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ABSTRACT Diabetic retinopathy (DR) is a complication of diabetes that leads to blindness. The manual

screening of color fundus images to detect DR at early stages is expensive and time consuming. Deep learning

(DL) techniques have been employed for automatic DR screening on fundus images due to their outstanding

performance in many applications. However, training a DL model needs a huge amount of data, which are

usually unavailable in the case of DR, and overfitting is unavoidable. Employing a two-stage transfer learning

method, we developed herein an intelligent computer-aided system using a pre-trained convolutional neural

network (CNN) for automatic DR screening on fundus images. A CNN model learns the domain-specific

hierarchy of low- to high-level features. Given this, using the regions of interest (ROIs) of lesions extracted

from the annotated fundus images, the first layer of a pre-trained CNN model is re-initialized. The model

is then fine-tuned, such that the low-level layers learn the local structures of the lesion and normal regions.

As the fully connected layer (FC) layers encode high-level features, which are global in nature and domain

specific, we replace them with a new FC layer based on the principal component analysis PCA and use it

in an unsupervised manner to extract discriminate features from the fundus images. This step reduces the

model complexity, significantly avoiding the overfitting problem. This step also lets the model adopt the

fundus image structures, making it suitable for DR feature detection. Finally, we add a gradient boosting-

based classification layer. The evaluation of the proposed system using a 10-fold cross-validation on two

challenging datasets (i.e., EyePACS and Messidor) indicates that it outperforms state-of-the-art methods.

It will be useful for the initial screening of DR patients and will help graders in deciding quickly as regards

patient referral to an ophthalmologist for further diagnosis and treatment.

INDEX TERMS Fundus images, diabetic retinopathy, classification, CNN.

I. INTRODUCTION

Diabetes is one of the main health dilemmas worldwide. One

complication of diabetes is diabetic retinopathy (DR), which

is one of the main causes of blindness [1]. It has different

levels of severity [2] and can be controlled if detected at early

stages. DR affects the retina, which is responsible for the

conversion of light to the electric signal interpreted to create

an image. The retina contains a network of blood vessels

that provide nutrition to the retina. Diabetes damages the

blood vessels; consequently, the retina does not receive blood

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

supply. This affects the health of the retina and ultimately

distorts the eyesight of an individual. The earliest stage of

DR is referred to as background retinopathy. At this stage,

diabetes does not affect the sight, but impairs the blood

vessels. The vessels may slightly bulge (microaneurysms -

MAs), leak fluid and proteins (exudates - EXs), and leak

blood (retinal hemorrhages - HEs), as shown in Figure 1.

At a later stage, DR becomes proliferative retinopathy and

harms the retina more extensively than background retinopa-

thy. It also increases the chances of vision loss and creates

a threat of blindness because most of the retina is starved

of proper blood supply. Ophthalmologists or expert graders

detect DR manually, which is expensive. Routinely screening
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FIGURE 1. Type of lesion in a DR fundus image [1].

a large number of diabetes patients for possible DR preva-

lence puts a heavy burden on ophthalmologists or expert

graders, affecting their efficiency and delaying DR diagno-

sis and treatment. The diagnosis is also subjective, and the

findings of different graders vary [3]–[5]. Given this, there is

a great need for an intelligent automatic system for screening

patients for DR prevalence, which can help graders to detect

DR with confidence at an early stage and refer a patient to an

ophthalmologist for further diagnosis and treatment.

Many computer-aided systems have been developed for

DR detection and diagnosis in the recent decade. Some

of them are computer-aided detection systems (CADe)

[1], [6]–[9] that work at the pixel level to detect and segment

lesions, while others are computer-aided diagnosis (CADx)

systems [1], [10], [11], whichwork at the image level to detect

DR. CADe and CADx systems help reduce the overhead

of graders in deciding whether to refer patients to an oph-

thalmologist. Many methods have been developed for CADx

systems using machine [11] and deep learning (DL) [12].

These methods use different techniques for DR classification,

which can be broadly grouped into two main categories:

hand-engineered features based techniques and DL based

methods.

Different hand-engineered techniques have been proposed

to extract features from fundus images for their grading.

Seoud et al. [8] used contrast, Pires et al. [10] employed

SURF features, Sreejini and Govindan [3] used BoVW based

on K-means, local features (IFT, LBP, and LDP), and color

features, and Adal et al. [13] employed Laplacian of Gaus-

sian (LOG) to extract features from fundus images. The

hand-engineered features are not directly learned from the

data. As such, this kind of features are not tuned to the

lesion structures in fundus images or do not generalize well.

In addition, their design involves laborious and exhaustive

preprocessing and parameter tuning.

At present, deep learning has been employed for DR diag-

nosis from fundus images and it has shown promising results.

Some authors such as Pratt et al. [14], Colas et al. [15], Quel-

lec et al. [1], Islam et al. [16] and Chen et al. [17] developed

deep models for DR grading. A commonly used DL archi-

tecture is convolutional neural network (CNN), it involves

millions of learnable parameters and its training needs a huge

amount of data, which is usually not available in case of

DR, and the overfitting problem is inevitable. To overcome

this issue, some authors like Wan et al. [18], Gao et al. [19]

employed fine-tuning and pre-trained CNNmodels (AlexNet,

VggNet, GoogleNet, and ResNet, inception and Inception-

V3) for DR grading. The best state-of-the-art pre-trained

CNN models like VGG [20] and ResNet [21], DPN [22] are

usually trained on ImageNet [23], a big dataset of natural

images, and encode the domain-specific hierarchy of low- to

high-level features. Natural images have different structures

compared to retinal fundus images; thus, fine-tuning these

models is essential for their adaptation to the fundus image

structures.

Though, the deep learning-based methods perform better

than those based on handcrafted features, they do not give

as good performance as is expected due to the following

reasons: (i) a huge number of DR fundus is not available to

train a deep CNN model; hence, overfitting is unescapable;

and (ii) a brute force approach to fine-tune a pre-trained

model after replacing the classification layer does not prop-

erly learn the discriminative structures from the retinal fun-

dus images. The way a model is fine-tuned using a limited

number of fundus images has significant impact on its perfor-

mance. Most of the transfer learning techniques employ fun-

dus images for fine-tuning pre-trained CNN models. As the

DR grading depends on the presence of lesions like MAs,

EXs, and HMs in fundus images, we propose an effective

two-stage method for fine-tuning a pre-trained CNN model

for DR grading using lesion ROIs and fundus images. The

method takes a retinal fundus image as input, processes it

with the fine-tuned model and grades it into normal or DR

levels. The main contributions of the proposed work are as

follows.

• We introduced an intelligent computer-aided diag-

nosis system based on DL for the DR grading of

retinal fundus images, which does not need any pre-

processing technique to preprocess the retinal fundus

images.

• We proposed a two-stage fine-tuning method to adapt

a pre-trained model to retinal fundus images: in the first

stage, it embeds the DR lesion structures in a pre-trained

CNN model using lesion ROIs, and in the second stage,

it adapts high-level layers to extract the discriminate

structures of the retinal fundus images by removing the

domain-specific fully connected layer (FC) layers of a

pre-trained model and introducing a new PCA layer,

which significantly reduces the model complexity and

helps overcome the overfitting problem; this also over-

comes the limitations of DL model learning due to the

small amount of available data for DR detection.

• We validated the proposed method fine-tuned using

ROIs on two benchmark public domain challenging

datasets: EyePACS [24] and Messidor [25].

This remainder of this paper is structured as follows:

Section 1 intoduction; Section 2 describes the proposed

method; Section 3 presents experiments result and discussion;

and Section 4 concludes the paper.
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FIGURE 2. Overview of the proposed method.

II. PROPOSED METHOD

A. PROBLEM FORMULATION AND MOTIVATION

Let RM×N×3 be the space of the color retinal fundus images

with a resolution ofM ×N and Y be the space of labels, such

that Y = {1, 2, . . . , c} , where c is the number of classes.

The problem of predicting the DR grade of the retinal fundus

image is related to building a mapping φ : RM×N×3 → Y that

maps a fundus image I ∈ RM×N×3 to a y ∈ Y (i.e., φ (I ) = y).

We employed a deep convolutional neural network (CNN)

model to build the mapping φ. Figure 2 presents the overall

structure of the model that defines this mapping. A CNN

model represents the hierarchical structure of images and

has shown amazing results in many applications [26]. It has

also been used for DR diagnosis [1], [19], [27]. However,

the achieved performance was not as expected mainly due

to the CNN model involving a huge number of parameters

and needing a big amount of data for its training. This

much data is not available in the case of DR diagnosis. The

overfitting problem cannot be avoided when a CNN model

is learned from scratch. Transfer learning was employed to

overcome this problem [18], [19], [27], but the performance

was unsatisfactory because the hierarchical structure of a

CNN model was not properly considered. We introduced a

two-stage transfer learning herein to develop a CNN model

for modeling the mapping φ. State-of-the-art pre-trained

models, such as VGGNet, ResNet, and DPN, trained on

ImageNet dataset are usually employed for transfer learn-

ing. ImageNet consists of natural images, and the internal

structure of natural images is entirely different from that of

medical images like retinal fundus images. In other words,

just fine-tuning a pre-trained model using fundus images will

not work due to the significant differences in the domain

structures. The hierarchy of features learned by a pre-trained

CNN model must be considered. Low-level layers learn low

level features, while high-level layers, particularly FC layers,

encode domain-specific high-level features. In view of this,

using the ROIs extracted from the fundus images, we first

fine-tuned the low-level layers and replaced high-level FC

layers with a new layer learned in an unsupervised manner.

We then modeled the mapping φ using a pre-trained CNN

model based on this idea (Figure 2). It took fundus images as

input and gave a normal or DR grade as the output. It con-

sisted of CONV layers fine-tuned using the ROIs extracted

from the fundus images, an FC layer built using PCA, and a

classifier layer. The detail of the model design is given in the

subsections that follow.

FIGURE 3. Extraction process of the lesion ROIs from the EX fundus
image in E_optha (image-C0010492-20).

B. DATASET PREPARATION

We used the lesion ROIs extracted from the fundus images

to fine-tune the low-level layers. For this purpose, we used

public domain benchmark DR datasets. We employed

E-optha [28] for the lesion ROI extraction because it contains

a pixel-level lesion annotation. We evaluated the model by

employing EyePACS [24] and Messidor [25] because both

have image level annotations for DR grading.

E-optha is designed for scientific research on DR diag-

nosis. It contains two subsets of color fundus images for

EX and MA. Each image is manually annotated by three

expert ophthalmologists. EXs are contained in 47 images,

whereas 148 images contain MAs and small HEs. Using

the annotations, we extracted ROIs around each lesion to

capture its structure. We then collected 695 MA ROIs

and EX ROIs each from the fundus images and used

the same number for each type of lesion to keep the

data balanced for fine-tuning. We randomly collected the

same number of normal ROIs from normal fundus images.

The collected ROI dataset had three classes: EX, MA,

and normal. Figure 3 illustrates examples of the lesion

ROIs.

These ROIs were not enough for fine-tuning. To avoid

overfitting, we augmented the training examples such that

the internal structures of the ROIs were reflective of the

true structures of the fundus images. We employed two data

augmentation methods. First, we extracted the ROIs around

the lesions with different sizes (i.e., 16 × 16, 32 × 32, and

64× 64) such that they contain different context information.

We then resized them to the same size (i.e., 64× 64). Second,

we rotated each ROI in four directions [40 ◦,20 ◦,180 ◦,275 ◦]

and flipped it horizontally. Figure 3 shows the examples.
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C. DESIGN AND TRAINING OF A CNN MODEL

Training a CNN model from scratch is time consuming and

needs a very large dataset, which is unavailable. We intro-

duced a two-stage transfer learning and designed a CNN

model using a pre-trained CNN model. We tried three state-

of-the-art models, namely VGG19, ResNet152, andDPN107,

pre-trained on the ImageNet dataset [29]. The VGGNet

achieved an excellent accuracy on ImageNet and in other

domains [23], [30]. The ResNet architecture also exhib-

ited excellent results on ImageNet 2015 [21], [31]. The

dual path network (DPN) is based on the philosophy of

ResNet and explores new features through dual path archi-

tectures [22]. Our transfer learning method is different from

those employed in [18], [19], and [27] in the sense that

we considered the hierarchy of the features learned by a

CNN model and fine-tuned and modified it in two stages to

adapt it for fundus images. The low-level layers, particularly

CONV layers, of a pre-trained CNNmodel encoded low level

and local features that do not heavily depend on domain.

We fine-tuned the low-level layers using extracted ROIs in the

first stage (Figure 4a). The higher-level layers, particularly

the FC layers of a trained model, encoded high-level global

features that heavily depend on the domain. These layers

also involved a huge number of learnable parameters, which

makes the model very complex and lead to an overfitting

problem.We removed the FC layers and added a newFC layer

using the PCA technique in the second stage (Figure 4b).

1) CONV LAYER TUNING

Using the extracted ROIs, we first re-initialized the filters of

the first CONV layer and fine-tuned the model to adapt the

CONV layers of a pre-trained model to the structures of the

retinal fundus images.

a: RE-INITIALIZATION OF THE WEIGHTS OF FIRST CONV

LAYER

Fundus images capture the anatomical features of human

eye, and its intrinsic characteristics are entirely different

from those of natural images. A pre-trained model is usu-

ally learned on ImageNet dataset, which consists of natu-

ral images with well-defined micro-structures. As such the

CONV layer filters of a pre-trained model are adopted to

micro-structures of natural images and are not appropriate

for extracting features specific to different lesion structures

in fundus images. The filters of the first CONV layer can be

directly re-initialized using the lesion ROIs extracted from

fundus images. We introduce an algorithm, based on the PCA

and the lesion ROIs of MAs and EXs, to re-initialize the

filters of the first CONV layer to tune them to the lesion

structures. For the re-initialization, we used only the lesion

ROIs to emphasize the lesions during DR grading. Algo-

rithm 1 presents the re-initialization details. Reinitializing the

filters of the first layer of a pre-trained CNN model has a sig-

nificant effect on the system performance, as is demonstrated

in the Results section.

Algorithm 1 Re-Initialize the Filters of the First CONV

Layer Using PCA

Input: Lesion ROIs (MA and EX) and the filters of the first

CONV layer of a pre-trained CNN model.

Output: Re-initialized filters of the first CONV layer.

Step 1: Rescale all ROIs to 64 × 64 and flatten them to

x1, x2, . . . , xn, where n is the number of lesion ROIs,

and xi ∈ Rd , d = 3 × 64 × 64.

Step 2: Compute the mean m of xi, i = 1, 2, . . . , n,

translate them to φi = xi −m, i = 1, 2, . . . , n and form

A = [φ1 φ2 . . . φn], where each φi is a column vector.

Step 3: Compute the covariance matrix C = AAT .

Step 4: Compute the eigenvalues and eigenvectors λj ∈ R,

and uj ∈ Rd , j = 1, 2, . . . , d of the covariance matrix

C and select K eigenvectors uk, k = 1, 2, . . . ,K

corresponding to the largest K eigenvalues, assuming

that K filters exist in the first CONV layer.

In the case of VGGNet, ResNet, and DPN, K = 64.

Step 5: The dimension of each uj is d = 3× 64× 64, but the

size of each filter in the first CONV layer is

dr = a× b× c, where dr is much smaller than d. For

example, in the case of VGGNet, it is (3 × 3 × 3),

and for ResNet and DPN, it is (3 × 7 × 7). To project

each uk ∈ Rd , k = 1, 2, . . . ,K to f k ∈ Rdr,

k = 1, 2, . . . ,K , repeat steps 2–4 for uk ∈ Rd ,

k = 1, 2, . . . ,K and compute the transformation matrix

M = [v1 . . . .vdr], where vj ∈ Rd denotes the

eigenvectors of the respective covariance matrix

corresponding to the largest dr eigenvalues.

Step 6: Project each uk ∈ Rd , k = 1, 2, . . . ,K to f k ∈ Rdr,

k = 1, 2, . . . ,K , where f k = MT (uk − u), and u is the

mean of vectors uk ∈ Rd , k = 1, 2, . . . ,K .

Step 7: Reshape each f k ∈ Rdr, k = 1, 2, . . . ,K to the

3D filter of size dr = a× b× c. As an example, for

ResNet and DPN models, dr = 147, and it is reshaped

to (3 × 7 × 7).

b: CNN MODEL FINE-TUNING

After the first CONV layer re-initialization, the pre-trained

model was fine-tuned using the extracted ROIs to adapt it to

the lesion and normal structures of the retinal fundus images.

The ROIs belonged to three classes (i.e., MAs, EXs, and

normal); thus, before the model fine-tuning, we replaced the

last FC layer (i.e., the classification layer with 1000 neurons

based on ImageNet) with a new classification layer having

three neurons (Figure 4a).

Almost all pre-trained models (e.g., VGGNet, ResNet, and

DPN) take a fixed-size image (e.g. 224 × 224) as input. This

constraint leads to a problem due to two reasons: (1) the max-

imum size of the extracted ROIs is 64× 64; and (2) the size of

the fundus images to be graded is about 3800 × 2600 pixels

in the EyePACS dataset and 2240 × 1488 in the Messidor

dataset. Most of the state-of-the-art methods resize fundus

images to 224 × 224 [21], 227 × 227 [32], 299 × 299 [33],

or 320× 240 [34]. Rescaling up the ROIs and rescaling down
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FIGURE 4. Architecture of the proposed system for DR grading.

the fundus images to 224× 224 are problematic becausemost

of the discriminative structures are destroyed in the fundus

images, and extraneous structures are introduced in the ROIs.

To overcome this problem, we introduce an adaptive max

pooling layer before the FC layers. It adds to the model an

ability to predict the label of fundus image or ROI if any size.

It takes input of any spatial dimensions W × H × D from

last CONV layer, reduces it to a fixed output of dimension

1 × 1 × D. It reduces the number of parameters and helps

to overcome the problem of overfitting. The number of out-

put features is equal to the number of input planes [35].

After adding this layer, we fine-tuned the pre-trained model

using 64 × 64 ROIs. To do so, the ROIs were divided into

three subsets: 80% for training, 10% for validation, and

10% for testing. For fine-tuning, we used the cross-entropy

loss, Adam optimizer with 0.001 learning rate, 3000 batch

size, and 21 epochs. The question was whether the CONV

layers learn the lesion structures in the fine-tuned CNN

model (FTCNN) and whether their output can be inter-

preted for referral. To answer this question, we created heat

maps of the feature maps of the CONV layers using the

gradient-weighted class activation mapping (GradCam) visu-

alization method [36] developed based on class activation

mapping. method [36] developed based on class activation

mapping. Figure 5 shows some heat maps of the CONV

layers of ResNet152 with/without the CONV1 layer re-

initialization. The maps in Figure 5(a) indicate that an MA

lesion structure is hierarchically encoded by the CONV layers

and becomes pronounced to graders for diagnosis in the last

CONV layer. For the case of a re-initialized CONV1, it is

more localized in the last CONV layer. Figure 5(b) depicts the

same effect of the last CONV layer for the EX lesion, while

Figure 5(c) shows the heat map of the last CONV layer when

the input is a fundus image. The lesion structure is depicted

in the heat map, which indicates that after fine-tuning the

pre-trained model, it learned the lesion structures in the fun-

dus images. The fine-tuned model successfully highlighted

the lesion regions in the retinal fundus images, which is

more important for clinical examinations and graders for

diagnosis.

2) PRUNING AND ADDITION OF FC AND CLASSIFICATION

LAYERS

The FC layers of a pre-trained model are learned from the

ImageNet dataset and encode the global higher-level features,

which are not relevant to the normal and lesion features

in the fundus images. Moreover, the FC layers contain a

huge number of learnable parameters that is much larger
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FIGURE 5. Visualizations of activation maps using the GradCam method: (a) visualizations of an MA lesion encoded
by the activation maps of the CONV layers of ResNet152 with and without CONV1 re-initialization; (b) visualization
of the EX lesion encoded by an activation map of the last CONV layer of ResNet152 with a re-initialized CONV1; and
(c) visualization of the lesion structure in a fundus image encoded by an activation map of the last CONV layer of
ResNet152 with a re-initialized CONV1.

than the learnable parameters of CONV layers. For example,

in VGG-19, the CONV layers contain 20,024,384 weights

and biases, and the FC layers have 123,642,856 learnable

parameters. As explained in the previous section, fine-tuning

a pre-trained model leads to an overfitting problem and an

increased time complexity due to the small number of ROIs

and the huge number of learnable parameters of the FC layers.

We removed all FC layers from the fine-tuned model and

added a new FC layer, called the PCA layer, with 153 neurons

to reduce the model complexity. The 153 neurons in this

layer were selected using the greedy algorithm based on ROIs

and the fine-tuned ResNet152 (Table 1). The PCA layer was

learned in an unsupervised manner by applying PCA on the

activations of the last CONV layer. It was used to extract

features from the fundus images (not ROIs, Figure 4b). Algo-

rithm 2 presents how the PCA layer constructed. Remov-

ing the FC layers significantly reduced the total number of

learnable parameters (e.g., 86% reduction in the pre-trained

VGG19). The PCA layer extracted the features relevant to the

normal and lesion structures in the fundus images. We clas-

sified the extracted features further by adding a classification

layer, which predicts whether the input fundus image belongs

to a normal person or a DR patient with its severity level.

For the classification layer, we considered three tree-based

classifiers, namely decision tree (DT) [37], random forests

(RF) [38], and gradient boosting (GB) [39], based on their

better performances for medical imaging [40]–[42].

TABLE 1. Selecting the number of PCA using fine-tuned ResNet152 and
ROI dataset.

The size of the fundus images in EyePACS is near

3800 × 2600 px on average, while that in Messidor is near

2240 × 1488. Although our designed model can take an

input fundus image of any size, handling the big size of

images is difficult. It requires an excessively large memory

size and involves a high computational overhead. Most state-

of-the-art methods resize the fundus images into small sizes

to overcome this problem: 224 × 224 [21] 227 × 227 [32]

299 × 299 [33], and 320 × 240 [34]. These sizes smooth

out the lesion areas, which are usually small (e.g., in the

case of MAs and HEs). We resized the fundus images to

1000 × 1000 and extracted the features vectors using the

pruned model, UCNN, to obtain a compromise between per-

formance and detection accuracy.
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III. EXPERIMENTS

A. EVALUATION DATASET

To evaluate the proposed system, we extracted features from

the benchmark challenge databases EyePACS [24] and Mes-

sidor [43] and classified it using the ACNN model. EyePACS

contained high-resolution fundus images captured under var-

ious conditions. The images were categorized into five DR

classes: 0 (no DR), 1 (mild), 2(moderate), 3 (severe), and 4

(proliferative). EyePACS has 88,702 color retinal fundus

photographs from 44,351 subjects, and 35,126 images from

17,563 patients were labeled and used for training, while

53,576 images from 26,788 patients were used for test-

ing. The size of the images is a neat 3800 × 2600 px.

We used all the labeled samples to evaluate our method

using a 10-fold cross-validation (CV). Messidor contained

1200 high-resolution color retinal fundus images acquired at

three ophthalmology departments. It had annotations for two

grading types: DR grades (four classes) and risk of macular

edema grades (three classes). The four DR grades were 0

(normal; µA = 0 AND H = 0), 1 ((0 < µA <= 5)

AND (H = 0)), 2 ((5 < µA < 15) OR (0 < H < 5))

AND (NV = 0), and 3 ((µA >= 15) OR (H >= 5)

OR (NV = 1)), where µA is the number of MAs; H is the

number of HEs; NV= 1means neovascularization exists; and

NV = 0 means no neovascularization exists. We used the DR

grades of Messidor for the system evaluation.

B. EVALUATION PROCESS AND METRICS

Weevaluated the system using 10-fold CV [44]. The extracted

features were divided 10 fold. The model was trained and

tested 10 times, taking one fold in turn as the test data and the

remaining folds as the training data. We kept the same per-

centage of subjects of each class in each fold. First, the aver-

age performance metrics for each class were calculated over

10 folds, taking the class as positive and all the remaining

classes as negative. Finally, the average performance metrics

over all classes were computed. Many metrics were used to

evaluate the performance of the DR diagnosis systems, such

as accuracy (ACC), area under ROC curve (AUC), sensitivity

(SE), specificity (SP), precision (PR), recall (RC), F1-score,

and kappa [19], [40], [1], [45]. We employed five commonly

used metrics (i.e., ACC, SE, SP, AUC, and Kappa) [46], [47]

to evaluate the performance of our deep learning-based

system.

To determine whether a statistically significant difference

exists between any two methods, we used the nonparametric

Mann–Whitney–Wilcoxon test (WMW) [48] with a 5% sig-

nificance level with the null hypothesis method A = method

B an alternative hypothesis that method A is better than

method B. We used WMW because the data distribution is

unknown.

C. MODEL SELECTION

Our CNN-based system hasmany hyper-parameters: (i) back-

bone pre-trained CNN model; (ii) CONV1 with or with-

Algorithm 2 Adaptation of the Fine-Tuned CNN Model and

Extract Features From Fundus Images

Input: ROI lesions from the E-optha dataset I1, I2, . . . , In and

fundus images f1, f2, . . . , fn (fromEyePACS orMessidor) and

the fine-tuned CNN model (FTCNN).

Output: Adapted the CNN model (ACNN).

Step 1: Load the FTCNN model and remove the FC layers to

obtain a pruned CNN model (PCNN).

Step 2: Resize the ROI images I1, I2, . . . , In to I
′
1, I

′
2, . . . , I

′
n

to 64 × 64 px each.

Step 3: Compute the activations a1, a2, . . . , an of

I ′1, I
′
2, . . . , I

′
n, such that ai = PCNN

(

I ′i
)

,

i = 1, 2, . . . , n.

Step 4: Flatten the activations a1, a2, . . . , an to vectors

x1, x2, . . . , xn; xi ∈ Rd .

Step 5: Add a new FC layer with L neurons.

Step 6: Using vectors x1, x2, . . . , xn and PCA, learn the

weightsW and biases b of the neuron, such that

W = MT and b = −MTµ

where,M = [u1 . . . .uL], ui ∈ Rd , i = 1, 2, . . . ,L

are the eigenvectors of the covariance matrix computed

from the vectors x1, x2, . . . , xn
corresponding to the largest L eigenvalues (i.e., the best

L is 153 is shown in Table 1), and µ is the mean vector.

Step 7: The updated CNN (UCNN) model is obtained after

the FC layer addition.

Step 8: Add the classification layer to the UCNN to obtain

the ACNN model.

Step 9: Resize the fundus images f1, f2, . . . , fn to

f ′
1, f

′
2, . . . , f

′
n to 1000 × 1000 px each.

Step 10: Compute the activations a′
1, a

′
2, . . . , a

′
n of

f ′
1, f

′
2, . . . , f

′
n , such that a

′
i = UCNN (f ′

i ), i = 1, 2, . . . , n,

and predict it using the classification layer

out re-initialization; and (iii) method for the classification

layer. In the sequel, we provide an empirical analysis of

these hyper-parameters and select the best choices. All mod-

els were implemented and fine-tuned using PyTorch [3] on

a system equipped with processor Intel R© Core i9-7900X

CPU at 3.3 GHz, 64 GB RAM, and NVIDIA GeForce

GTX 1080 Ti.

1) EFFECT OF THE METHOD FOR THE CLASSIFICATION

LAYER

We considered three tree-based classifiers for the classi-

fication layer: DT, RF, and GB. We used the pre-trained

ResNet152 model as the backbone CNN model with a

re-initialized CONV1 layer to test the effect of these meth-

ods. Figure 6 depicts the results of the three methods on

the EyePACS dataset. The GB method exhibited the best

performance in terms of all performance metrics. GB exceled

because it builds trees in such a way that each new tree

helps correct the errors made by the previously added trees.

GB has much flexibility and can be optimized using dif-

ferent loss functions. We used GB with a maximum depth
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TABLE 2. Comparison between classification methods on the EyePACS dataset using the WMW test — ResNet152 with re-initialized CONV1.

TABLE 3. Effect of the re-initialized CONV1 on the method with the ResNet152 model and GB (EyePACS dataset).

TABLE 4. Effect of the re-initialized CONV1 on the method with the ResNet152 model and GB (messidor dataset).

FIGURE 6. Comparison between the classification methods along with
STD on the EyePACS dataset when ResNet152 with a re-initialized
CONV1 is used as the backbone model.

of 3 and least squares regression as a loss function. We also

performed a statistical significance test to check whether a

significant difference exists among GB, RF, and DT. The

distributions of the outcomes of various performance metrics

were unknown; therefore, we used the nonparametric Mann–

Whitney–Wilcoxon test (WMW) [48] with an alternative

hypothesis that GBwas better than RF (or DT). Table 2 shows

the results. The p-values are less than 0.05 in both cases;

hence, the null hypothesis is rejected, and we accept the

alternative hypothesis i.e. the GB is significantly better than

RF and DT at a 5% significance level.

2) EFFECT OF CONV1 RE-INITIALIZATION

We used ResNet152 as the backbone model and GB for

the classification layer based on the results of the previous

subsection to test the effect of the CONV1 re-initialization

of a pre-trained backbone CNN model on our CNN-based

system. Figure 7 exhibits the results from the EyePACS

and Messidor datasets. The method with the re-initialized

CONV1 was significantly better than that without in terms

of all performance metrics on both datasets.

Tables 3 and 4 present the statistical significance results

computed using the WMW test on both datasets. The p-value

< 0.05 for all metrics corresponding to both datasets; hence,

we rejected the null hypothesis and accepted the alternative

that a significant difference exists between the methods with

and without re-initialized CONV1 at a 5% significance level.

The method with the re-initialized CONV1 performed bet-

ter because the CONV1 re-initialization made the backbone

CNN model directly learn the patterns specific to the DR

lesions.

3) EFFECTS OF BACKBONE CNN MODELS

We considered three backbone pre-trained CNN models (i.e.,

VGG19, ResNet152, and DPN107) based on their superior

performance in many applications. We considered the system

with re-initialized CONV1 and GB based on the findings of

the previous subsections to observe the effects of the pre-

trained backbone CNN models. Figure 8 shows the results

from the EyePACS and Messidor datasets with the three

models. Among the three models, the ResNet152 model gave

a better performance in terms of all performance metrics.

DPN107 ranked second. Tables 5 and 6 show the WMW test

results to verify whether the difference among ResNet152,

VGG19, and DPN107 was statically significant. The p-values

< 0.05 on both datasets for all metrics, indicating that the

ResNet152 model was significantly better than VGG19 and

DPN107 at a 5% significance level. The superior performance

of ResNet152 was probably caused by the two following

reasons: 1) it is deeper than the other two CNN models; and

2) it is based on residual learning, which helps overcome

the overfitting problem by properly fine-tuning the low-level

layers. Although DPN107 is also based on residual learning,
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FIGURE 7. The effect of the re-initialization of CONV1 on the performance of the proposed method with ResNet152 and GB along with
STD.

TABLE 5. Selection of the CNN model (EyePACS dataset).

TABLE 6. Selection of the CNN model (messidor dataset).

FIGURE 8. Comparison between the effects of the three CNN models on the method with re-initialized CONV1 and GB along with
STD.

it is not as deep as ResNet152, which is why DPN107 gives

a better performance compared to VGG19.

4) CORRECTNESS OF THE MODEL

The discussion in the previous subsections revealed that

the best configuration of the proposed system involved

ResNer152 with re-initialized CONV1 and a GB classifica-

tion layer.Wewill refer to this as ResNetGBmoving forward.

It is very important to ensure that the model is not suffering

from overfitting and underfitting. A deep model suffers from

overfitting (or underfitting) if the bias is low (high), but the

variance is high (or low) [49], [50]. Overfitting means a

model memorizes the data, gives a good performance on the

training data, but a poor performance on the test data. The

performance is also not consistent when the model is trained

and tested over different datasets. It can be tested using a

10-fold cross-validation (CV). Table 7 lists the 10-fold CV

results along with the bias and the variance of the proposed

model on EyePACS and Messidor. The bias and the variance

of each fold were very low; the average bias and variance over

10 fold were also very low; and the results of 10 fold were

consistent, indicating that the proposed model was robust
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TABLE 7. Accuracy results showing bias and variance of ResNetGB.

TABLE 8. Results with the best configuration for the multi class in the
EyePACS and messidor datasets.

and did not suffer from overfitting or underfitting on both

datasets.

5) BEST CONFIGURATION MODEL: RESULTS AND

DISCUSSION

The following subsections provide the results of the pro-

posed system with the best configuration for three scenarios,

namely multiclass case, normal vs DR, and referable vs non-

referable, which are commonly addressed in the existing

work on DR diagnosis. We also present a comparison with

the state-of-the-art works.

a: MULTICLASS CASE

The EyePACS dataset has five classes: normal, mild DR,

moderate DR, severe DR, and proliferative DR. Messidor

has four classes: normal and three DR grades based on the

number of MAs and HEs. Table 8 lists the results of the

system with the best configuration on each dataset.

Overall, the results on both datasets were high and almost

comparable in terms of all metrics. Both datasets were chal-

lenging datasets, and the proposed model achieved above

95% ACC, SE, SP, kappa, and AUC, implying model

robustness. Figure 9 illustrates the confusion matrices for

both datasets computed using the 10-fold cross-validation.

These give insights into the system performance for differ-

ent classes on different challenging datasets. The class level

results in Table 9 (a) and the confusion matrix for EyePACS

in Figure 9(a) indicate that the maximum rate of misclassified

images (i.e., 10.28%) is related to the class proliferative

DR (DR grade 4). A total of 66 out of 708 patients with

proliferative DR were misclassified as mild DR (20), mod-

erate DR (11), and severe DR (35). The next maximum rate

of the misclassified images (7.5%) belonged to severe DR

TABLE 9. Performance for each class based on EyePACS and messidor
datasets.

(DR grade 3) probably because many images belonging to

these classes were dark and had a low contrast (Figure 10(a)).

Such MA and EX regions in these images were not clear,

and the model failed to classify them correctly. The nor-

mal images had the smallest misclassified rate and high SP

(Table 9)(a). The small number of images, which were mis-

classified as normal, came from classes 1 and 2 (i.e., 0.2%

and 0.4% of the images belonging to mild (DR grade 1) and

moderate (DR grade 2) DR, respectively) likely because the

images belonging to the adjacent classes might be labeled

incorrectly due to the continuity of the DR progression.

This is hard to separate even for experts [51]. Given the

clinical protocols, some state-of-the-art methods classified

normal and DR grade 1 as non-referable [15], [16]; hence,

it was not a big concern. Table 9 (a) presents the SE and

the SP of each class in the EyePACS dataset based on the

confusion matrix in Figure 9(a). Proliferative DR and severe

DR had lower sensitivities than the other DR grades. The

SP of all classes was very high, indicating that the FNR of

the proposed system with the best configuration was very

small. Based on the confusion matrix in Table 9 (b) and

Figure 9(b) for the Messidor dataset, the maximum misclas-

sification rates were of DR grade 3 (4.96%) and grade 1

(3.38%). This was probably caused by the same reason found

for the case of EyePACS (i.e., some images belonging to
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FIGURE 9. Confusion matrix of the best model on the (a) EyePACS (five
classes) and (b) Messidor (four classes) datasets.

TABLE 10. Non DR vs DR stages result based on the EyePACS and
messidor datasets.

these classes had poor contrast for MAs and HEs because

of the dominant red color in Figure 10(b)). The model failed

to classify them correctly. The normal class had the lowest

misclassification rate of 1.1% as in the case of EyePACS.

Meanwhile, the number of images misclassified as normal

was 3 (0.25%). Table 9 (b) lists the sensitivities and the speci-

ficities of the four classes in the Messidor dataset showing

that classes DR-level 1 and 3 had lower sensitivities. Normal

and all DR levels had a high SP. The performance of the

proposed system on both datasets revealed that it was robust

and provided very low FPR and FNR for the DR grading

scenario.

b: NORMAL VS DR

In this scenario, we considered the non-DR vs DR stages

(all DR grades). In the case of the EyePACS dataset, nor-

mal was taken as non-DR, and all DR severities (i.e., mild

DR, moderate DR, severe DR, and proliferative DR) were

considered as DR [52]. For the Messidor dataset, the DR

grades (1, 2, and 3) were considered as DR [8]. Figure 11(a)

depicts the 10-fold cross-validation confusion matrix for

EyePACS, while Figure 11(b) shows that for the Messidor

dataset. Table 10 presents the corresponding sensitivities and

specificities.

From the confusion matrix related to EyePACS, only four

normal images were misclassified as DR (0.01%) (i.e., FPR

was very low, while SP was very high at 99.99%) (Table 10).

TABLE 11. Result for non-referable vs referable cases on the EyePACS
and messidor datasets.

Only 26 DR images were misclassified as normal (i.e., FNR

was very low at 0.27%, and SE was very high at 99.72%).

The confusion matrix corresponding to the Messidor dataset

indicated that only 1.1% of the normal images were misclas-

sified as DR, and 0.4% of the DR images were misclassified

as normal. In summary, the model had very low FPR and

FNR and very high SE (99.54%) and SP (98.90%) (Table 10).

The performance of the proposed model on both datasets

revealed its robustness and provided very high SE and SP for

the normal vs. DR scenario.

c: REFERABLE VS NON-REFEREABLE

We considered the non-referable vs referable case in this

scenario. For the EyePACS dataset, non-referable was taken

as normal and mild DR, while all other DR severities (i.e.,

moderate DR, severe DR, and proliferative DR) were consid-

ered referable [15], [16]. In the case of Messidor, DR grades

2 and 3 were considered referable, while DR grades 0 and

1 were non-referable [10]. Figure 12(a) illustrates the

10-fold cross-validation confusion matrix for EyePACS,

which indicates that 0.24% of the non-referable images were

misclassified as referable, and 1.4% of the referable cases

were misclassified as non-referable. This result indicates that

the proposed model has high SE (98.60%) and SP 99.76%

(Table 11). The confusion matrix of the Messidor dataset

in Figure 12(b) depicts that 1.2% of the non-referable images

were misclassified as referable, and 1.2% of the referable

cases were misclassified as non-referable. In other words,

the proposed model obtained very high SE (98.80%) and SP

(98.86%) (Table 11). The results and the discussion above

implied that the proposed method was robust because it had

very high SE and SP on both challenging datasets for the

referable vs non-referable scenario.

d: DISCUSSION

This section presents a comparison of ResNetGB with the

state-of-the-art methods, which focus on the DR grading

of retinal fundus images and have been evaluated on the

EyePACS and Messidor datasets. The comparison is made

with hand-engineered and deep learning-based methods for

the three scenarios, a global view is given in Table 12.

ResNetGB was evaluated by employing all labeled images

from the EyePACS dataset using 10-fold CV for three sce-

narios: DR grading, normal vs DR, and non-referral (nor-

mal and DR grade 1) vs referral (DR grade 2 to max DR

grade). For the DR grading, the state-of-the-art method by

Wan et al. [18] achieved the maximumACC of 95.86%, SE of

86.47%, SP of 97.43, and AUC of 0.9786 on the EyePACS

dataset. This method used VGGNet-s with transfer learning.
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FIGURE 10. Example of misclassified images from the (a) EyePACS and (b) Messidor datasets.

FIGURE 11. Confusion matrices of the system with the best configuration
on the (a) EyePACS and (b) Messidor datasets for the non DR vs DR stages.

Meanwhile, Quellec et al. [1] built a CNNmodel from scratch

using 80%of the EyePACS dataset as the training set and 20%

as the test set and achieved an ACC of 95.4%. ResNetGB

FIGURE 12. Confusion matrix of ResNet152 with a re-initialized
CONV1 model on the (a) EyePACS dataset and the (b) Messidor dataset
for non-referable vs referable cases.

outperformed all existing methods by a big margin, exhibit-

ing 3.87% ACC improvement, 9.57% SE improvement, and

2.38% SP improvement. The difference was statistically
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TABLE 12. Comparison of ResNetGB and the state-of-the-art methods.
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significant at p < 5.8E−10 using 95% CL for SE and p <

0.02 using 97% CL for SP.

The best Kappa achieved so far on the EyePACS dataset

was 85.1% [16], which is significantly lower than that

obtained by ResNetGB (98.45%). The difference was statis-

tically significant at p < 7.00149E−18 for Kappa using 95%

CL. On the Messidor dataset, ResNetGB also outperformed

the existing method with an improvement of 8.68% in ACC

and 0.017 in AUC. The difference was statistically significant

at p < 4.7E−07 using 95% CL for ACC and p < 0.027 using

97% CL.

For the normal vs DR case, the ResNetGB model per-

formed better than the method by Sreejini and Govindan [3],

which was based on handcrafted features, on the Messidor

dataset. The performance increase of ResNetGB over this

method was 1.19% in SE and 1.47% in SP. The difference

was statistically significant at p < 0.03 using 99% CI for SE

and p < 0.03 using 96% CL for SP.

For the non-referable vs. referable scenario, the best per-

forming deep learning-based method by Colas et al. [15]

provided a maximum SE of 98% and an SP of 94% on the

EyePACS dataset. These values were less than those achieved

by ResNetGB (SE: 98.60%; SP:99.76%). The difference was

significant at p < 0.02, as obtained using 97% CL for SE and

p < 0.04 using 96% CL for SP. The ResNetGB model also

exhibited an enhanced performance on the Messidor dataset

by approximately 2.6% in SE and 48.86% in SP compared to

the best existing method by Seoud et al. [5]. The difference

was significant at p < 0.03 using 95% CI for SE. Moreover,

ResNetGB improved by 0.124 in terms of the AUC on the

Messidor dataset compared to the method by Pires method,

whichwas based on handcrafted features (Fisher Vector) [10].

The difference was significant at p < 1.3E−14 using

95% CL.

The above discussion indicates that ResNetGB out-

performed the existing deep learning-based methods [1],

[14]–[18] on both EyePACS and Messidor datasets for

three diagnosis scenarios. The superiority of ResNetGB is

attributed to its consideration of the hierarchical structure of

the CNNmodel and its adaptation of it to the lesion structures

by reinitializing the CONV1 weights using lesion ROIs and

by its fine-tuning with ROIs. Another important point is that

we did not resize the fundus images to a small size like most

state-of-the-art deep learning methods because it destroys the

lesion structures.

IV. CONCLUSION

We developed herein an automatic system based on deep

learning for grading retinal fundus images and referring a DR

patient to an ophthalmologist at an early stage. The system

was built on a pre-trained model using a two-stage transfer

learning method because of the limited available dataset and

a huge number of parameters in a deep CNN model. First,

we tried three state-of-the-art CNN models pre-trained on

ImageNet. Natural images in ImageNet have structures dif-

ferent from those of fundus images; thus, we adapted the hier-

archical structure of a pre-trained CNN model to the fundus

images by reinitializing the filters of its CONV1 layer using

the lesion ROIs extracted from the annotated E-optha dataset

and then fine-tuned it using the ROIs. Second, the FC layers

encoded the high-level features relevant to the natural images

and have a very large number of learnable parameters. To tune

them to high-level features, reduce the model complexity,

and avoid overfitting, we replaced the FC layers with a PCA

layer learned using ROIs and used it to extract discriminate

features from the fundus images. We then added a classi-

fication layer to predict the DR grades of fundus images.

Consequently, ResNet152with re-initialized CONV1 andGB

layer (ResNetGB) achieved the best results. A comparison

with the state-of-the-art methods showed that ResNetGB out-

performed the others in three DR diagnosis scenarios, namely

DR grading, normal vs DR, and non-referable vs referable

on the two challenging datasets of EyePACS and Messidor.

The difference was statistically significant. The ResNetGB

model did not employ any preprocessing or enhancement

step. Its shortcoming is that it failed to accurately predict

the DR grade of a fundus image when it has saturation and

a very low contrast. For the fundus images with a good

quality, it accurately predicted the DR level. How the model

can reliably predict the DR level from poor quality, very

low contrast, and saturated fundus images will be the sub-

ject of the future work. The system will help graders to

screen DR patients reliably without any delay at the early

stages.
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