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Abstract With increasing age we often find ourselves
in situations where we search for certain items, such

as keys or wallets, but cannot remember where we left
them before. Since finding these objects usually results
in a lengthy and frustrating process, we propose an ap-

proach for the automatic detection of visual search for

older adults to identify the point in time when the users

need assistance. In order to collect the necessary sensor

data for the recognition of visual search, we develop a

completely mobile eye and head tracking device specif-
ically tailored to the requirements of older adults. Us-
ing this device, we conduct a user study with 30 par-

ticipants aged between 65 and 80 years (avg = 71.7,

50% female) to collect training and test data. During

the study, each participant is asked to perform several

activities including the visual search for objects in a

real-world setting. We use the recorded data to train a

support vector machine (SVM) classifier and achieve a

recognition rate of 97.55% with the leave-one-user-out

evaluation method. The results indicate the feasibility

of an approach towards the automatic detection of vi-

sual search in the wild.
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1 Introduction

With advancing age it is common to experience a de-

cline of working memory [35]. This can lead to forget-

fulness and is generally associated with an overall de-

crease in quality of life. Additionally, over 15% of elderly

people can develop even more serious memory-related

issues, including memory loss, confusion and other cog-

nitive impairments [42]. As a consequence, forgetting a

name, an object or an appointment can lead to very un-

pleasant circumstances. Within the Glassistant project,

we therefore attempt to create an autonomous assistant

using smart glasses and wearable sensors. The general

aim of the project is to provide aid to the elderly by

recognizing critical situations and offering appropriate

support. One major use case for that is the automatic

detection of instances during which the user searches for

misplaced objects like keys or wallets. Such episodes are
mostly experienced by elderly people due to the cogni-
tive decline of their working memory, which can be very
frustrating and time consuming. With the automatic

detection of visual search we aim to recognize when the

user needs assistance, in order to provide support for

remembering the location of misplaced objects or even

automatically directing the user to the location of the
desired item. We see the main contributions of our cur-
rent work as follows: (1) We introduce a novel concept
for the automatic detection of visual search episodes in

real-world scenarios based on the combined analysis of

eye and head movement data. (2) We develop a com-

pletely mobile eye and head tracking device in order to

capture the necessary sensor data, which is specifically

designed to meet the requirements of elderly users. (3)

We present a study setup which creates a natural envi-

ronment for visual search activities and enables the col-

lection of realistic data. (4) We propose a classification
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approach which is able to recognize the visual search

behavior of elderly users in a realistic environment and

distinguishes between certain search phases.

The remaining article is structured in the following

way: First, we take a look at related work and discuss

their findings and limitations. Afterwards we introduce

our custom eye and head tracking device and describe

the details of the user study which was conducted to
collect training and test data to build our classification
model. We then evaluate our approach and show that

visual search can be detected in a real-world scenario,

using the data from our mobile eye and head track-

ing device. Finally, we discuss the results and give an

overview of possible future applications for our visual

search detection approach.

2 Related Work

Visual search is commonly defined as the act of look-
ing for a target object among several distractors [39].
During this process, attention is focused sequentially

on each element of the visual scene, resulting in spe-

cific eye movement patterns [14]. The first one to ana-

lyze these patterns was Buswell [6] in 1935. He showed

that eye movements differ distinctively during a visual

search task on an image compared to a free viewing task

with no instructions. Several years later, Yarbus [43]

confirmed in 1967 that the visual task indeed plays an

important role for the observed scan paths and pat-

terns. Since then, a lot of research has been done re-

garding the analysis of eye movement patterns in vi-

sual search tasks. For example, Castelhano et al. [7]

compared various eye movement measures, such as the

fixation duration, saccade amplitude or percentage of

fixated area, between a visual search and a memoriza-

tion task. Thereby 35 photographs of real-world scenes

were shown to the participants who were asked to ei-

ther search for a certain target or to memorize the ob-

jects in the corresponding image. As the results show,

most of the examined features yielded distinctive val-

ues for each of the tasks, enabling the usage of a bi-

nary classifier for their detection. Similarly, Mills et

al. [30] examined the influence of a visual search, a

memorization, a scene rating and a free viewing task

on spatial and temporal characteristics of eye move-

ments. For that, they conducted a user study with 53
participants and asked them to perform the four tasks
on 67 images of computer-generated natural scenes. In

compliance with [6,7,37,43] they identified several eye

movement characteristics which can be used to distin-

guish between the tasks and are therefore considered

in our work as well. Based on these findings, Hender-

son et al. [19] tried to infer the viewing task from eye

movement measures with a näıve Bayes classifier. In

their study they recorded the eye movements of 12 par-
ticipants while performing a scene memorization and a
visual search task on scene photographs presented on a

monitor. As the results show, they were able to iden-

tify the viewing task with an accuracy of up to 83%.

Likewise, Coco et al. [9] used eye movements to clas-

sify three visual activities. These consisted of a visual

search, a scene description and an object naming task,

which were performed on 24 photographs of indoor sce-

narios. Using a support vector machine (SVM), they

achieved a maximum accuracy of 88% for the visual

search task. Although these are promising results for

the detection of visual search, most of the previous re-

search has been conducted using static images on dis-

plays. Due to the restriction of the target area to a

certain screen space compared to the wider view of a

room or a building, these results might differ in a real-

world scenario. Besides, head movements could also be

a valuable indicator to identify the visual search process

in such a setting, but were previously not considered

because of the restricted target area. For these reasons
we investigate the visual search task in a completely
mobile and real-world scenario.

3 Tracking Device

Generally, there are two types of visual search: preat-

tentive (parallel, efficient, uncontrolled) and attentive

(serial, inefficient, controlled). In the first type, basic

features like the color, shape and orientation of an ob-

ject are perceived unconsciously while the second type

requires the sequential allocation of attention from the
observer for each element in the visual scene [38]. Since
the first type occurs subliminally and can be hardly

recognized, we focus on the detection of the attentive

visual search. For that, we propose the usage of wear-

able sensors, which can capture specific behavioral pat-

terns of the visual search activity. Combined with com-

mon machine learning techniques, the sensor data can
be employed to train a binary classifier which is then
able to detect the visual search process in real time.

For the selection of suitable wearable sensors we make

use of the findings from our previous work, in which

we analyzed different modalities regarding their appli-

cability for such a challenge [13]. As it turned out, a

combination of eye and head movement data showed
the most promising results for the detection of visual
search, which is the reason why those modalities are

used in our current work as well. In order to record

the data, several commercially available devices, such as

the Tobii Pro Glasses (50-100 Hz), the SMI Eye Track-

ing Glasses (120 Hz) or the Pupil Labs Headset (30-
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120 Hz) could be used. However, these devices are not

capable of providing feedback to the users and would re-

quire an additional output component to support them,

which could be too intrusive for older adults. Since

no commercially available device fulfilled this require-

ment, we decided to build our own prototype. Through

that, we were able to consider the special conditions

and requirements of our elderly user group. For exam-
ple, the majority of older adults relies on prescription
lenses. Therefore, it must be possible to wear the de-

vice in addition to glasses without disturbing the user.

This also implies that the device should be as small

and lightweight as possible. Furthermore, the prototype

should not impact the mobility of the users and must

work in a completely mobile setting to increase the ac-

ceptance of this technology.

Fig. 1 Google Glass-based eye and head tracking device

Considering these requirements, we decided to use

the Google Glass as basis for our prototypical device,
since it is currently one of the lightest head mounted
displays and can be worn on top of prescription lenses.

Besides that, it already has a built-in accelerometer

and gyroscope sensor which can be used to track the

head movements of the users. In order to record the

eye movements as well, we created a custom mount

with a 3D printer and attached a small infrared camera

(30 Hz, 640×480 resolution) taken from a Pupil Labs

eye tracker to the frame of the smart glass as shown in

Figure 1. The camera is connected to a Raspberry Pi 2,

which can either record the eye video or stream the data

to another processing unit. Afterwards, an algorithm

based on the open-source Haytham Gaze Tracker1 is

applied to the video stream of the eye camera to deter-
mine the pupil position. Combined with the video from

the scene camera of the Google Glass, we receive the

same data as with a regular head mounted eye tracker,

but with the added benefit of being able to support the

user through instructions on the head mounted display.

1 http://eyeinfo.itu.dk

4 User Study

Since the main goal of the Glassistant project is to sup-
port elderly users in critical situations, we conducted a

large-scale study to collect test and training data for

the automatic recognition of those situations. In order

to achieve a rich dataset for user-independent machine

learning models, we recruited 30 participants aged be-

tween 65 and 80 years (avg = 71, 7) with a female ra-
tio of 50%. During the study each of the subjects per-

formed several activities, including the visual search for

objects, while being equipped with our eye and head

tracking device. Even though the study was not exclu-

sively designed for the sole detection of visual search,

the recorded data can be used for it because all other

tasks were similar to day-to-day activities and thus can

serve as a comprehensive baseline.

4.1 Tasks

Overall, the study involved five tasks, but since the

aim of this work is the detection of visual search, we

mainly focus on the search scenario and only give a

brief overview of the other tasks. Before each task the

participants received a detailed instruction and after-

wards had to fill out a questionnaire regarding their

experiences during it. In the first task, each participant

was instructed to enter general demographic informa-

tion into a smartphone app. Thereby the system vocally

asked the subjects basic questions which they could an-

swer using natural language. Due to the auditory nature

of this interaction, the users were able to look around

freely during this task. In the second one, the partici-

pants were asked to read and write texts on sheets of

paper. After a fixed amount of time, an experimenter

called them on a telephone and told them four terms

which they should memorize and recall at the end of

the session. For the following two tasks, the partici-

pants were then instructed to work with a computer.

In task three, each user was asked to observe the screen

for a certain visual condition and had to press a key ev-

ery time it occurred. Similarly, in task four, an object
was shown in the center of the screen for a few seconds
while the users had to click on the corresponding but-
ton matching its condition. In between those tests, two

videos were shown to the users.
Finally, the last task involved the visual search ac-

tivity, which was investigated in the following two sce-

narios: the search for keys and the search for rooms. The

reason why we chose these scenarios is that we wanted

to capture the characteristics of visual search in a wide

spectrum of occurrences, ranging from the search of a

small item in a limited area to the search of a location

http://eyeinfo.itu.dk
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Fig. 2 Overview of the study location

in an open space. In order to create a realistic setting
for both parts, we told the participants shortly before

the end of the previous task, that we had to leave them

to prepare the study for the next participant and that

they should meet us in a certain room. Additionally,

they were also asked to lock the door with a key located

in one of the closets shown in Figure 2 A©, once they
were finished. However, the hidden key did not match

the lock on the door. This caused some subjects to con-
tinue the search even after finding the key. Eventually,
after a certain amount of time, every participant gave
up and started to search for the room in which they

were supposed to meet the experimenter. Based on the

room number we gave them, they assumed that it was

located at the end of the hallway (Figure 2 C©), but

upon arrival they realized that there was no room with

that number. Instead, they only found a person stand-

ing in the kitchen nearby, who they asked for the right

way. The person was instructed to tell the participants

the number of the correct room (Figure 2 F©) and with

that information most of them were quickly able to lo-

cate it. In spite of knowing the room number though,

a few users got completely lost and used the staircase
to search for the room on different floors (Figure 2 D©),

which resulted in even more realistic search recordings.

Nevertheless, all participants eventually found the tar-

get room which also marked the end of each session.

4.2 Sensor Setup

For the user study we employed a completely mobile

and wearable sensor setup. At the core of the setup

was the social signal processing framework SSJ [10],

which is a mobile reimagination of the Social Signal In-

terpretation (SSI) framework [40]. It enabled us to in-

terface with and extract data from multiple sensing de-

vices in a synchronized fashion. Moreover, since SSJ has

been designed and built specifically for mobile devices,

the participants were able to freely move around the

room and the building, increasing the authenticity of

the search task. While our custom eye and head track-

ing device would have been sufficient to record the nec-

essary data for the detection of visual search, additional
sensors were used for the recognition of the other situ-
ations from our study. As a result, the complete setup

consisted of two smartphones (Samsung Galaxy S4),

our Google Glass-based eye tracking system, a Rasp-

berry Pi 2 and an Empatica E3 sensor armband. All

devices were synchronized to each other and commu-

nicated via WiFi. In order to not impact the mobility

of the system, the WiFi hotspot was created using one

of the two smartphones. The other one was handled

by a researcher to control the entire sensor setup, i.e.

synchronously starting and stopping the recording on

all devices, triggering the calibration phase of the eye

tracker or completely shutting down the devices. More-

over, the researcher also used this smartphone to label

the start and end of the individual study tasks. The sec-

ond smartphone was running an SSJ application (called

pipeline) which extracted data from the device inter-

nal inertial measurement unit (IMU) and microphone

as well as the Bluetooth-connected Empatica E3 arm-

band, and stored it to the local SD card. Similarly, a
second SSJ pipeline was running on the Google Glass

Fig. 3 Participant wearing the sensor setup
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which was tasked with recording IMU, audio and video

data. The eye tracking camera data was captured using

a custom program running on a Raspberry Pi 2.

5 Data Analysis

Following the user study we analyzed the recorded data

in order to prepare it for our classification approach.

This was necessary to ensure that the sensors worked

correctly in all sessions and provided reliable data sets

in each case. Otherwise, false or missing data streams

could have had a negative impact on the classification

performance. Therefore, incomplete and corrupt session

recordings had to be identified initially and removed

before the data sets could be used in our classification

approach for the automatic detection of visual search.

5.1 Signal Quality

Since the device used to record the gaze data consisted

of a camera pointed at the participant’s eye and another

camera capturing the field of view, a calibration had to

be conducted in order to map the pupil position on the

eye camera to a gaze point in the field of view. After the

calibration, it was important that the device stayed in

the same position relative to the head. However, some

participants treated the device like a pair of glasses and

readjusted its position multiple times after calibration.

In most cases this led to a shifted gaze point, which left

most feature calculations unaffected. In some extreme

cases there was so much readjustment that the eye was

no longer visible in the field of view of the camera. This

led to unusable data in the later part of the recordings.

Another problem occurred because some users assumed
that the study was concluded after filling out the last
questionnaire following the fourth task. In these cases,
they took the eye tracking device off before beginning

the search part, so that no data could be recorded. One

participant even required too much time to complete

the tasks which led to the depletion of the Google Glass

battery after one hour and forty minutes, resulting in
an incomplete data set of the session. For these reasons,
eight recordings had to be discarded, leaving 22 usable
data sets (avg. age = 71.2, 50% female).

5.2 Task Annotation

Based on the recorded audio and video streams, we re-

fined the task annotations for every remaining data set.

During this process the first four tasks were labeled as

Baseline, while both key and room search were anno-

tated as Search to create a binary classification prob-
lem. Thereby, the annotation for the key search began

once the participants approached the closets and ended

as soon as they left the room and closed the door. This

also marked the start of the room search which contin-

ued until the users arrived at the target location. The

reason why we did not exclude certain phases, such as

the short conversations when asking for the right way,

is that even during these periods the participants were

still looking around and tried to find the room. The re-

sulting completion times for both search tasks are sum-

marized in Figure 4.

0 60 120 180 240 300

Room
search

Key
search

Time [s]

Fig. 4 Visual search task durations

In order to extend the baseline even further, we la-

beled one instruction phase where an experimenter ex-

plained an upcoming task to the participant with Base-

line as well, since it resembled a regular conversation.
Besides that, we also included one questionnaire phase

which was similar to a common reading and writing
task. As a result, the baseline consisted of the follow-
ing day-to-day activities: reading, writing, speaking out

loud, talking on a telephone, memorizing terms, hold-

ing a conversation, working on a computer and watch-

ing videos. We used this annotation set in our classi-

fication approach to accomplish the automatic detec-

tion of visual search with machine learning techniques.
Additionally, we created a second annotation set with
the same baseline but with individual labels for the key

search and the room search. This enabled us to examine

if there are any differences between these two scenarios.

6 Classification Approach

For the automatic detection of visual search we se-

lected a support vector machine (SVM) as classifier

(linear kernel, C = 1, ǫ = 0.1, ν = 0.5, γ = 0.01)

since it is still one of the most popular algorithms in

the field of machine learning [18] and also works effi-

ciently on the current generation of mobile devices [11].
This is important because we aim to use the result-
ing classification model with our mobile eye and head

tracking device in an online scenario. In order to also

achieve a subject-independent classification model, all
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evaluations were conducted using the leave-one-user-

out (LOUO) method. Thereby the classifiers are trained

with the data from all users except one and are then

tested on the remaining user. This process is repeated

for every participant and afterwards the average values

across all iterations are taken as result. A key benefit

of this method is that it simulates a real time analy-

sis based on the recorded data since the trained clas-
sifiers are always tested with the signals from an un-
known user, which is also the case in an online clas-

sification. For the implementation of features, model

training and evaluation we used the Social Signal In-

terpretation (SSI) framework [40]. It provides a variety

of tools to support all phases of machine learning and

enabled us to utilize the computational resources of our

workstations and servers to accelerate this process. As

shown in [12] its flexible architecture also allowed us

to create a custom component for the calculation of

features, which could be combined seamlessly with the

provided modules for data processing and classification.

6.1 Feature Extraction

All gaze features are based on the raw sensor data from
our mobile eye and head tracking device. For a given
window length we process the data and calculate the
fixation duration, saccade duration and saccade length.

In our case, these metrics are defined as follows: Fix-

ation duration is the time in seconds of a single fixa-
tion, saccade duration is the time in seconds between

two subsequent fixations and saccade length is the Eu-
clidean distance in pixels between two subsequent fix-
ation points. For each of these three metrics we then
compute the mean, min, max, median, sum, standard

deviation, skew, kurtosis and range values, which were

commonly used for visual search detection on displays
and activity recognition in previous works [4,7,9,15,

19,30,37]. In addition to that, we apply a wordbook
analysis as proposed by Bulling et al. [5] to identify
repetitive eye movement patterns. Furthermore, we an-

alyze the spatial distribution of fixations by computing

the fixation dispersion, fixation coverage and number

of fixation groups. The fixation dispersion is calculated
using the root mean square of the Euclidean distances

between each fixation and the average position of all fix-
ations within the current window [4]. For the fixation

coverage we draw a circle with radius r based on the

fixation duration around each fixation point and com-
pute the ratio between covered area and total field of
view [7]. Based on the fixation map from the previous
feature we identify the connected areas which repre-

sent fixation groups and count their occurrences [34].

Besides that, we calculate the number of saccades, fixa-

tions and blinks as well as the ratio between fixation and

saccade duration [4]. Combined with six movement in-

dependent features such as sum, mean and variance of

the blink duration and pupil size change [5], this results

in a total of 60 gaze features.
For the extraction of head movement features we

directly use the raw accelerometer and gyroscope data

from the Google Glass. Since both sensors share the

same sample rate and provide the data for each axis

(x, y, z) we apply the same features for both of them as

suggested in [32]. While most features are computed for

each individual axis, some are based on pairs of axes or

even factor in all three of them. The features calculated

for each axis include the mean, variance, standard devi-

ation, skew, kurtosis, interquartile range, mean absolute

deviation, root mean square, energy and frequency do-

main entropy values, which were previously used for

activity recognition [1,2,8,20,26,33]. Additionally, we

apply a 1D Haar-like filter similar to [17]. Due to the

variable filter parameters this feature has shown some

promising results for various classification problems [17]

and is therefore adopted in our work as well. Further-

more, we calculate the crest-factor, spectral flux, spectral
centroid and spectral roll-off features, which are mainly

used for the classification of audio signals [29,44]. How-

ever, as demonstrated by Rahman et al. [32], those fea-

tures are also suitable to differentiate between activities

based on acceleration and orientation data. For each

pair of axes {(x, y), (y, z), (z, x)} we then apply a biax-

ial 1D Haar-like filter [17] and calculate the correlation
between the corresponding axes. The correlation can be

computed by dividing the covariance through the prod-

uct of the standard deviations and is especially helpful

to detect activities that involve movements in a single

direction [33]. Finally, we compute the signal magni-

tude area, which is defined as the sum of the absolute

acceleration values from each of the three axes [23]. It

is used since it has proven to be a suitable indicator to

distinguish between stationary and movement-related

activities [22]. Overall, 52 features are calculated for

each of the two sensors, thus resulting in a total of 104

head movement features.

6.2 Feature Window Analysis

In order to explore the impact of window lengths on

classification performance, we generated all features for

different window sizes (1-10 seconds) and measured the

accuracy of each feature set. For every window length

we thereby also varied the overlap between each of the

windows from 0 to 90%. As it turns out, our results

did not reveal an overlap ratio with significantly better
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performances compared to the others. However, since

previous works have shown the most success with a 50%

overlap between each window [2,8,18,33], we selected it

in our approach as well.
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Fig. 5 Relation between window length and accuracy (50%
window overlap)

Another interesting finding from our results is that

the classification accuracy increases almost linearly with

growing window sizes as shown in Figure 5. In order to

achieve the highest possible detection rates, it therefore

would make sense to use a longer window size as well.

However, since our goal is to recognize the visual search
behavior in real time, we can not use a very large win-
dow as it slows down the reaction time of our approach.

Instead, we need to make a compromise between win-

dow size and detection rate, which is the reason why

we chose a window length of four seconds.

6.3 Fusion and Feature Selection

After selecting a fixed window size, we applied various

fusion techniques to combine the feature sets from the
accelerometer, gyroscope and eye tracking sensors. Dur-
ing early fusion (feature level) the features from each

modality are concatenated into a single feature vector

before the classifier is trained [36]. As opposed to that,

during late fusion (decision level) the individual classi-
fiers for every modality are trained first and afterwards

their predicted scores are combined [21]. For that, sev-
eral methods can be applied including AdaBoost, Borda

count, Cascading Specialists, Dempster Shafer, Stacked

Generalization, Weighted Majority Voting or even sim-

ple rules such as the Sum, Min, Max, Median and Prod-

uct Rule [24,25,27,28]. In our case the Stacked General-

ization approach yielded the highest accuracy of those

methods and is therefore used to achieve all further late
fusion results. While both early and late fusion usually
result in higher detection rates compared to the clas-

sification based on individual modalities, they also in-

crease the required dimensionality of the input data.
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Fig. 6 Feature composition for early fusion

As a consequence all 164 features would need to be

computed at the same time, which could cause per-

formance bottlenecks in an online scenario. However,

since not all features are equally useful in detecting the

visual search activity, we employed the sequential for-

ward selection (SFS) method to reduce the number of

features and hence the required computational cost as-

sociated with it [41]. The feature selection was applied

to the concatenated vector of all features for the early

fusion as well as to each individual feature set for the

late fusion. Using this technique we were able to reduce

the number of required features by more than 50%. As

shown in Figure 6, the feature distribution across all

sensors stayed nearly the same after applying the fea-

ture selection, which indicates the importance of using

a multimodal approach.

6.4 Classification Results

The final evaluation of our visual search detection ap-

proach is based on the reduced feature sets after ap-

plying the SFS feature selection. In compliance with

all previous evaluations, we used the leave-one-user-out

method to train and test our SVMmodels several times.

Table 1 shows the average accuracy, precision and re-

call values for every modality as well as the results af-
ter early and late fusion. Overall, early fusion yielded
the highest accuracy with 97.55%, closely followed by

late fusion with a value of 97.39%. From the individ-

ual modalities the acceleration showed the highest ac-

curacy, which is on par with the late fusion and only

slightly lower than the early fusion results. Although

Source Accuracy Precision Recall

Accelerometer 97.39% 97.65% 97.11%

Gyroscope 92.18% 94.14% 89.97%

Eye tracker 81.59% 82.67% 79.93%

Early Fusion 97.55% 98.11% 96.97%

Late Fusion 97.39% 97.47% 97.29%

Table 1 Classification results after feature selection for
Baseline vs. Search
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this might lead to the assumption that the accelerom-

eter alone can be sufficient for the visual search detec-

tion, we still recommend using a combination of mul-

tiple modalities since it is more robust against signal

fluctuations of individual sensors and therefore more re-

liable in real-world applications. Surprisingly, the gyro-

scope model yielded a five percent lower accuracy com-

pared to the accelerometer even though both are based
on the same initial feature set. The eye tracking model
resulted in the lowest accuracy of 81.59%, which can be

mostly attributed to the signal quality as described in

section 5.1. Generally, all modalities and fusion meth-

ods showed high precision and recall values. This means

that if visual search was detected, then it was usually

correct (precision) and that almost all instances of vi-

sual search were recognized as such (recall).
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Fig. 7 Additional results for different search scenarios

In addition to the general detection of visual search

we also investigated whether there are any differences

when recognizing either of the two search scenarios from

our user study and whether it is possible to distinguish

between them. The results of this analysis are summa-
rized in Figure 7. Interestingly, when trying to detect
key search or room search individually, we achieve sim-

ilar accuracies compared to the general detection of vi-

sual search. The only notable difference occurs in the

accuracy of the gyroscope model which is seven percent

lower for the key search and four percent higher for the

room search. This could indicate that the head orienta-

tion is more distinctive when searching for large objects

which might not fit into the field of view and require

more head rotations, than when looking for smaller

items such as keys. Using the same features as before

we then tried to distinguish both scenarios from each

other. As expected, the results were lower compared

to the previous evaluations. However, we still achieved

a reasonably high accuracy of 84.53% using the early

fusion method, which could indicate that the target ob-
ject type might have an influence on the search behav-
ior. Information on the target object type would enable

a system to provide more specific assistance to users

after detecting visual search.

7 Discussion

Overall, our multimodal approach for the automatic

detection of visual search proved to be successful and

achieved recognition rates of up to 97.55%. Even though

recognition rates for visual search depend a lot on the

experimental setting and the nature of tasks, a look at

recognition rates achieved for non-mobile and thus less

challenging settings might be of interest. Henderson et

al. [19] achieved accuracy rates of 83% for two tasks

(search and memorization) involving scene stimuli pre-

sented on a monitor. As ours, their accuracy rates were
clearly above chance level. When only considering the
results based on eye movements, our approach yielded

a two-percent lower accuracy rate than their approach.

Due to the different nature of the search tasks (mobile

vs. stationary setting), it is hard to compare results.

Nevertheless, the use of a stationary eye tracker with

a sample rate of 1000 Hz might have contributed to
the better performance of their approach since it can
record the eye movements a lot more precisely than our

custom eye and head tracking device at 30 Hz.

Using a similar eye tracker as Henderson et al. [19]

with a sample rate of 500 Hz, Coco et al. [9] achieved a
recognition rate of 88% for the visual search task among

three classes (visual search, scene description and ob-

ject naming). They used the ten-fold cross-validation

method to evaluate the classification performance which

does not produce subject-independent results as op-

posed to the leave-one-user-out method applied in our

work. When testing their classification model on new

users, their approach is likely to suffer from a decrease

in recognition rates. When considering the differentia-

tion between both search phases, our approach yielded

an accuracy of more than 84%. Similar classification re-

sults were reported by Haji-Abolhassani and Clark [16]

for search tasks that involved distinguishing objects

from distractors by a single feature (easy setting) or

a combination of features (difficult setting).

Due to the very different experimental settings and
nature of tasks, it is hard to conduct a comparison with

other work on visual search. Summing up, it may be

said, however, that the results we obtained “in the wild”

are competitive with results achieved in stationary set-

tings even when limiting ourselves to eye tracking fea-

tures and excluding head movement features.
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In order to examine how the key search and the

room search could be distinguished effectively and why
head movements resulted in higher accuracies (81%)
than eye movements (61%), we now discuss the results

of an exploratory analysis of both search phases using

the recordings of participant #16. Generally, pupil di-

lation is influenced by a number of factors, such as the

brightness and color of the surroundings. However, it
also occurs during mental activity [3] and when a per-
son is in an emotional state [31]. Since visual search is a

confusing task that requires a lot of cognitive process-

ing, we expected to see an increase in pupil size during

the search phases. A higher amount of eye movement

was also expected to be an indicator of search as well

as the type of search, so we calculated the duration of

saccades in a window of 4s. We also expected the partic-

ipant to have different types of head movements while

searching, so we used the y-axis values of the accelerom-

eter data from our head mounted tracking device and

calculated the standard deviation. A plot of the calcu-

lated data can be seen on Figure 8. When looking at the

Time [s]

30 60 90 120 150 180

Pupil size Saccade duration Acceleration Y (SD)

BA C E F

key search room search

Fig. 8 Participant’s pupil size (mvavg over 8s, shifted left by
4s), saccade duration in a 4s window (mvavg over 4s) and SD
of the accelerometer’s y-axis in a 4s window. Time Periods
A-F as described in section 4.1

phases where no search (questionnaire segment at the

beginning and F©) or a limited amount of search ( C©)
occurs, a very small pupil size, low amount of saccades

and very little head movement can be observed. This is
in contrast to the search periods ( A©, B© and E©), where

we can see a much larger pupil size, a higher amount of
saccades and lots of head movement. The search types

themselves can partially be distinguished by whether a

search for a key ( A©) or a search for a room in a hallway

( B© and E©) was conducted. While pupil size during A©

is very similar to B© and E©, overall saccade duration
is about twice as high on average when searching for a

room as opposed to a key. As expected, head movement

during room search is much more prevalent than dur-

ing key search, since the participants had to move their

head to read the signs on the doors whereas the key was

in a small area. This might give an explanation as to
why the two types of search are easier to differentiate
by head movement than by the given eye tracking data.

8 Conclusion

The aim of this work was the automatic detection of

visual search for older adults in a completely mobile

and real-world scenario. Since capturing sensor data in

such a setting involves great challenges, we developed a

custom eye and head tracking device to overcome these

requirements. A study we conducted indicates the feasi-
bility of tracking search-relevant behavioral data in the
wild. Considering the usage in an online scenario, the

obtained classification results are promising. One might

argue that the classifier basically learns the character-

istics of body movements, which are only indirectly re-

lated to the search. However, our experiment has shown

that the eye reveals distinctive information on the dif-

ferent search tasks as well. Nevertheless, further stud-

ies are necessary to analyze specific characteristics of

search tasks. In our future work, we will therefore fo-

cus on a broader range of visual search activities (e.g.

searching for a room with a red door versus searching

for a room with a specific number). Finally, we will

also investigate different strategies to support the vi-

sual search process of older adults, after it has been

detected. Possible options could be guiding the users

with instructions or showing an image with the last po-

sition of the object on the head mounted display.
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