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Abstract

In this paper we propose a combined scheme of linear predic-
tion analysis for feature extraction along with linear projection
methods for feature reduction followed by known pattern recog-
nition methods on the purpose of discriminating between nor-
mal and pathological voice samples. Two different cases of
speech under vocal fold pathology are examined: voca fold
paralysis and voca fold edema. Three known classifiers are
tested and compared in both cases, namely the Fisher linear
discriminant, the K'-nearest neighbor classifier, and the nearest
mean classifier. The performance of each classifier is evaluated
in terms of the probabilities of false alarm and detection or the
receiver operating characteristic. The datasets used are part of a
database of disordered speech developed by Massachusetts Eye
and Ear Infirmary. The experimental results indicate that vocal
fold paralysis and edema can easily be detected by any of the
aforementioned classifiers.

1. Introduction

Speech processing has proved to be an excellent tool for voice
disorder detection. Among the most interesting recent works
are those concerned with Parkinson's Disease (PD), multiple
sclerosis (MS) and other diseases which belong to a class of
neuro-degenerative diseases that affect patients speech, motor,
and cognitive capabilities [1, 2]. Such studies are based on the
specia characteristics of speech of persons who exhibit disor-
ders on voice and/ or speech. They aim at either evaluating the
performance of special treatments(i.e. LSVT[2, 3]) or develop-
ing accessibility in communication services for al persons [4].
Thus, it would possibly be a matter of great significance to de-
velop systems able to classify the incoming voice samples into
normal or pathological ones before other procedures are further
applied.

In this paper, we are concerned with vocal fold paraysis
and vocal fold edema, which are both associated with com-
munication deficits that affect the perceptual characteristics of
pitch, loudness, quality, intonation, voice-voiceless contrast etc,
having similar symptoms with PD and other neuro-degenerative
diseases. The main causes of vocal fold paralysisare usualy ei-
ther several surgical iatrogenic injuries or a glitch in the recur-
rent laryngeal nerve or possibly a lung cancer [5], while mal-
function at the vocal folds due to edema is usually caused by
more trivial reasons such as mild laryngeal injuries, common
infectious diseases that affect the respiratory system, or aler-
gies in drugs. We demonstrate that effective classification be-
tween normal voice samples and voice samples from persons
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who suffer from either vocal fold paralysis or vocal fold edema
can be achieved, as long as the most significant characteristics
of pathological voice are retained. In either case, a two-class
pattern recognition problem is essentially studied. Closely re-
lated previous works are the detection of vocal fold cancer [6],
where a Hidden Markov Model (HMM)-based classifier was
employed and the binary classification between normal sub-
jects and subjects suffering from different pathologies in [7],
where Mel frequency cepstral coefficients and pitch were used
as features for classification that was performed by the linear
discriminant classifier, the nearest mean classifier, and classi-
fiers based on Gaussian mixture models or HMMs. The assess-
ment of the classifiersin [7] has also been done on the database
of disordered speech developed by Voice and Speech Lab of
Massachusetts Eye and Ear Infirmary (MEEI) as in the present
work. Three parameters namely the number of discrimination,
thelevel of clustering, and the average clustering were assessed
for disease discrimination based on acoustic featuresin [8].

In this paper, we assess the performance of Fisher's lin-
ear classifier, the K-nearest neighbor classifier and the nearest
mean one. We are not interested in the detection of patholog-
ical speech asin [7], but in the assessment of the discrimina-
tory capability of the aforementioned classifiers for particular
vocal fold pathologies. The main contribution of the paper is
in the appropriate feature extraction and reduction methods, the
design of the aforementioned classifiers, and the thorough as-
sessment of their classification ability by employing the prob-
abilities of false darm and detection or the receiver operating
characteristic (ROC) curve.

The outline of the paper is as follows. The datasets used in
the experiments are presented in Section 2. The feature extrac-
tion and reduction techniques aswell asthe design of classifiers
employed are described in Section 3. Experimental results are
demonstrated in Section 4, and conclusions are drawn in Sec-
tion 5.

2. Subjects-Datasets

In the first experiment, the dataset contains recordings from 21
males aged 26 to 60 years who were medically diagnosed as
normals and 21 males aged 20 to 75 years who where medically
diagnosed with vocal fold paralysis. In the second experiment
21 females aged 22 to 52 years who were medically diagnosed
asnormals and 21 females aged 18 to 57 years who where med-
ically diagnosed with vocal fold edema served as subjects. The
subjects might suffer from other diseases too, such as hyper-
function, ventricular compression, atrophy, teflon granuloma,



etc. All subjects were assessed among other patients and nor-
mals at the MEEI [9] in different periods between 1992 and
1994. Two different kinds of recordings were made in each ses-
sion: in the first recording the patients were called to articulate
the sustained vowel “Ah” (/a/) and in the second one to read the
“Rainbow Passage’. The former is the one concerned with the
present work. Therefore, all procedures were applied to voiced
speech frames far away from transition periods. The record-
ings were made at a sampling rate of 25 Hz in the pathological
case, while at 50 Hz in the normal case. In the latter case, the
sampling rate was normalized to 25 Hz by subsampling.

3. Method description

First a 16 msec Hamming moving window is employed to ob-
tain frames from each voice recording for short-term voice anal-
ysis purpose [10]. From each recording, two central frames are
selected among the ones that belong to the most stationary por-
tion of the sustained speech signal asisproposedin[8, 11]. This
selection yields 42 frames of pathological voice and another 42
frames of normal voice. Thus, we obtain 84 framesin total for
each experiment. The frames exhibit an overlap of 50%.

The feature vector extraction is performed via short-term
linear prediction of order 14 [10]. The LP model of order 14 is
regarded as a good choice. It has been reported that the use of
more than 14 LPCs does not improve significantly the discrim-
ination of laryngeal diseases[8, 12]. Let x;,j = 1,2,..., 84,
bethe jth (14 x 1) feature vector, whose elements are the linear
prediction coefficients. The dimensionality of the feature space
is then reduced by using principal component analysis (PCA)
[13]. Thisisdone asfollows. Let x; be the normalized feature
vector independent of class:

Xj =Xj; —m @)

where m is the class-independent mean feature vector. Let also
N be the number of vectors of the whole feature space (i.e.,
N = 84 for each experiment). The covariance matrix S of the
overall feature spaceiis:
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InPCA, thep eigenvectorsey, k = 1,2,...,pwithp < 14 that
correspond to the p largest eigenvalues of S are computed. By
experiments we found that more than two principal components
did not improve significantly the performance of the classifiers
employed afterwards. Thus, a2 x 14 projection matrix P is
built, which is used to project the 14th dimensional feature vec-
tors to atwo-dimensional plane asfollows:

X =Px; ©)
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For both experiments the aforementioned pre-processing step
enables a visualization of the projected 2-D feature vectors on
the two-dimensional plane, as can be seen in Figure 1(a) for the
first experiment, and (b) for the second one.

Subsequently three two-class classifiers are described. The
first classifier isdesigned asfollows. The available dataare split
into atraining set and adigoint test set. 72 feature vectors (36
from normal voice samples and 36 from the pathological voice

samples) constitute the training set. The remaining 12 feature
vectors (6 from each class of voice samples) are being retained
to serve as test feature vectors. We compute first the within-
class covariance matrix S,

2
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where p; is the a-priory probability of class C;, i = 1,2. We
have assumed equal a-priori probabilities. The class dependent
covariance matrix S, ; is computed by

Swi= = 3 %;%7 ©)
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where N; (i = 1,2) isthe number of training feature vectors
that belong to class C;. (Here, N1 = N> = 36.) Secondly, we
compute the mean vector for each class, m; and m-, respec-
tively. Fisher's classifier is defined by the following vector w
[14, 13]:

' (thy — 1) ™
The projection of a 2-D feature vector onto w guarantees the
best separation between the two classes. The classifier is opti-
mal if the feature vectors in the two classes are Gaussian dis-
tributed [13].

Next, two other classifiers are discussed. Thefirst classifier
is based on the K -nearest neighbor (K -NN) method applied as
follows: for each feature vector of the test set we peak the fea
ture vectors of the training set within a circle around it, whose
radius is increased until at least K training feature vectors are
enclosed, the K-nearest ones. Thetest sampleisassigned tothe
class where the majority of the training feature vectors belongs
to. The second classifier depends on the class-dependent mean
vector computed from the training samples, employs the dis-
tance of each test feature vector from the mean vector of each
classand assigns the test sampl e to the class of the nearest mean
vector.

w =S,

4. Results

The assessment of Fisher's classifier was done via the ROC
curve [13]. While a threshold value ¢ is moving from a min-
imum value towards a maximum one across the projection
axis, the pathological samplesthat are successfully detected are
counted and the probability of detection P;(t) is computed for
each threshold value t as

__ #correctly classified pathological samples
- # pathological samples

Py(t) (8)

where# stands for number. The probability of false alarm Py (¢)
is estimated by

__ #normal samples misclassified as pathological ones
- # normal samples ’

Py (t)
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By plotting the various pairs (P (t), Pa(t)) the ROC curve is
obtained. We measured the aforementioned probabilities both
in the training and the test set. To cope with the lack of datawe
repeated the procedure 75 times by randomly selecting a train-
ing set of 72 samples (36 samples from each class) and atest set
of 12 samples (6 samples from each class). The average ROC
curves for the detection of vocal fold paralysis are plotted in
Figure 2(a) and (b) for the training set and the test set, respec-
tively. The average ROC curves for the detection of vocal fold
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Figure 1: The whole 2-D feature space for (a) the first experiment concerned with vocal fold paralysis and (b) the second experi-
ment concerning vocal fold edema. (Each normal feature vector is represented with an ‘0’, while each pathological feature vector is

represented by a‘*’.)

edema are shown in Figure 3(a) and (b) for the training set and
the test set, respectively. It can be seen that a probability of de-
tection close to 85% can be achieved for a probability of false
alarm equal to 10% in the case of vocal fold paraysis. At the
same probability of false alarm the probability of detection for
vocal fold edema is approximately 73 %.

For the two other classification algorithms cross-validation
was applied, with 756 different training sets of 72 (36 normal
and 36 pathological) randomly selected samples. The remain-
ing 12 samples in each of the 756 cases served astest set. The
Py and P, were computed in each repetition of the experiment
and finally the mean P; and P; values were computed. Ta-
bles 1 and 2 summarize the results for the K-NN classifier
(for K=3,5,7) and the nearest mean classifier for the first and
the second experiment, respectively.

Table 1: Mean Py and P; for the K-NN algorithm (for K =
3, 5, 7) and the nearest mean classifier for the detection of vocal
fold paralysis.

Method mean Py | mean Py
3-NN 0.0851 0.8402
5-NN 0.0353 0.8331
7-NN 0.0295 0.8329
Nearest 0.0745 0.8571
mean

From the inspection of Table 1 and 2 it is seen that the
nearest mean classifier attains a better performance than the K -
NN classifiers considered. More significant gains have been
obtained by the nearest mean classifier in the case of vocal fold
edema detection. The performance deterioration of al clas-
sifiers in the case of vocal fold edema could be attributed to
the fact that linear prediction analysis is less effective for low
pitched voice (e.g. women, children) [10].

Table 2: Mean Py and P; for the K-NN algorithm (for K =
3,5, 7) and the nearest mean classifier for the detection of vocal
fold edema.

M ethod mean Py | mean Py
3-NN 0.0679 0.7590
5-NN 0.0580 0.7286
7-NN 0.0545 0.7354
Nearest 0.1175 0.8325
mean

5. Conclusions

It has been demonstrated by experiments, that efficient detec-
tion of voice disorders can be achieved by Fisher's linear dis-
criminant, K-NN, and the nearest mean classifier for vocal fold
paralysis. Slightly worse results have been reported for vocal
fold edema detection. The spectral characteristics extracted by
linear prediction analysis of order 14 combined with principal
component analysis of order 2 for feature reduction have been
proved to be very efficient for the af orementioned classification
tasks.
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Figure 2: The average ROC curves for the detection of vocal fold paralysis from pathological voice samplesin (&) the training set and
(b) the test set.
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Figure 3: The average ROC curves for the detection of vocal fold edema from pathological voice samplesin (a) the training set and (b)
the test set.
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