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Automatic diagnosis of the 12-lead ECG using
a deep neural network
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The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the

accuracy of existing models. Deep Neural Networks (DNNs) are models composed of

stacked transformations that learn tasks by examples. This technology has recently achieved

striking success in a variety of task and there are great expectations on how it might improve

clinical practice. Here we present a DNN model trained in a dataset with more than 2 million

labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the

scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN out-

perform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-

lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results

indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes

well to 12-lead exams, taking the technology closer to the standard clinical practice.
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C
ardiovascular diseases are the leading cause of death
worldwide1 and the electrocardiogram (ECG) is a major
tool in their diagnoses. As ECGs transitioned from analog

to digital, automated computer analysis of standard 12-lead
electrocardiograms gained importance in the process of medical
diagnosis2,3. However, limited performance of classical
algorithms4,5 precludes its usage as a standalone diagnostic tool
and relegates them to an ancillary role3,6.

Deep neural networks (DNNs) have recently achieved striking
success in tasks such as image classification7 and speech recog-
nition8, and there are great expectations when it comes to how
this technology may improve health care and clinical practice9–11.
So far, the most successful applications used a supervised learning
setup to automate diagnosis from exams. Supervised learning
models, which learn to map an input to an output based on
example input−output pairs, have achieved better performance
than a human specialist on their routine work-flow in diagnosing
breast cancer12 and detecting retinal diseases from three-
dimensional optical coherence tomography scans13. While effi-
cient, training DNNs in this setup introduces the need for large
quantities of labeled data which, for medical applications, intro-
duce several challenges, including those related to confidentiality
and security of personal health information14.

A convincing preliminary study of the use of DNNs in ECG
analysis was recently presented in ref. 15. For single-lead ECGs,
DNNs could match state-of-the-art algorithms when trained in
openly available datasets (e.g. 2017 PhysioNet Challenge data16)
and, for a large enough training dataset, present superior per-
formance when compared to practicing cardiologists. However, as
pointed out by the authors, it is still an open question if the
application of this technology would be useful in a realistic
clinical setting, where 12-lead ECGs are the standard technique15.

The short-duration, standard, 12-lead ECG (S12L-ECG) is the
most commonly used complementary exam for the evaluation of
the heart, being employed across all clinical settings, from the
primary care centers to the intensive care units. While long-term
cardiac monitoring, such as in the Holter exam, provides infor-
mation mostly about cardiac rhythm and repolarization, the
S12L-ECG can provide a full evaluation of the cardiac electrical
activity. This includes arrhythmias, conduction disturbances,
acute coronary syndromes, cardiac chamber hypertrophy and
enlargement and even the effects of drugs and electrolyte dis-
turbances. Thus, a deep learning approach that allows for accu-
rate interpretation of S12L-ECGs would have the greatest impact.

S12L-ECGs are often performed in settings, such as in primary
care centers and emergency units, where there are no specialists
to analyze and interpret the ECG tracings. Primary care and
emergency department health professionals have limited diag-
nostic abilities in interpreting S12-ECGs17,18. The need for an
accurate automatic interpretation is most acute in low and
middle-income countries, which are responsible for more than
75% of deaths related to cardiovascular disease19, and where the
population, often, do not have access to cardiologists with full
expertise in ECG diagnosis.

The use of DNNs for S12L-ECG is still largely unexplored. A
contributing factor for this is the shortage of full digital S12L-
ECG databases, since most recordings are still registered only on
paper, archived as images, or stored in PDF format20. Most
available databases comprise a few hundreds of tracings and no
systematic annotation of the full list of ECG diagnoses21, limiting
their usefulness as training datasets in a supervised learning set-
ting. This lack of systematically annotated data is unfortunate, as
training an accurate automatic method of diagnosis from S12L-
ECG would be greatly beneficial.

In this paper, we demonstrate the effectiveness of DNNs for
automatic S12L-ECG classification. We build a large-scale dataset

of labeled S12L-ECG exams for clinical and prognostic studies
(the CODE—Clinical Outcomes in Digital Electrocardiology
study) and use it to develop a DNN to classify six types of ECG
abnormalities considered representative of both rhythmic and
morphologic ECG abnormalities.

Results
Model specification and training. We collected a dataset con-
sisting of 2,322,513 ECG records from 1,676,384 different patients
of 811 counties in the state of Minas Gerais/Brazil from the
Telehealth Network of Minas Gerais (TNMG)22. The dataset
characteristics are summarized in Table 1. The acquisition and
annotation procedures of this dataset are described in Methods.
We split this dataset into a training set and a validation set. The
training set contains 98% of the data. The validation set consists
of the remaining 2% (~50,000 exams) of the dataset and it was
used for hyperparameter tuning.

We train a DNN to detect: 1st degree AV block (1dAVb), right
bundle branch block (RBBB), left bundle branch block (LBBB),
sinus bradycardia (SB), atrial fibrillation (AF) and sinus
tachycardia (ST). These six abnormalities are displayed in Fig. 1.

We used a DNN architecture known as the residual network23,
commonly used for images, which we here have adapted to
unidimensional signals. A similar architecture has been success-
fully employed for detecting abnormalities in single-lead ECG
signals15. Furthermore, in the 2017 Physionet challenge16,
algorithms for detecting AF have been compared in an open
dataset of single-lead ECGs and both the architecture described in
ref. 15 and other convolutional architectures24,25 have achieved
top scores.

The DNN parameters were learned using the training dataset
and our design choices were made in order to maximize the
performance on the validation dataset. We should highlight that,
despite using a significantly larger training dataset, we got the best
validation results with an architecture with, roughly, one quarter
the number of layers and parameters of the network employed in
ref. 15.

Testing and performance evaluation. For testing the model we
employed a dataset consisting of 827 tracings from distinct
patients annotated by three different cardiologists with experience
in electrocardiography (see Methods). The test dataset char-
acteristics are summarized in Table 1. Table 2 shows the per-
formance of the DNN on the test set. High-performance

Table 1 (Dataset summary) Patient characteristics and

abnormalities prevalence, n (%).

Train+Val (n= 2,322,513) Test (n= 827)

Abnormality

1dAVb 35,759 (1.5%) 28 (3.4%)

RBBB 63,528 (2.7%) 34 (4.1%)

LBBB 39,842 (1.7%) 30 (3.6%)

SB 37,949 (1.6%) 16 (1.9%)

AF 41,862 (1.8%) 13 (1.6%)

ST 49,872 (2.1%) 36 (4.4%)

Age group

16−25 155,531 (6.7%) 43 (5.2%)

26−40 406,239 (17.5%) 122 (14.8%)

41−60 901.456 (38.8%) 340 (41.1%)

61−80 729,300 (31.4%) 278 (33.6%)

≥81 129,987 (5.6%) 44 (5.3%)

Sex

Male 922,780 (39.7%) 321 (38.8%)

Female 1,399,733 (60.3%) 506 (61.2%)
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measures were obtained for all ECG abnormalities, with F1 scores
above 80% and specificity indexes over 99%. We consider our
model to have predicted the abnormality when its output—a
number between 0 and 1—is above a threshold. Figure 2 shows
the precision-recall curve for our model, for different values of
this threshold.

Neural networks are initialized randomly, and different
initialization usually yield different results. In order to show the
stability of the method, we have trained ten neural networks with
the same set of hyperparameters and different initializations. The

range between the maximum and minimum precision among
these realizations, for different values of threshold, are the shaded
regions displayed in Fig. 2. These realizations have micro average
precision (mAP) between 0.946 and 0.961; we choose the one
with mAP immediately above the median value of all executions
(the one with mAP= 0.951) (We couldn’t choose the model with
mAP equal to the median value because 10 is an even number;
hence, there is no single middle value.). All the analyses from now
on will be for this realization of the neural network, which
correspond both to the strong line in Fig. 2 and to the scores

No abnormalities

1st degree AV block (1dAVb)

Right bundle branch block (RBBB)

Left bundle branch block (LBBB)

Sinus bradycardia (SB)

Atrial fibrillation (AF)

Sinus tachycardia (ST)

Fig. 1 Abnormalities examples. A list of all the abnormalities the model classifies. We show only three representative leads (DII, V1 and V6).
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presented in Table 2. For this model, Fig. 2 shows the point
corresponding to the maximum F1 score for each abnormality.
The threshold corresponding to this point is used for producing
the DNN scores displayed in Table 2.

The same dataset was evaluated by: (i) two 4th year cardiology
residents; (ii) two 3rd year emergency residents; and (iii) two 5th
year medical students. Each one annotated half of the exams in
the test set. Their average performances are given, together with
the DNN results, in Table 2 and their precision-recall scores are
plotted in Fig. 2. Considering the F1 score, the DNN matches or
outperforms the medical residents and students for all abnorm-
alities. The confusion matrices and the inter-rater agreement
(kappa coefficients) for the DNN, the resident medical doctors
and students are provided, respectively, in Supplementary
Tables 1 and 2(a). Additionally, in Supplementary Table 2(b),
we compare the inter-rater agreement between the neural
network and the certified cardiologists that annotated the test set.

A trained cardiologist reviewed all the mistakes made by the
DNN, the medical residents and the students, trying to explain the
source of the error. The cardiologist had meetings with the residents
and students where they together agreed on which was the source of
the error. The results of this analysis are given in Table 3.

In order to compare the performance difference between the
DNN and resident medical doctors and students, we compute
empirical distributions for the precision (PPV), recall (sensitiv-
ity), specificity and F1 score using bootstrapping26. The boxplots
corresponding to these bootstrapped distributions are presented
in Supplementary Fig. 1. We have also applied the McNemar
test27 to compare the misclassification distribution of the DNN,
the medical residents and the students. Supplementary Table 3
shows the p values of the statistical test. Both analyses do not
indicate a statistically significant difference in performance
among the DNN and the medical residents and students for
most of the classes.

Table 2 (Performance indexes) Scores of our DNN are compared on the test set with the average performance of: (i) 4th year

cardiology resident (cardio.); (ii) 3rd year emergency resident (emerg.); and (iii) 5th year medical students (stud.).

Precision (PPV) Recall (Sensitivity) Specificity F1 score

DNN cardio. emerg. stud. DNN cardio. emerg. stud. DNN cardio. emerg. stud. DNN cardio. emerg. stud.

1dAVb 0.867 0.905 0.639 0.605 0.929 0.679 0.821 0.929 0.995 0.997 0.984 0.979 0.897 0.776 0.719 0.732
RBBB 0.895 0.868 0.963 0.914 1.000 0.971 0.765 0.941 0.995 0.994 0.999 0.996 0.944 0.917 0.852 0.928
LBBB 1.000 1.000 0.963 0.931 1.000 0.900 0.867 0.900 1.000 1.000 0.999 0.997 1.000 0.947 0.912 0.915
SB 0.833 0.833 0.824 0.750 0.938 0.938 0.875 0.750 0.996 0.996 0.996 0.995 0.882 0.882 0.848 0.750
AF 1.000 0.769 0.800 0.571 0.769 0.769 0.615 0.923 1.000 0.996 0.998 0.989 0.870 0.769 0.696 0.706
ST 0.947 0.968 0.946 0.912 0.973 0.811 0.946 0.838 0.997 0.999 0.997 0.996 0.960 0.882 0.946 0.873

PPV positive predictive value. The bold values represent the best scores.
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Fig. 2 Precision-recall curve. Show precision-recall curve for our nominal prediction model on the test set (strong line) with regard to each ECG

abnormalities. The shaded region shows the range between maximum and minimum precision for neural networks trained with the same configuration and

different initialization. Points corresponding to the performance of resident medical doctors and students are also displayed, together with the point

corresponding to the DNN performance for the same threshold used for generating Table 2. Gray dashed curves in the background correspond to iso-F1

curves (i.e. curves in the precision-recall plane with constant F1 score).
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Finally, to assess the effect of how we structure our problem,
we have considered alternative scenarios where we use the
2,322,513 ECG records in 90%5%-5% splits, stratified randomly,
by patient or in chronological order. Being the splits used,
respectively, for training, validation and as a second larger test set.
The results indicate no statistically significant difference between
the original DNN used in our analysis and the alternative models
developed in the 90%-5%-5% splits. The exception is the model
developed using the chronologically order split, for which the
changes along time in the telehealth center operation have
affected the splits (cf. Supplementary Fig. 2).

Discussion
This paper demonstrates the effectiveness of “end-to-end” auto-
matic S12L-ECG classification. This presents a paradigm shift
from the classical ECG automatic analysis methods28. These
classical methods, such as the University of Glasgow ECG ana-
lysis program29, first extract the main features of the ECG signal
using traditional signal processing techniques and then use these
features as inputs to a classifier. End-to-end learning presents an
alternative to these two-step approaches, where the raw signal
itself is used as an input to the classifier which learns, by itself, to
extract the features. This approach has presented, in a emergency
room setting, performance superior to commercial ECG software
based on traditional signal processing techniques30.

Neural networks have previously been used for classification of
ECGs both in a classical—feature-based—setup31,32 and in an
end-to-end learn setup15,33,34. Hybrid methods combining the
two paradigms are also available: the classification may be done
using a combination of handcrafted and learned features35 or by
using a two-stage training, obtaining one neural network to learn
the features and another to classify the exam according to these
learned features36.

The paradigm shift towards end-to-end learning had a sig-
nificant impact on the size of the datasets used for training the
models. Many results using classical methods28,34,36 train their
models on datasets with few examples, such as the MIT-BIH
arrhythmia database37, with only 47 unique patients. The most
convincing papers using end-to-end deep learning or mixed
approaches, on the other hand, have constructed large datasets,
ranging from 3000 to 100,000 unique patients, for training their
models15,16,30,35.

Large datasets from previous work15,16,35, however, either were
obtained from cardiac monitors and Holter exams, where patients
are usually monitored for several hours and the recordings are
restricted to one or two leads or consist of 12-lead ECGs obtained
in an emergency room setting30,38. Our dataset with well over 2
million entries, on the other hand, consists of short duration
(7−10 s) S12L-ECG tracings obtained from in-clinic exams and is

orders of magnitude larger than those used in previous studies. It
encompasses not only rhythm disorders, like AF, SB and ST, as in
previous studies15, but also conduction disturbances, such as
1dAVb, RBBB and LBBB. Instead of beat-to-beat classification, as
in the MIT-BIH arrhythmia database, our dataset provides
annotation for S12L-ECG exams, which are the most common in
clinical practice.

The availability of such a large database of S12L-ECG tracings,
with annotation for the whole spectrum of ECG abnormalities,
opens up the possibility of extending initial results of end-to-end
DNN in ECG automatic analysis15 to a system with applicability
in a wide range of clinical settings. The development of such
technologies may yield high-accuracy automatic ECG classifica-
tion systems that could save clinicians considerable time and
prevent wrong diagnoses. Millions of S12L-ECGs are performed
every year, many times in places where there is a shortage of
qualified medical doctors to interpret them. An accurate classi-
fication system could help to detect wrong diagnoses and improve
the access of patients from deprived and remote locations to this
essential diagnostic tool of cardiovascular diseases.

The error analysis shows that most of the DNN mistakes were
related to measurements of ECG intervals. Most of those were
borderline cases, where the diagnosis relies on a consensus defi-
nitions39 that can only be ascertained when a measurement is
above a sharp cutoff point. The mistakes can be explained by the
DNN failing to encode these very sharp thresholds. For example,
the DNN wrongly detecting an SB with a heart rate slightly above
50 bpm or an ST with a heart rate slightly below 100 bpm.
Supplementary Fig. 3 illustrates this effect. Noise and interference
in the baseline are established causes of error40 and affected both
automatic and manual diagnosis of ECG abnormalities. Never-
theless, the DNN seems to be more robust to noise and it made
fewer mistakes of this type compared to the medical residents and
students. Conceptual errors (where our reviewer suggested that
the doctor failed to understand the definitions of each abnorm-
ality) were more frequent for emergency residents and medical
students than for cardiology residents. Attention errors (where we
believe that the error could have been avoided if the manual
reviewer were more careful) were present at a similar ratio for
cardiology residents, emergency residents and medical students.

Interestingly, the performance of the emergency residents is
worse than the medical students for many abnormalities. This
might seem counter-intuitive because they have less years of
medical training. It might, however, be justified by the fact that
emergency residents, unlike cardiology residents, do not have to
interpret these exams on a daily basis, while medical students still
have these concepts fresh from their studies.

Our work is perhaps best understood in the context of its
limitations. While we obtained the highest F1 scores for the DNN,
the McNemar statistical test and bootstrapping suggest that we do

Table 3 (Error analysis) Present the analysis of misclassified exams.

DNN cardio. emerg. stud.

meas. noise unexplain. meas. noise concep. atte. meas. noise concep. atte. meas. noise concep. atte.

1dAVb 3 2 1 8 3 15 3 13 3 3

RBBB 3 1 4 2 1 8 3 2

LBBB 1 1 1 1 4 2 3

SB 4 4 4 1 5 2 1

AF 2 1 4 2 2 5 3 7

ST 2 1 2 1 5 1 1 1 1 1 2 1 5

The errors were classified into the following categories: (i) measurements errors (meas.) were ECG interval measurements preclude the given diagnosis by its textbook definition; (ii) errors due to noise,

where we believe that the analyst or the DNN failed due to a lower than usual signal quality; and (iii) other type of errors (unexplain.). Those were further divided, for the medical residents and students,

into two categories: conceptual errors (concep.), where our reviewer suggested that the doctor failed to understand the definitions of each abnormality, and attention errors (atte.), where we believe the

error could be avoided if the reviewer had been more careful.
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not have confidence enough to assert that the DNN is actually
better than the medical residents and students with statistical
significance. We attribute this lack of confidence in the com-
parison to the presence of relatively infrequent classes, where a
few erroneous classifications may significantly affect the scores.
Furthermore, we did not test the accuracy of the DNN in the
diagnosis of other classes of abnormalities, like those related to
acute coronary syndromes or cardiac chamber enlargements and
we cannot extend our results to these untested clinical situations.
Indeed, the real clinical setting is more complex than the
experimental situation tested in this study and, in complex and
borderline situations, ECG interpretation can be extremely diffi-
cult and may demand the input of highly specialized personnel.
Thus, even if a DNN is able to recognize typical ECG abnorm-
alities, further analysis by an experienced specialist will continue
to be necessary to these complex exams.

This proof-of-concept study, showing that a DNN can accu-
rately recognize ECG rhythm and morphological abnormalities in
clinical S12L-ECG exams, opens a series of perspectives for future
research and clinical applications. A next step would be to prove
that a DNN can effectively diagnose multiple and complex ECG
abnormalities, including myocardial infarction, cardiac chamber
enlargement and hypertrophy and less common forms of
arrhythmia, and to recognize a normal ECG. Subsequently, the
algorithm should be tested in a controlled real-life situation,
showing that accurate diagnosis could be achieved in real time, to
be reviewed by clinical specialists with solid experience in ECG
diagnosis. This real-time, continuous evaluation of the algorithm
would provide rapid feedback that could be incorporated as
further improvements of the DNN, making it even more reliable.

The TNMG, the large telehealth service from which the dataset
used was obtained22, is a natural laboratory for these next steps,
since it performs more than 2000 ECGs a day and it is currently
expanding its geographical coverage over a large part of a con-
tinental country (Brazil). An optimized system for ECG inter-
pretation, where most of the classification decisions are made
automatically, would imply that the cardiologists would only be
needed for the more complex cases. If such a system is made
widely available, it could be of striking utility to improve access to
health care in low- and middle-income countries, where cardio-
vascular diseases are the leading cause of death and systems of
care for cardiac diseases are lacking or not working well41.

In conclusion, we developed an end-to-end DNN capable of
accurately recognizing six ECG abnormalities in S12L-ECG
exams, with a diagnostic performance at least as good as medi-
cal residents and students. This study shows the potential of this
technology, which, when fully developed, might lead to more
reliable automatic diagnosis and improved clinical practice.
Although expert review of complex and borderline cases seems to
be necessary even in this future scenario, the development of such
automatic interpretation by a DNN algorithm may expand the
access of the population to this basic and useful diagnostic exam.

Methods
Dataset acquisition. All S12L-ECGs analyzed in this study were obtained by the
Telehealth Network of Minas Gerais (TNMG), a public telehealth system assisting
811 out of the 853 municipalities in the state of Minas Gerais, Brazil22. Since
September 2017, the TNMG has also provided telediagnostic services to other
Brazilian states in the Amazonian and Northeast regions. The S12L-ECG exam was
performed mostly in primary care facilities using a tele-electrocardiograph man-
ufactured by Tecnologia Eletrônica Brasileira (São Paulo, Brazil)—model TEB
ECGPC—or Micromed Biotecnologia (Brasilia, Brazil)—model ErgoPC 13. The
duration of the ECG recordings is between 7 and 10 s sampled at frequencies
ranging from 300 to 600 Hz. A specific software developed in-house was used to
capture the ECG tracings, to upload the exam together with the patient’s clinical
history and to send it electronically to the TNMG analysis center. Once there, one
cardiologist from the TNMG experienced team analyzes the exam and a report is

made available to the health service that requested the exam through an online
platform.

We have incorporated the University of Glasgow (Uni-G) ECG analysis
program (release 28.5, issued in January 2014) in the in-house software since
December 2017. The analysis program was used to automatically identify waves
and to calculate axes, durations, amplitudes and intervals, to perform rhythm
analysis and to give diagnostic interpretation29,42. The Uni-G analysis program
also provides Minnesota codes43, a standard ECG classification used in
epidemiological studies44. Since April 2018 the automatic measurements are
being shown to the cardiologists that give the medical report. All clinical
information, digital ECGs tracings and the cardiologist report were stored in a
database. All previously stored data were also analyzed by Uni-G software in
order to have measurements and automatic diagnosis for all exams available in
the database, since the first recordings. The CODE study was established to
standardize and consolidate this database for clinical and epidemiological
studies. In the present study, the data (for patients above 16 years old) obtained
between 2010 and 2016 were used in the training and validation set and, from
April to September 2018, in the test set.

Labeling training data from text report. For the training and validation sets, the
cardiologist report is available only as a textual description of the abnormalities in
the exam. We extract the label from this textual report using a three-step proce-
dure. First, the text is preprocessed by removing stop-words and generating n-
grams from the medical report. Then, the Lazy Associative Classifier (LAC)45,
trained on a 2800-sample dictionary created from real diagnoses text reports, is
applied to the n-grams. Finally, the text label is obtained using the LAC result in a
rule-based classifier for class disambiguation. The classification model reported
above was tested on 4557 medical reports manually labeled by a certified cardi-
ologist who was presented with the free-text and was required to choose among the
prespecified classes. The classification step recovered the true medical label with
good results; the macro F1 score achieved were: 0.729 for 1dAVb; 0.849 for RBBB;
0.838 for LBBB; 0.991 for SB; 0.993 for AF; 0.974 for ST.

Training and validation set annotation. To annotate the training and validation
datasets, we used: (i) the Uni-G statements and Minnesota codes obtained by the
Uni-G automatic analysis (automatic diagnosis); (ii) automatic measurements
provided by the Uni-G software; and (iii) the text labels extracted from the expert
text reports using the semi-supervised methodology (medical diagnosis). Both the
automatic and medical diagnosis are subject to errors: automatic classification has
limited accuracy3–6 and text labels are subject to errors of both the practicing
expert cardiologists and the labeling methodology. Hence, we combine the expert
annotation with the automatic analysis to improve the quality of the dataset. The
following procedure is used for obtaining the ground truth annotation:

1. We:

(a) Accept a diagnosis (consider an abnormality to be present) if both the
expert and either the Uni-G statement or the Minnesota code provided
by the automatic analysis indicated the same abnormality.

(b) Reject a diagnosis (consider an abnormality to be absent) if only one
automatic classifier indicates the abnormality in disagreement with both
the doctor and the other automatic classifier.

After this initial step, there are two scenarios where we still need to
accept or reject diagnoses. They are: (i) both classifiers indicate the
abnormality, but the expert does not; or (ii) only the expert indicates the
abnormality, whereas none of the classifiers indicates anything.

2. We used the following rules to reject some of the remaining diagnoses:

(a) Diagnoses of ST where the heart rate was below 100 (8376 medical
diagnoses and 2 automatic diagnoses) were rejected.

(b) Diagnoses of SB where the heart rate was above 50 (7361 medical
diagnoses and 16,427 automatic diagnosis) were rejected.

(c) Diagnoses of LBBB or RBBB where the duration of the QRS interval
was below 115 ms (9313 medical diagnoses for RBBB and 8260 for
LBBB) were rejected.

(d) Diagnoses of 1dAVb where the duration of the PR interval was below
190 ms (3987 automatic diagnoses) were rejected.

3. Then, using the sensitivity analysis of 100 manually reviewed exams per
abnormality, we came up with the following rules to accept some of the
remaining diagnoses:

(a) For RBBB, d1AVb, SB and ST, we accepted all medical diagnoses.
26,033, 13,645, 12,200 and 14,604 diagnoses were accepted in this
fashion, respectively.

(b) For AF, we required not only that the exam was classified by the
doctors as true, but also that the standard deviation of the NN intervals
was higher than 646. 14,604 diagnoses were accepted using this rule.

According to the sensitivity analysis, the number of false positives that
would be introduced by this procedure was smaller than 3% of the total
number of exams.
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4. After this process, we were still left with 34,512 exams where the
corresponding diagnoses could neither be accepted nor rejected. These
were manually reviewed by medical students using the Telehealth ECG
diagnostic system, under the supervision of a certified cardiologist with
experience in ECG interpretation. The process of manually reviewing these
ECGs took several months.

It should be stressed that information from previous medical reports and
automatic measurements were used only for obtaining the ground truth for
training and validation sets and not on later stages of the DNN training.

Test set annotation. The dataset used for testing the DNN was also obtained from
TNMG’s ECG system. It was independently annotated by two certified cardiolo-
gists with experience in electrocardiography. The kappa coefficients46 indicate the
inter-rater agreement for the two cardiologists and are: 0.741 for 1dAVb; 0.955 for
RBBB; 0.964 for LBBB; 0.844 for SB; 0.831 for AF; 0.902 for ST. When they agreed,
the common diagnosis was considered as ground truth. In cases where there was
any disagreement, a third senior specialist, aware of the annotations from the other
two, decided the diagnosis. The American Heart Association standardization47 was
used as the guideline for the classification.

It should be highlighted that the annotation was performed in an upgraded
version of the TNMG software, in which the automatic measurements obtained by
the Uni-G program are presented to the specialist, that has to choose the ECG
diagnosis among a number of prespecified classes of abnormalities. Thus, the
diagnosis was codified directly into our classes and there was no need to extract the
label from a textual report, as it was done for the training and validation sets.

Neural network architecture and training. We used a convolutional neural net-
work similar to the residual network23, but adapted to unidimensional signals. This
architecture allows DNNs to be efficiently trained by including skip connections.
We have adopted the modification in the residual block proposed in ref. 48, which
place the skip connection in the position displayed in Fig. 3.

All ECG recordings are resampled to a 400 Hz sampling rate. The ECG
recordings, which have between 7 and 10 s, are zero-padded resulting in a signal
with 4096 samples for each lead. This signal is the input for the neural network.

The network consists of a convolutional layer (Conv) followed by four residual
blocks with two convolutional layers per block. The output of the last block is fed
into a fully connected layer (Dense) with a sigmoid activation function, σ, which
was used because the classes are not mutually exclusive (i.e. two or more classes
may occur in the same exam). The output of each convolutional layer is rescaled
using batch normalization, (BN)49, and fed into a rectified linear activation unit
(ReLU). Dropout50 is applied after the nonlinearity.

The convolutional layers have filter length 16, starting with 4096 samples and
64 filters for the first layer and residual block and increasing the number of filters
by 64 every second residual block and subsampling by a factor of 4 every residual
block. Max Pooling51 and convolutional layers with filter length 1 (1x1 Conv)
are included in the skip connections to make the dimensions match those from the
signals in the main branch.

The average cross-entropy is minimized using the Adam optimizer52 with default
parameters and learning rate lr= 0.001. The learning rate is reduced by a factor of 10
whenever the validation loss does not present any improvement for seven consecutive
epochs. The neural network weights was initialized as in ref. 53 and the bias was
initialized with zeros. The training runs for 50 epochs with the final model being the
one with the best validation results during the optimization process.

Hyperparameter tuning. This final architecture and configuration of hyperpara-
meters was obtained after approximately 30 iterations of the procedure: (i) find the
neural network weights in the training set; (ii) check the performance in the
validation set; and (iii) manually choose new hyperparameters and architecture

using insight from previous iterations. We started this procedure from the set of
hyperparameters and architecture used in ref. 15. It is also important to highlight
that the choice of architecture and hyperparameters was done together with
improvements in the dataset. Expert knowledge was used to take decision about
how to incorporate, on the manual tuning procedure, information about previous
iteration that were evaluated on slightly different versions of the dataset.

The hyperparameters were chosen among the following options: residual neural
networks with {2, 4, 8, 16} residual blocks, kernel size {8, 16, 32}, batch size
{16, 32, 64}, initial learning rate {0.01, 0.001, 0.0001}, optimization algorithms
{SGD, ADAM}, activation functions {ReLU, ELU}, dropout rate {0, 0.5, 0.8},
number of epochs without improvement in plateaus between 5 and 10, that would
result in a reduction in the learning rate between 0.1 and 0.5. Besides that, we also
tried to: (i) use vectorcardiogram linear transformation to reduce the
dimensionality of the input; (ii) include LSTM layer before convolutional layers;
(iii) use residual network without the preactivation architecture proposed in ref. 48;
(iv) use the convolutional architecture known as VGG; (v) switch the order of
activation and batch normalization layer.

Statistical and empirical analysis of test results. We computed the precision-
recall curve to assess the model discrimination of each rhythm class. This curve
shows the relationship between precision (PPV) and recall (sensitivity), calculated
using binary decision thresholds for each rhythm class. For imbalanced classes,
such as our test set, this plot is more informative than the ROC plot54. For the
remaining analyses we fixed the DNN threshold to the value that maximized the
F1 score, which is the harmonic mean between precision and recall. The F1 score
was chosen here due to its robustness to class imbalance54.

For the DNN with a fixed threshold, and for the medical residents and students,
we computed the precision, the recall, the specificity, the F1 score and, also, the
confusion matrix. This was done for each class. Bootstrapping26 was used to
analyze the empirical distribution of each of the scores: we generated 1000 different
sets by sampling with replacement from the test set, each set with the same number
samples as in the test set, and computed the precision, the recall, the specificity and
the F1 score for each. The resulting distributions are presented as a boxplot. We
used the McNemar test27 to compare the misclassification distribution of the DNN
and the medical residents and students on the test set and the kappa coefficient46 to
compare the inter-rater agreement.

All the misclassified exams were reviewed by an experienced cardiologist and,
after an interview with the ECG reviewers, the errors were classified into:
measurement errors, noise errors and unexplained errors (for the DNN only) and
conceptual and attention errors (for medical residents and students only).

We evaluate the F1 score for alternative scenarios where we use 90%-5%-5%
splits of the 2,322,513 records, with the splits ordered randomly, by date, and
stratified by patients. The neural networks developed in these alternative scenarios
are evaluated on both the original test set (n= 827) and the additional test splits
(last 5% split). The distribution of the performance in each scenario is computed by
a bootstrap analysis (with 1000 and 200 samples, respectively) and the resulting
boxplots are displayed in the Supplementary Material.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The test dataset used in this study is openly available, and can be downloaded at (https://

doi.org/10.5281/zenodo.3625006). The weights of all deep neural network models we

developed for this paper are available at (https://doi.org/10.5281/zenodo.3625017).

Restrictions apply to the availability of the training set. Requests to access the training

data will be considered on an individual basis by the Telehealth Network of Minas

Gerais. Any data use will be restricted to noncommercial research purposes, and the data
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Fig. 3 (DNN architecture). The unidimensional residual neural network architecture used for ECG classification.
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will only be made available on execution of appropriate data use agreements. The source

data underlying Supplementary Figs. 1 and 2 are provided as a Source Data file.

Code availability
The code for training and evaluating the DNN model, and, also, for generating figures

and tables in this paper is available at: https://github.com/antonior92/automatic-ecg-

diagnosis.
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