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ABSTRACT 
In this paper we present a new approach to detecting weld defects from digitalised films based on 
texture features. Texture is one of the most important features used in recognising patterns in an 
image. However, these features are not yet commonly exploited in the analysis of X-ray images in 
NDT. The paper describes two groups of widely used texture features: 1) features based on the co-
occurrence matrix, which gives a measurement of how often one grey value will appear in a 
specified spatial relationship to another grey value on the image; and 2) features based on 2D 
Gabor functions, i.e., Gaussian shaped band-pass filters, with dyadic treatment of the radial spatial 
frequency range and multiple orientations, which represent an appropriate choice for tasks 
requiring simultaneous measurement in both space and frequency domains. The proposed 
approach to detecting weld defects follows a general pattern recognition scheme based on three 
steps: segmentation, feature extraction and classification. That is, in our case, 1) potential defects 
are segmented using an edge detector based on the Laplacian-of-Gauss operator; 2) texture 
features of the potential defects are extracted; and 3) the most relevant features are used as input 
data on a statistical classifier. This preliminary study makes a contribution to the improvement of 
the automatic detection of welding defects. 

 

1. Introduction 
As illustrated in Fig. (1), the methodology used in this investigation follows the pattern recognition 
schema: image segmentation, feature extraction and classification (Castleman, 1996; Mery et al, 
2003). The segmentation process oriented towards the detection of edges by employing the LoG 
filter (Mery & Filbert, 2002). This technique searches for changes in the grey values of the image 
(edges) thus identifying zones delimited by edges that indicate flaws. The segmentation detects 
regions that are denominated as 'hypothetical defects'. However, only some of them are defects and 
the others are false alarms. Subsequently, the feature extraction is centred principally on the 
measurement of properties of the regions. Finally, classification orders segmented regions in 
specific regions according to extracted features, assigning each region to one of a number of pre-
established groups, which represent all possible types of regions expected in the image. We will 
differentiate between the detection of defects and the classification of defects (Liao, 2003). In the 
detection problem, the classes that exist are only two: 'defects' or 'no defects', whereas the 
recognition of the type of the defects (e.g., porosity, slag, crack, lack of penetration, etc.) is known 
as classification of flaws types. In this paper, we study some texture features in order to detect the 
defects present in welding seams. 
The paper is organised as follows. Section 2 briefly gives an overview of the existing methods 
automatic detection or classification of welding defects. Section 3 presents the texture features used 
in our investigation. Section 4 carries out a feature selection in order to reduce computational cost 
of classification. In Section 5, the experiments and the results obtained by using statistical 
classifiers are shown. Finally, our conclusions are presented. 
2. State of the art 
In this Section we present several methods that have been published in the last 15 years that 
perform an automatic detection or classification of welding defects. 
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Fig. 1: Detection of welding defects using a pattern recognition schema. 

 
2.1 Gayer et al.’s Method 
The proposed method (Gayer et al, 1990) can be summarized as having two steps: 
i) A quick search for potential defects in the X-ray image: Assuming that the defects will be smaller 
than the regular structure of the test piece, potential defects are classified as those regions of the 
image where higher frequencies are significant. The spectrum of the X-ray image is determined 
with the help of a fast Fourier transformation, which is calculated either row by row or column by 
column in little 32 × 32 windows. When the sum of the higher frequencies of a window is greater 
than a given threshold value, the entire window is marked as potentially defective. Another 
possibility is suggested by the authors as part of this task: A window is selected as potentially 
defective when the sum of the first derivative of the rows and columns of a window is large enough. 
ii) Identification and location of the true defect: Because of the time consuming nature of this step, 
only those regions, which were previously classified as being potentially defective, are studied here. 
Two algorithms were developed here as well. The first leads to a matching1 between the potential 
defect and typical defects, which are stored in a library as templates. Whenever a large resemblance 
between the potential defect and a template is found, the potential defect is classified as a true 
defect. The second algorithm estimates a defect-free X-ray image of the test piece by modelling 
every line of an interpolated spline function without special consideration for the potentially 
defective region. Following this, the original and the defect-free images are compared. True defects 
are identified when large difference occurs compared to the original input image. 
2.2 Lawson and Parker’s Method 
In 1994 Lawson and Parker proposed in (Lawson & Parker, 1994) that artificial neural networks 
(ANN) be used for the automated detection of defects in X-ray images. The method generates a 
binary image from the test image where each pixel is either 0 when a regular structure feature of the 
piece or 1 when a defect is detected. This entails the supervised learning of a multi-layer perceptron 
network (MLP) where the attempt is made to obtain detection from training data. A back 
propagation algorithm is used for the assignment of weightings within the MLP. 
The authors use one of two hidden layers in the network topography of the ANN, where the input 
signal corresponds to a window of m × m grey values in the X-ray image. The output signal is the 

                                                 
1 Matching is performed with a Sequential Similarity Detection method. 

BAM 5
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pixel at the image centre in the binary image. Since the threshold value function for the neurons are 
sigmoidal in this method, a threshold is used to obtain a binary output signal. 
The desired detection in the training data was obtained with a segmenting procedure based on an 
adaptive threshold. During the experiments of five X-ray images, Lawson and Parker show that the 
detection using ANN is superior to the segmenting method using adapted thresholds. 
2.3 Defect recognition using shape features 
A method for automated recognition of welding defects was presented in (Sofia & Redouane, 
2002). The detection follows a pattern recognition methodology: i) Segmentation: regions of pixels 
are found and isolated from the rest of the X-ray image using a watershed algorithm and 
morphological operations (erosion and dilation). ii) Feature extraction: the regions are measured 
and shape characteristics (diameter variation and main direction of inertia based on invariant 
moments) are quantified. iii) Classification: the extracted features of each region are analysed and 
classified using a k-nearest neighbour classifier. According to the authors, the method is robust and 
achieves a good detection rate. 
2.4 Defect recognition using linear classifiers 
In (Silva et al, 2002) a method to welding defect classification is proposed. In a first step, called 
image pre-processing, the quality of the X-ray image is improved using a median filter and a 
contrast enhancement technique. The defect detection follows the pattern recognition schema 
mentioned above: i) Potential defects are segmented in the X-ray image. ii) Geometric and grey 
value features (contrast (C), position (P) , aspect ratio (a), width-area ratio (e/A), length-area ratio 
(L/A) and roundness(R)) are extracted. The correlation between features and each considered defect 
class (slag inclusion, porosity, lack of penetration and undercutting) was evaluated by analysing the 
linear correlation coefficient. iii) The most relevant features were used as input data on a hierarchic 
linear classifier (Silva et al, 2001). 
In order to achieve a higher degree of reliability for the results, radiographic standards from 
International Institute of Welding were used, with 86 films containing the main defect classes. The 
experimental results shown that the features P and e/A are able to classify the classes undercutting 
and lack of penetration. Nevertheless, the six mentioned features are required to obtain a high 
performance by classifying the porosity and inclusion defects. 
2.5 Background subtraction method 
Liao and Li (1998) propose a detection approach based on a curve fitting. The key idea of this work 
is to simulate a 2D background of a normal welding bead characterised by low spatial frequencies 
in comparison with the high spatial frequencies of image of the defects. Thus, a 2D background is 
estimated by fitting each vertical line of the weld to a polynomial function. Thus, the obtained 
image is subtracted from the original image. The defects are detected where the difference is 
considerable.  Wang & Liao (2002) and Liao (2003) propose a fuzzy k-nearest neighbour, multi-
layer perceptron neural network and a fuzzy expert system for the classification welding defect 
types. The features used for the classification are distance from centre, circularities, compactness, 
major axis, width and length, elongation, Heywood diameter and average intensity and standard 
deviation of intensity.  
In this literature review, we observe that usually features that provide information about the grey 
values (intensity features) are used to detect the flaws, whereas geometric features are employed to 
classify them. 
3. Texture features 
Texture is one of the most important features used in recognising patterns in an image. However, 
these features are not yet commonly exploited in the analysis of X-ray images in NDT (see 
literature review in Section 2). In this Section, we describe two groups of widely used texture 
features: 1) features based on the co-occurrence matrix, and 2) features based on 2D Gabor 
functions. Once the X-ray image is segmented, the edge detection provides windows (see for 
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example window W in Fig. (1)) which texture features can be extracted. Each window W is defined 
as the rectangle that includes the segmented hypothetical defect and its surroundings. 
3.1 Texture features based on co-occurrence matrix 
These features give a measurement of how often one grey value will appear in a specified spatial 
relationship to another grey value on the image. We use, in this case, the pixels of each window W 
that contains the hypothetical defect and its surrounding (see Fig. (1)). 
The co-occurrence matrix klP  (Castleman, 1996; Haralick et al, 1973) is defined as follows. The 
element ),( jiPkl  of this matrix for a window is the number of times, divided by TN , that grey-
levels i  and j  occur in two pixels separated by that distance and direction given by the vector (k,l) 
or (-k,-l), where TN  is the number of pixels pairs contributing to klP . In order to decrease the size 

xx NN ×  of the co-occurrence matrix the grey scale is often reduced from 256 to 8 grey levels. 
From the co-occurrence matrix several texture features can be computed. The 14 Haralick features 
(Haralick et al, 1973) are defined as follows for ),(:),( jiPjip kl= : 
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where µx, µy, σx and σy are the means and standard deviations of px and py respectively, and 
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The texture features are extracted for four directions (0º-180º, 45º-225º, 90º-270º and 135º-315º) in 
different distances d =max(k,l), i.e., for a given distance d  we have four possible co-occurrence 
matrices: P0d, Pdd, Pd0 and P-dd. For example for d  = 1, we have (k,l) = (0,1); (1,1); (1,0); and (-1,1). 
After Haralick, et al (1973), 14 textures features using each co-occurrence matrix are computed, and 
the mean and range for each feature are calculated, i.e., we obtain 14 × 2  = 28 texture features for 
each distance d. The features will be denoted as f'i for the mean and f''i for the range, for i = 1,..., 14.  
3.2 Texture features based on Gabor functions 
The Gabor functions are Gaussian shaped band-pass filters, with dyadic treatment of the radial 
spatial frequency range and multiple orientations, which represent an appropriate choice for tasks 
requiring simultaneous measurement in both space and frequency domains. The Gabor functions are 
a complete (but a nonorthogonal) basis set given by: 
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where σx and σy denote the Gaussian envelope along the x and y-axes, and u0 defines the radial 
frequency of the Gabor function. Examples of Gabor functions are illustrated in Fig. (2). In this case 
a class of self-similar functions are generated by rotation and dilation of f(x,y). 
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Fig. 2: Example of Gabor functions in spatial domain: a) imaginary components of self-similar filter bank by using p = 

1,..., 8 scales and q = 1,..., 8 orientations, b) 3D representations of two functions of a).  
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Each Gabor filter has a real and an imaginary component that are stored in M × M masks, called Rpq 
and  Ipq respectively, where p = 1, ..., S, denotes the scale, and q = 1, ..., L, denotes the orientation 
(for details see (Kumar & Pang, 2002)). In our work we use S = 8 scales, and L = 8 orientations as 
shown in Fig. (2), with M = 27. 
The Gabor filters are applied to each segmented windows W that contains the hypothetical defect 
and its surrounding (see Fig. (1)). The filtered windows Gpq are computed using the 2D convolution 
of the window W of the X-ray image with the Gabor masks as follows: 
 Gpq = [ (W! Rpq)2  + (W! Ipq)2 ]½,        (16)     
where ! denotes the 2D convolution operation. The Gabor features, denoted by gpq, are defined as 
the average output of Gpq, i.e., it yields S × L Gabor features for each segmented window: 
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where the size of the filtered windows Gpq is nw × mw. 
4. Feature Selection 
In this work, 28 texture features based on co-occurrence matrix for 3 distances, and 64 texture 
features based on Gabor functions were extracted. That is, there are 28 × 3 + 64 = 148 extracted 
features for each segmented region.  
The ROC (receiver operation characteristic) analysis is commonly used to measure the 
performance of a two-class classification. In our case, each feature is analysed independently using 
a threshold classifier. This way, a hypothetical flaw is classified as a 'no-defect' (or 'defect') if the 
value of the feature is below (or above) a threshold value. The ROC curve represents a 'sensitivity' 
(Sn) versus '1-specificity' (1-Sp), defined as: 

FNTP
TPSn +

= ,  
FPTN

FPS p +
=−1        (18) 

in which TP is the number of true positives (correctly detected defects), TN is the number of true 
negatives (correctly detected no-defects), FP is the number of false positives (false alarms, or no-
defects detected as defects) and FN false negatives (flaws detected as no-defects). Ideally, Sn = 1 
and 1-Sp = 0, this means that all defects were found without any false alarms. The ROC curve 
makes it possible to evaluate the performance of the detection process at different points of 
operation (as defined for example by means of classification thresholds). The area under the curve 
(Az) is normally used as a measure of this performance as it indicates how flaw detection can be 
carried out: a value of Az = 1 indicates an ideal detection, while a value of Az = 0.5 corresponds to 
random classification (Egan, 1975). 
In order to reduce the computational time required for classification it is necessary to select 
features; this way the classifier only works with non-correlated features that provide flaw detection 
information. There are a variety of methods for evaluating the performance of the extracted 
features. The present Section includes only the Sequential Forward Selection (SFS) method (Jain, et 
al, 2000). This method requires an objective function J obtained from the Fisher discriminant 
(Fukunaga, 1990) that evaluates the performance of the classification using m features. The method 
begins with one feature (m =1), and a search is performed for the feature that maximises the 
function J. Subsequently, a second search is carried out for that feature that maximises the function 
J with two features (m =2). This method ensures that neither features that are correlated with the 
already selected feature nor those that do not maximise f are considered. This process is repeated 
until the best n features are obtained. This approach works best with normalised features, i.e., those 
that have been linearly transformed in such a way as to obtain a mean value equal to zero, and a 
variance equal to one. 
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5. Experiments and results 
The X-ray image BAM-5, shown in Fig. (1), was analysed. The size of the image is 3.512 × 366 
pixels. After the segmentation step, 1.419 hypothetical defects were obtained. According to a 
human visual inspection, in the segmented regions only 198 were defects. Nevertheless, the 
segmentation process could detect all defects bigger than 15 pixels. The 28 × 3 texture features 
based on co-occurrence matrix  and the 64 texture features based on Gabor functions were extracted 
for each of the 1.419 segmented hypothetical defect. 
Table (1) presents the top ten values obtained by computing the area under the ROC curve (Az) and 
the Fisher discriminant (J) in our data. The best texture features based on the co-occurrence matrix 
are the mean of the difference entropy and the mean of the difference variance (equations (8) and 
(7) respectively), for the distances d  = 3, 2, 1. In the other hand, the best Gabor features are at p = 6 
(scale) and the orientations:  ,  , and . The ROC and the class distribution of feature f'11@ d=3 
is shown in Fig. (3).  
The results obtained by the features selection based on the SFS method are shown in Fig. (4) for the 
first seven features. We observe that only one Gabor feature was selected. The feature space is 
illustrated in Fig. (5) for the first three selected features. The figure shows that the class 'defect' and 
'no-defect' are good separable in the extreme. In the middle, the two classes are mixed. 
 

Table 1: ROC analysis and Fisher discriminant 

Feature Az  Feature J 
g63 0.9287  f'11@ d=3 1.1376 

f'11@ d=3 0.9285  f'10@ d=3 1.0496 
f'10@ d=3 0.9207  g63 0.9132 

g65 0.9178  g67 0.8997 
g67 0.9124  f'11@ d=2 0.8948 

f'11@ d=2 0.8969  f'10@ d=2 0.7638 
f'10@ d=2 0.8620  f'11@ d=1 0.6936 

g57 0.8600  f'10@ d=1 0.6700 
f'2@ d=3 0.8523  g65 0.6525 
f'2@ d=2 0.8474  f'5@ d=1 0.5998 
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Fig. 3: ROC and class distribution of feature f'11@ d=3 
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Fig. 4: SFS method: the selected features are: 1) f'11@ d=3; 2)  f'11@ d=2; 3)  f''10@ d=3; 4)  f'10@ d=2; 5)  f''11@ d=3;  

6) f'5@ d=1; and 7) g63. 
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Table 2: Detection performance 

Detector TP FP FN TN Sn 1-Sp 
Ideal 198 0 0 1221 100,0% 0,0% 
Polynomial 180 99 18 1122 90,91% 8,11% 
Mahalanobis 180 155 18 1066 90,91% 12,69% 
nearest neighbour 157 168 41 1053 79,29% 13,75% 

 
Finally, we present the results obtained by a statistical classifications with the seven selected 
features. In these experiments, we use the polynomial, Mahalanobis and nearest neighbour 
classifiers (Mery et al, 2003). The results are summarised in Table (2), where the true positives, 
false positives, false negatives, true negatives, sensibility, and 1-specificity are tabulated for the 
ideal detector and the mentioned classifiers. The best performance is obtained by the polynomial 
classifier, where fast 91%  of the existing flaws were detected with 8% of false alarms.  
6. Conclusions 
In this paper we presented a new approach to detecting weld defects based on two groups of widely 
used texture features: 1) features based on the co-occurrence matrix, and 2) features based on 2D 
Gabor functions. The best texture features based on the co-occurrence matrix are the mean of the 
difference entropy and the mean of the difference variance, for a distance of d  = 3. In the other 
and, the best Gabor features are at p = 6 (scale) and the orientations: , , and  . The area under 
the ROC curve for these cases is about Az = 0,92. The best performance is obtained by the 
polynomial classifier, fast 91%  of the existing flaws were detected with 8% of false alarms. This 
preliminary study makes a contribution to the improvement of the automatic detection of welding 
defects. 
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