch of the correct vessel has been selected. For

the rightmost image the main axis of the model is not correct causing an error for almost

all vessel landmarks although the vascular arch as such has been successfully located.

OD localization most vessel points have moved along the arch. These errors point to a

weakness in our evaluation method, for a more fair evaluation the entire venous vascular

arch should be indicated in the reference standard.

The results of fitting the mean shape already seem quite good. This is caused by the

fact that these images have been acquired using a protocol. The protocol ensures that

the macula is located approximately in the same part of the image across the training

and test set. This is evident in the results for the fovea detection which are good for

most methods. If we would evaluate the vessel landmarks as suggested in the previous

paragraph the difference in performance between the mean shape and the other methods

would become larger.

The system as it is proposed here has several applications. An example would be to

use it to automatically determine the severity of lesions related to eye diseases such as

Diabetic Retinopathy. For lesions and other pathologies, their location on the retina is an

important property. If lesions are located within the vascular arch the need for treatment

becomes more immediate. Another application would be the automatic removal of the

optic disc area before further processing by, for example, a computer aided diagnosis

(CAD) system. This type of system can benefit from OD removal because of the a-typical

appearance of the OD with respect to the rest of the retina.

The presented results could be accurate enough to be used as input for a CAD system.

However, the proposed model is limited in the sense that the anatomical landmarks can

only be found in macula centered retinal images. This suggests an extension to images



that are for instance OD centered or images which do not contain the fovea. Two ways to

handle this extension would be to either built more models and use the separate models

for the different cases or generalize the current model to enable it to segment other types

of images as well.
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