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This paper presents an approach for the rapid implementation of an adjoint solver for the Reynolds-

Averaged Navier–Stokes equations with a Spalart–Allmaras turbulence model. Automatic differen-

tiation is used to construct the partial derivatives required in the adjoint formulation. The resulting

adjoint implementation is computationally efficient and highly accurate. The assembly of each par-

tial derivative in the adjoint formulation is discussed. In addition, a coloring acceleration technique is

presented to improve the adjoint efficiency. The RANS adjoint is verified with complex-step method

using a flow over a bump case. The RANS-based aerodynamic shape optimization of an ONERA M6

wing is also presented to demonstrate the aerodynamic shape optimization capability. The drag coef-

ficient is reduced by 19% when subject to a lift coefficient constraint. The results are compared with

Euler-based aerodynamic shape optimization and previous work. Finally, the effects of the frozen-

turbulence assumption on the accuracy and computational cost are assessed.

I. Introduction

Recent advances in high performance computing have enabled the deployment of full-scale physics-based numer-

ical simulations and optimization in academia and industry. Computational fluid dynamics (CFD) tools and numerical

optimization techniques have been widely adopted to shorten the design cycle times and to explore the design space

more effectively. High-fidelity methods enable engineers to perform detailed designs earlier in the design process,

allowing them to better understand the design trade-offs and make more informed decisions. In addition, advances in

sensitivity analysis via the adjoint method [1] dramatically improve the effectiveness and computational time of aero-

dynamic shape optimization. However, due to the complexity of the CFD solvers, deployment of the adjoint method

in Reynolds-averaged Navier–Stokes (RANS) solvers remains a challenging task.

There are two types of adjoint approaches: continuous and discrete. In the continuous approach, the adjoint method

is directly applied to the governing differential equations. Partial derivatives of the objectives and residuals with respect

to state variables and design variables are combined via the adjoint variables. The governing equations and the adjoint

equation along with the boundary conditions are then discretized to obtain numerical solutions. Several authors have

demonstrated aerodynamic shape optimization with the continuous adjoint approach [2, 3, 4]. For the discrete adjoint

approach, the adjoint method is applied to the set of discretized flow governing equations instead. The gradient

produced by the discrete adjoint is exact in the discrete sense and can thus be verified with great precision using the

complex-step method [5]. The discrete adjoint approach is also widely used in aerodynamic shape optimization [6, 7,

8, 9, 10, 11, 12]. The implementation of either continuous or discrete adjoint methods in a complex CFD code remains

a challenging time-consuming task. The derivatives involved in the adjoint formulation for the RANS equations are
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often difficult to derive and require the manipulation of the governing equations. One way to tackle this difficulty is to

use automatic differentiation (AD), either by differentiating the entire code [13, 14], or by selectively differentiating

the code to compute the partial derivatives required by the adjoint method [15]. In this paper, we extensively use the

latter approach to compute the partial derivative terms for a discrete adjoint of the RANS equations. The one-equation

Spalart–Allmaras (SA) turbulence model [16] is also differentiated. Simplifications, such as neglecting the turbulent

contributions, can be made in the formulation. The accuracy of the frozen-turbulence assumption is assessed. In

addition, a coloring acceleration technique is also applied to speed up the construction of partial derivatives in the

adjoint. The last section of this paper presents the verification and benchmark of the proposed adjoint implementation

with two cases: flow over a bump, and an ONERA M6 wing.

II. Methodology

To develop the RANS adjoint, it is necessary to have a thorough understanding of the governing equations and the

flow solvers, such as the size of stencils, the vector of state variables, the call sequences, etc. In this section, we discuss

the backgrounds, methods, and tools that are involved in the formulation and implementation of the RANS adjoint.

A. Flow Governing Equations

The RANS equations are a set of conservation laws that relates mass, momentum, and energy in a control volume. To

simplify the expressions, the RANS equations, (1) are demonstrated in 2-dimension.

∂w

∂t
+

1

A

∮

Fi · n̂dl −
1

A

∮

Fv · n̂dl = 0 (1)

The state variable w, inviscid flux Fi and viscous flux Fv are defined as follow.

w =









ρ
ρu1
ρu2
ρE









(2) Fi1 =









ρu1
ρu21 + p
ρu1u2

(E + p)u1









(3) Fv1
=









0
τ11
τ12

u1τ11 + u2τ12 − q1









(4)

The shear stress and heat flux depends on both the laminar viscosity µ and the turbulent eddy viscosity µt, as

shown in Equations (5) and (6).

τ11 = (µ+ µt)
M∞

Re

2

3
(2u1 − u2) (5)

q1 = −
M∞

Re(γ − 1)
(
µ

Pr
+

µt

Prt
)
∂a2

∂x1
(6)

The laminar viscosity is determined by Sutherland’s law. The turbulent eddy viscosity can be updated with turbulence

models. In this paper, we use SA turbulence model and it is solved in a segregated fashion to update the turbulent

eddy viscosity. When solving for the main flow variables at each iteration, the turbulence variables are frozen, and

vice versa.

B. CFD Solver

The flow solver used is Stanford University multiblock (SUmb) [17] solver. SUmb is a finite-volume, cell-centered

multiblock solver for the compressible Euler, laminar Navier–Stokes, and RANS equations with steady, unsteady,

and time-periodic temporal modes. It provides options for a variety of turbulence models with one, two, or four

equations, and options to use adaptive wall functions. Central difference augmented with artificial dissipation is

used for the discretization of the inviscid fluxes. Viscous fluxes use central discretization. The main flow is solve

with an explicit multi-stage Runge–Kutta method accelerated with geometrical multi-grid, pseudo-time stepping and

implicit residual smoothing. The segregated SA turbulence equation is iterated with Diagonally Dominant Alternating

Direction Implicit (DDADI) method. Mader et al. [15] previously developed a discrete adjoint method for the Euler

equations using reverse mode AD. This paper extends the previous adjoint implementation to the steady Euler, laminar
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and RANS equations and introduces a simpler forward mode AD approach. This technique requires very little modified

to the original code.

C. RANS Automatic Differentiation Adjoint

High fidelity aerodynamic shape optimization with a large number of design variables requires an efficient gradient

calculation. Traditional methods, such as finite-difference, are straightforward to implement, but are inefficient for

large-scale optimization problems and are subject to subtractive cancellation error. The complex-step method alleviates

the errors resulting from subtractive cancellation and can provide machine-accurate gradients, but similar to finite

differencing, is inefficient for a large number of design variables. The total number of function evaluation scales with

the number of the design variables. Thus, for optimization problems with a large number of design variables, the

cost of one complete derivative computation can be on the order of hundreds or thousands flow solutions, which is

generally prohibitive when using high-fidelity models. For the adjoint method, cost of the derivative computations is

nearly independent of the number of design variables and scales only with the number of functions of interest, which

is generally much smaller than the number of design variables.

1. Adjoint Formulation

For a CFD solver, the discrete adjoint equations can be expressed as follows.

[

∂R

∂w

]T

Ψ = −
∂I

∂w
, (7)

where R is the residual of the computation, w is the state variables, I is the function of interest, and Ψ is the adjoint

vector. We can see that the adjoint equations do not involve the design variable x. For each function of interest, the

adjoint vector only needs to be computed once, and it is valid for all design variables. Once the adjoint vector is

computed, the total derivatives can be obtained using Equation (8).

dI

dx
=
∂I

∂x
−
∂I

∂w

[

∂R

∂w

]

−1
∂R

∂x
=
∂I

∂x
+ΨT ∂R

∂x
(8)

Partial derivatives in the equations represent an explicit dependence that do not require convergence of the residual.

In the case of computational fluid dynamics (CFD), by using the adjoint method, the cost of the total derivatives of

any number of design variables can be in the order of or less than the cost of one single CFD solution. Only with the

efficient gradient calculation, large-scale engineering optimization problems can be solved within a reasonable time.

2. Automatic Differentiation Adjoint

With the adjoint formulation, there is still one challenge — computing the partial derivatives efficiently. One can

naı̈vely use finite difference or complex-step to compute these partial derivatives. However, the prohibitive com-

putational cost from using those methods would completely defeat the purpose of the adjoint method. The partial

derivatives can also be derived analytically by hand, but such derivation is non-trivial for a complex CFD solver and

typically requires a lengthy development time for the adjoint.

In order to counter those disadvantages, Mader and Martins [15] proposed the ADjoint approach. The main idea

is to utilize automatic differentiation techniques to compute partial derivative terms for the adjoint method. The

automatic differentiation approach, also known as computational differentiation or algorithmic differentiation, relies

on a tool to perform source code transformation on the original solver to create the capability of computing derivatives.

The method is based on a systematic application of the chain rule to each line of the source code. There are two modes

in automatic differentiation: forward mode and reverse mode. The forward mode propagates the derivatives along

the original code execution path. The reverse mode first follows the original code execution path and in the store-all

approach stores all the intermediate variables. The original code execution path source code is then re-run in the

reverse execution order and the stored intermediate variables are used in the linearization of line of code.
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We use the following example to demonstrate the underlining methodology of forward and reverse mode automatic

differentiation.

f(x1, x2) = x1x2 + sin(x1) (9)

This function can be written as the sequence of elementary operations on the intermediate variables qi resulting in the

following sequence,

q1 = x1

q2 = x2

q3 = q1q2

q4 = sin(q1)

q5 = q3 + q4

(10)

This sequence is then used to compute the derivative of Equation (9).

FORWARD MODE Forward mode AD is simpler and more intuitive of the two approaches. In Equation (9), assuming

that x1 and x2 are independent inputs, the rules of differentiation are applied to the sequence in Equation (10) as follow.

∆q1 = ∆x1

∆q2 = ∆x2

∆q3 = ∆q1q2 + q1∆q2

∆q4 = cos(q1)∆q1

∆q5 = ∆q3 +∆q4

(11)

Once the sequence and its corresponding gradients for the function in Equation (9) are known, x1 and x2 can be seeded

to determine the gradient of the function. Since x1 and x2 are assumed to be independent inputs, seeding each input

independently means to set the variation to one while the other remains zero such that ∆x1 = [1, 0] and ∆x2 = [0, 1].
Forward mode AD sweeps over the computations in Equation (11) twice, once for each input, and adds the separate

derivative evaluations as follows.

∆f(x1, x2) = [fx1
, fx2

]

= ∆q5x1
+∆q5x2

= (∆q3x1
+∆q4x1

) + (∆q3x2
+∆q4x2

)

= ((1)q2 + q1(0) + cos(q1)(1)) + ((0)q2 + q1(1) + cos(q1)(0))

= q2 + cos(q1) + q1

= x1 + x2 + cos(x1)

(12)

This is the expected derivative for the original function in Equation (9), and can be written in a more general format

by considering the general sequence q = (q1, ..., qn). Considering m input variables and p output variables, the

sequence becomes q = (q1, ...qm, qm−p+1, ..., qn). For i > m, each qi must have a dependence on some member of

the sequence prior to i. If k < i, the entry qi of the sequence must depend explicitly on qk. The forward mode can

then be written as the chain rule summation as shown in [18],

∆qi =
∑ ∂qi

∂qk
∆qk, (13)

where i = m + 1, ..., n and k < i. The forward mode AD evaluates the gradients of the intermediate variables first

such that ∆q1, ...,∆qi−1 are known prior to the evaluation of ∆qi. It is easy to see that the forward mode builds up

the derivative information as it progresses forward through the algorithm, producing the derivative information for all

of the output variables with respect to a single seeded input variable.
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REVERSE MODE The reverse mode, though less intuitive, is dependent only on the number of outputs. With refer-

ence to the previous example, it is easier to understand reverse mode AD by examining the partial derivatives of f .

Consider the following,
∂q5
∂q1

=
∂q5
∂q1

∂q1
∂q1

+
∂q5
∂q2

∂q2
∂q1

+
∂q5
∂q3

∂q3
∂q1

+
∂q5
∂q4

∂q4
∂q1

, (14)

where q5 represents the single output f . The reverse mode first runs a forward sweep to determine all of the in-

termediate values in the sequence. Then, starting with a single output variable, (q5 in this case), the AD tool steps

backwards through the algorithm to compute the derivatives in reverse order. The example, and the implementation of

the sequence in Equation (14), produces the following final result.

∂q5
∂q5

= 1

∂q5
∂q4

= 1

∂q5
∂q3

= 1

∂q5
∂q2

=
∂q5
∂q3

∂q3
∂q2

= (1)(q1)

∂q5
∂q1

=
∂q5
∂q3

∂q3
∂q1

+
∂q5
∂q4

∂q4
∂q1

= (1)(q2) + (1)(cos(q1)

(15)

where we have,
∂q5
∂q1

=
∂f

∂x1
= x2 + cos(x1)

∂q5
∂q2

=
∂f

∂x2
= x1.

(16)

The advantage here is that only a single reverse sweep is required to evaluate the derivatives with respect to both x1
and x2. Should there be a greater number of inputs, which is typical in an aerodynamic shape optimization problem, a

single forward sweep to accumulate the code list as well as a single reverse mode sweep is all that would be necessary

to calculate the sensitivities for a single output.

The disadvantage of the reverse mode is that the implementation is more complicated than the forward mode. The

reverse mode was used in the original development of the ADjoint method and so is used as a benchmarking tool in

the development of the forward mode ADjoint method. To avoid the high computational costs associated with using

the forward mode of AD, a coloring method is used to accelerate the computation.

For the adjoint equations (7) and (8), the partial derivatives ∂R/∂w, ∂I/∂w, ∂I/∂x, and ∂R/∂x are computed

with forward automatic differentiation. The following sections explain the implementation of each partial derivatives

in details. There are various automatic differentiation tools available including ADIC [19], ADIFOR [20], FAD-

BAD++ [21], OpenAD/F [22], and TAPENADE [23]. The work presented in this paper uses TAPENADE to perform

the task. TAPENADE is an automatic differentiation engine developed by the Tropics team at Institut National de

Recherche en Informatique et Automatique and supports both forward and reverse modes.

3. Computation of ∂R/∂w and ∂I/∂w

To compute ∂R/∂w, there are three flux calculations involved: inviscid fluxes, artificial dissipation fluxes, and viscous

fluxes. For Euler equations, the combined stencil is the current cell and the 12 adjacent cells in each of the three

dimensions — a total of 13 cells, as shown in Figure 1a. The Laminar and RANS equations have much larger stencils

due to the nodal averaging procedure used in the viscous fluxes. The RANS stencil is a dense 3x3x3 block around the

center cell plus additional 6 adjacent cells in each direction, as shown in Figure 1b. The size and the shape of the stencil

is important for the coloring acceleration techniques, which is discussed further in Section E. For RANS equations, the

state vector w contains the five main flow state variables and one turbulence variable for the one-equation SA model.

Therefore, the residual computation for the SA equation also need to be included in the automatic differentiation.
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The contribution of the turbulence to the main flow residual is included via the turbulence variable. The frozen-

turbulence assumption can be made by neglecting the turbulence contribution to the main flow. Since ∂R/∂w is a

square matrix, in principle both forward and reverse modes would require similar number of function calls to form the

matrix. However, forward mode is more intuitive and has lower overhead cost and for forming ∂R/∂w, the forward

mode is faster than the reverse mode in practice. ∂R/∂w is stored in transpose form in a block compressed sparse row

matrix format.

I

J

K

a) Euler flux stencil: 13 cells

I

J

K

b) RANS flux stencil: 33 cells

Figure 1. Euler and RANS flux Jacobian stencil

Special care must be taken for the computation of ∂I/∂w with forward mode AD. If the routine to compute

I , which we will assume consists of integrated forces or moments on wall boundary, is simply included with the

residual evaluation, all cells near the surface that influence the force evaluation on the wall would have to be perturbed

independently and the advantage of the graph coloring approach described in Section E would be nullified.

To enable the evaluation of ∂I/∂w simultaneously with ∂R/∂w it is necessary to evaluate individual forces and

moments at each cell, not just the overall sum. Stencils for individual force and moment computations are compact.

For both Euler and RANS cases this force stencil is smaller than the corresponding residual stencil. For the linear

pressure extrapolation wall boundary condition, the Euler force stencil has only two cells: the cell on the surface and

the cell above. The RANS force stencil consists of a 3x3 patch on the surface and one layer above, with a total of

18 cells. Both Euler and RANS force stencil can be packed inside the respective flux Jacobian stencils. Once the

individual forces are resolved, their contribution to the chosen objective, I , is evaluated and the correct contribution

can be added to ∂I/∂w.

4. Computation of ∂R/∂x and ∂I/∂x

The calculations of ∂R/∂x and ∂I/∂x depend on the design variables. For aerodynamic shape optimization, we are

generally interested in geometric design variables, such as airfoil profile, wing twists, etc, and flow condition design

variables, such as Mach number, angle of attack, side-slip angle etc. The partials that involve flow design variables are

relatively straight-forward. Each flow design variables are seeded and forward mode AD is used to obtain the residual

and objective partial derivatives. No coloring scheme is necessary, since only one pass of the residual routine is needed
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for each flow design variables.

I

J

K

Figure 2. Euler spatial stencil: 32 cells

The partial derivatives for the geometric design variables require careful implementation. In an effort to modularize

codes, SUmb does not require the specific information about the geometric design variables. Instead, we calculate

∂R/∂xpt and ∂I/∂xpt, where xpt includes all the nodes in the CFD mesh. We use a separate utilities to perform

the mesh deformation sensitivity calculation [24] and manipulation of the surface geometry. The surface geometry

is manipulated using the free-form deformation (FFD) approach. It is then transform the spatial derivatives into the

derivatives with respect to the control points of the FFD volume.

To compute ∂R/∂xpt and ∂I/∂xpt, we again use forward mode AD. The choice of forward mode may not be

obvious here. The benefit of using forward mode AD is that the same SUmb residual routine can be used in both

state and spatial derivatives, resulting a much less demanding implementation and fewer modifications. Similar to the

state partial derivatives, both ∂R/∂xpt and ∂I/∂xpt can be computed at the same time. The center of the stencils

for the spatial derivatives is a node instead a cell. Figure 2 shows the Euler ∂R/∂xpt stencil, with a total of 32 cells.

The corresponding RANS stencil is a dense 4x4x4 block containing 64 cells. The Euler stencil for ∂I/∂xpt is a 4x4

surface patch, while the RANS one includes one addition layer above. As we can see, both spatial force derivatives

can also be fitted inside the spatial residual stencils.

D. Adjoint Solution Method

We use a preconditioned GMRES [25] algorithm in PETSc Portable, Extensible Toolkit for Scientific Computa-

tion) [26, 27, 28] to solve the adjoint system. PETSc is a suite of data structures and routines for the scalable parallel

solution of scientific applications modelled by partial differential equations. The system is preconditioned with restric-

tive additive Schwartz method and incomplete LU (ILU) factorization on each sub-domain. We found that GMRES

with approximate preconditioner produced using a first-order approximation is very effective with Euler adjoint. The

RANS adjoint, especially without the frozen-turbulence assumption, is considerably more stiff than the Euler adjoint

with the problem more prominent at high Reynolds number. A stronger preconditioner, such as full ∂R/∂w Jacobian

as preconditioner, may be necessary.

E. Coloring Acceleration Techniques

As previously noted, a naı̈ve approach for computing ∂R/∂w and ∂R/∂x would require a total of Nstate + 3×Nnodes

evaluations, where Nstate and Nnodes are the total number of cells and nodes respectively. In this approach each column

(or row of the transposed Jacobian) is computed one at a time. If we however, exploit the sparsity structure of ∂R/∂w
and ∂R/∂x, it is possible to fully populate the Jacobians with far fewer function evaluations.
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The general idea is to determine groups of independent columns of the Jacobian. A group of columns is considered

independent if no row contains more than one nonzero entry. This allows a group of independent columns to be

evaluated simultaneously. The process of determining which columns are independent is known as graph coloring.

The determination of an optimal (smallest) set of colors for a general graph is quite challenging. For unstructured

grids, a greedy coloring scheme can be used resulting is a satisfactory number of colors[29].

For structured grids with regular repeating stencils, the graph coloring problem is substantially simpler [30]. Con-

sider the 13-cell stencil for the Euler residual evaluation shown in Figure 1a. It is clear at least 13 colors will be

required. Determining the optimum graph coloring for this case is is equivalent to finding a three dimensional packing

sequence that minimizes the unused space between stencils. Fortunately, for this stencil, a perfect packing sequence

is possible and precisely 13 colors are required. A three-dimensional view of the stencil packing is shown in Figure 3.

For the 33 cell RANS stencil, it is not possible to perfectly pack the stencils. We have, however, found a coloring

scheme that requires only 35 colors, shown in Figure 4. To assign the coloring number mathematically to each cell,

simple formulae can be derived emplying the remainder function mod(m,n). m is a function determined by the num-

bered stencil and n is the total number of colors required to populate the matrix. Equations (17) through (19) show

the coloring function for the Euler and RANS stencils. These optimal graph colorings reduce the number of forward

mode AD perturbations to a fixed constant, independent of the mesh size.

CEuler, state(i, j, k) = mod (i+ 3j + 4k, 13) (17)

CEuler, spatial(i, j, k) = mod (i+ 7j + 27k, 38) (18)

CRANS, state(i, j, k) = mod (i+ 19j + 11k, 35) (19)

I

J

K

Figure 3. Euler state coloring patterns with 13 colors

I

J

K

Figure 4. Euler spatial coloring patterns with 38 colors

III. Accuracy Verification

A flow over a bump case is chosen as the test case to verify Euler, Laminar NS, and RANS adjoint solutions. The

computational mesh for the test case used is shown in Figure 6. It is a single block mesh with 3 072 cells. The side

walls of the channel use symmetry boundary conditions. The inflow and outflow faces and the upper wall is set to
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I

J K

Figure 5. RANS state coloring patterns with 35 colors

far-field conditions. The bottom wall is deformed with a sinusoidal bump to create a reasonable variation in the flow,

which has solid wall boundary condition.

Figure 6. Volume mesh for bump verification case Figure 7. Cp distribution of the RANS solution

Both the flow solution and the adjoint solutions are converged to a tolerance of O(10−12). We verify the adjoint

accuracy with complex-step derivative approach given by: [5],

dF

dx
=
Im[F (x+ ih)]

h
, (20)

where h is the complex step length. An imaginary step of 10−40j is chosen as the perturbation.

Euler, Laminar NS, and RANS with both frozen-turbulence and full-turbulence are benchmarked against complex-

step. We choose Mach number 0.8 and Reynolds number 10 million for the flow condition. Figure 7 shows the Cp

distribution of the RANS solution. Two objective functions, CD and CL, are used for verification. For the design

variables, we choose Mach number to verify the aerodynamic derivatives and a point on the surface to verify the

spatial derivatives. The results are summarized in Table 1 to Table 4.

We can see that the resulting derivatives match with complex-step solutions. The full-turbulence aerodynamic

derivatives matches significantly better than the frozen-turbulence ones. Due to the complexity of the wall distance
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Derivatives Complex-Step Adjoint Difference

dCD/dM 0.652989053 0.652989064 1.5E-8

dCL/dM 1.678545380 1.678545372 4.9E-9

dCD/dx 0.152323769 0.152323071 9.6E-8

dCL/dx 0.011324974 0.011324975 4.6E-6

Table 1. Accuracy validations of the Euler adjoint

Derivatives Complex-Step Adjoint Difference

dCD/dM 0.655985401 0.655985467 1.0E-7

dCL/dM 1.819804777 1.819804889 6.1E-8

dCD/dx 0.011845928 0.011845836 7.7E-6

dCL/dx 0.145307150 0.145312443 3.6E-5

Table 2. Accuracy validations of the Laminar NS adjoint

Derivatives Complex-Step Frozen-Turbulence Adjoint Difference

dCD/dM 0.673453841 0.673684112 3.4E-4

dCL/dM 1.767928150 1.772398147 2.5E-3

dCD/dx 0.009952556 0.009952686 1.3E-5

dCL/dx 0.129946365 0.130232663 2.2E-3

Table 3. Accuracy validations of the frozen-turbulence adjoint

Derivatives Complex-Step Full-Turbulence Adjoint Difference

dCD/dM 0.673453841 0.673453842 1.1E-9

dCL/dM 1.767928150 1.767928153 1.4E-9

dCD/dx 0.009952556 0.009949493 3.1E-4

dCL/dx 0.129946365 0.129890985 4.2E-4

Table 4. Accuracy validations of the full-turbulence adjoint
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function in SA turbulence model, the wall distance computation is not linearized and is assumed constant in the

turbulence model to simplify the automatic differentiation. Therefore, we see that the spatial derivatives have less

accuracy than the aerodynamics derivatives for the full-turbulence adjoint.

IV. Results

To demonstrate the effectiveness of the RANS adjoint formulation for aerodynamic shape optimization, an example

of lift constrained drag minimization of a transonic wing is presented. The particular test considered is the well-studied

ONERA M6 wing [31]. This geometry has been studied by numerous authors [32, 33, 34, 35, 36, 8, 10] due to the

simple, well defined geometry and the availability of experimental data.

The optimization problem considered is described below:

minimize
x

CD(x)

subject to CL ≥ C∗

L

V ≥ V0

ti ≥ 1, i = 1, . . . , 21.

The objective is to reduce the drag coefficient while maintaining a specified lift coefficient, C∗

L = 0.271. The lift

coefficient is based on a reference area of 0.75296 m2. Additional geometric constraints in the form of volume and

thickness constraints are also used and are described in section B.

A. Verification and Grid Refinement Study

Before optimizations were carried out, a grid refinement study and comparison with experimental data was made. The

external flow condition for the experimental data and subsequent optimizations is:

M = 0.8395 Re = 11.72× 106 α = 3.06◦ (21)

A sequence of 4 uniformly refined grids, labeled L1 through L4, were generated with grid sizes ranging from 129

thousand cells to over 66 million cells. The grids are generated using an in-house 3D hyperbolic mesh generator. The

L2, L3 and L4 grids are all computed directly from their respective surface meshes while the L1 grid is obtained from

the L2 grid by removing every other mesh node. An additional algebraic C-O topology Euler mesh was also generated

for the purposes of comparing optimization results obtained with Euler and RANS analysis methods. The Euler grid

has approximately the same number of cells as the L2 RANS mesh to facilitate comparison between the computational

cost for roughly equivalent Euler and RANS optimizations. A description of all grids used in this work is given in

Table 5. For all grids the far-field surface is located approximately 100 Mean Aerodynamic Chords away from the

body.

Table 5. Mesh sizes

Grid Cells Surface Cells Off-wall Cells Off-wall Spacing y+max

RANS L1 129 024 4 032 32 3.0× 10
−6

1.50
RANS L2 1 032 192 16 128 64 1.5× 10

−6
0.67

RANS L3 8 257 536 54 512 128 0.75× 10
−6

0.35
RANS L4 66 060 288 258 048 256 0.375× 10

−6
0.18

Euler 1 044 480 18 432 40 3.0× 10
−4 –

The comparison of the experimental data with each of the four RANS grids is given in Figure 8. Overall, the flow

solver has fairly accurately predicted the coefficient of pressure at each span-wise section. As expected, the finer grid

resolutions do a better job of resolving both the location and strength of the shocks, although there is little discernible

difference between the L3 and L4 grids. We believe the discrepancy between the computed and experimental data near

the root can be attributed to wind tunnel effects and the splitter plate used in the physical setup that are not modelled
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computationally. A second discrepancy appears at the 2z/b = 0.90 section where it is clear the position of the leading

edge shock is displaced rearward as compared with the experimental data. This computational behaviour is however,

consistent with other results obtained on highly refined grids [37]. A possible explanation is due to small aeroelastic

deformation of the physical model which not present in the computational model.
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Figure 8. Cp contours for each grid refinement level compared with experimental data

Additionally, an angle of attack sweep from 0◦ to 5◦ was run for each grid level to generate drag polars at the

design Mach number of M = 0.8395. The polar is shown in Figure 9a. It is clear that the coarsest grid, L1, is not

sufficiently resolved for accurate drag prediction. Conversely, the L3 and L4 grids are nearly indistinguishable from

each other except at the higher lift coefficients. While the discrepancy between the L2 and L4 grids is clearly visible

it is fairly small and this level of refinement offers significantly computational computational savings compared to the

L3 and L4 grids for the purposes of optimization.

Drag convergence curves for various angles of attack are given in Figure 9b. The x-axis scale is given in terms of

the Grid Factor which is defined as N
−2/3
cell . In general, the total drag coefficient decreases with increasing grid size.

However, between the L3 and L4 grids at higher angles of attack, the trend reverses and the larger grids see a slight

increase in drag. The root cause of this behaviour is not known and warrants further investigation.

B. Geometric parametrization, Constraints and Grid Movement

The geometric manipulation of the initial geometry is carried out using the Free Form Deformation (FFD) volume

approach [38]. The design variables, x, are used to perturb the control points on a 3-dimensional parametric B-spline
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Figure 9. Polar and grid convergence for each grid level.

volume which in turn, perturbs the coordinates of the CFD surface mesh embedded parametrically inside. The design

variable vector consists of 6 twist values that twist each of the six span-wise planes of control points, and 144 shape

variables. Each shape variable perturbs individual coordinates of the FFD in the y (normal) direction. Note that since

the root twist is allowed to vary, angle of attack is not a variable and the optimizations are carried out a fixed angle of

attack of 3.06◦.

To ensure a well-posed optimization problem, several additional geometric constraints are also employed. The

internal volume of the wing is constrained to be greater than or equal to its initial value. A total of 21 thickness

constraints are used; 10 distributed along the 15% chord line, 10 distributed along the 99% chord line and a single

additional constraint near the mid-chord position at the wingtip. The leading edge constraints prevent a sharp leading

edge from forming and the trailing edge constraints prevent a reduction in the thickness of the trailing edge.

A view of the initial wing geometry, the FFD volume box and the thickness constraints are given in Figure 10.

Note that the distribution of control points on the FFD are not uniform in the chord-wise direction. This clustering

around the leading edge was used to ensure the optimizer is given sufficient geometric freedom to eliminate the leading

edge shock present on the baseline design. Further, the blunt trailing edge of physical model is retained for the RANS

simulations. A sharp trailing edge modification is used for the Euler grid.

Figure 10. FFD control points (blue spheres) and thickness constraints (red lines).

The grids are deformed using a hybrid linear-elasticity algebraic mesh deformation algorithm previously developed

13

D
o
w

n
lo

ad
ed

 b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 M

IC
H

IG
A

N
 o

n
 A

p
ri

l 
2
, 
2
0
1
4
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
3
-2

5
8
1
 



by the authors [38]. The mesh sensitivities required for the ψT ∂A
∂x computation are computed using Reverse Mode AD

and a mesh adjoint equation.

A view of the surface mesh, symmetry plane and flow solution for the Euler and RANS grids are given in Figure 11.

a) Euler grid b) RANS grid

Figure 11. Computational grids used for Euler and RANS analysis. Cp contours are shown for M = 0.8395 and α = 3.06◦.

C. Optimization Algorithm

Due to high computational cost of the CFD solver, it is critical to choose an efficient optimization algorithm that re-

quires a reasonably low number of function calls. Gradient-free methods, such as genetic algorithms, have a higher

probability of getting close to the global minimum for cases with multiple local minima. However, slow convergence

and a large number of function calls would make gradient-free aerodynamic shape optimization infeasible with current

computational resources. Therefore, we use gradient-based optimizers combined with adjoint gradient evaluations to

achieve an efficient optimization process. For a large number of design variables, the use of gradient-based optimizers

is advantageous. We use a Python-based optimization package, pyOpt [39], to interface with CFD and adjoint solvers.

We choose a gradient-based optimization algorithm, Sparse Nonlinear OPTimizer (SNOPT) [40], as the optimizer.

SNOPT is a sequential quadratic programming (SQP) method, designed for large-scale nonlinear optimization prob-

lems with thousands of constraints and design variables. It uses a smooth augmented Lagrangian merit function and

the Hessian of the Lagrangian is approximated using a limited-memory quasi-Newton method.

D. Computational Resources

The three optimizations are performed on a massively parallel supercomputer. Different processor counts are chosen

for the Euler and RANS optimizations in an effort to keep the wall time of each optimization within a one day turn-

around. Due to the lower computational and memory requirements for the Euler analysis, this optimization uses 32

processors while the two RANS optimizations use 88 processors.

E. Optimization Results

Three optimizations are considered: a RANS optimization employing the frozen turbulence assumption for the adjoint,

a RANS optimization with the turbulence model linearization and an Euler optimization. An effort is made to compare

the computational cost and accuracy of these differing approaches.
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Firstly, we examine the convergence history of the optimizations, given in Figure 12. All optimization are con-

verged to an optimality tolerance of 1 × 10−4 and take approximately 112 major iterations to reach this level of

convergence.
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Figure 12. Convergence history of optimality and relative merit function.

Qualitatively, the merit function convergence for each optimization is similar: There is a very rapid decrease in

CD at the beginning of the optimization followed by much slower decreases as the optimization progresses. The first

phase of the optimization involves the weakening of the two upper surface shocks. Referring to Figure 13a, by the 10th

iteration, the shocks have been entirely smoothed due to shape changes and this is responsible for the majority of the

drag reduction. The second phase involves minor adjustments to the shape and modifications to the twist distribution.

During this phase, an increase skin friction drag is traded for lower pressure and an overall decrease in the objective

function. It is clear from Figure 13b, that the majority of the wing twist present in the optimized design is added

towards the end of the optimization, which is use primarily to reduce the induced drag of the wing.

We now examine the cross sectional Cp contours of each of the three optimized designs. The same six span-wise

locations as used in the experimental verification are reused. Figure 17b shows the contours for the baseline design,

the frozen turbulence RANS optimization and the full RANS optimization. Figure 17a shows the baseline design, the

optimized design and the optimized Euler design analyzed using RANS analys. For this last case, the geometric design

variables from the Euler optimization were used to perturb the L2 RANS grid and then obtain a solution at C∗

L.

Generally, the Cp contours for the two RANS optimization are similar. However, there are some slight differences,

with the full RANS design resulting in somewhat smoother Cp contours. The largest discrepancy is observed on the

lower surface near the leading edge.

A breakdown of the pressure and skin friction drag components is given in Table 6. In addition to the drag from

the optimization (Optimized (L2)), we also analyze the baseline design and optimized design using the L3 grid. The

goal is to verify that the gains made during the optimization are realized on the finer grid. This is indeed the case; The

total drag reduction on the L3 grid is nearly identical to that on the L2 grid, justifying our choice of the L2 grid for

optimization. For comparison, we also analyze the Euler design using the L2 RANS grid. The FFD approach greatly
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Figure 13. Evolution of Cp and cross section shape for section 2z/b = 0.65.

facilities this exercise since the geometric design variables operate independently of the underlying mesh or surface

topologies. Interestingly, the Euler optimized design shows remarkably good RANS performance, with the total drag

coefficient only 3.7 counts higher than the RANS optimized design. Nevertheless, it worthwhile noting that this drag

level was obtained by the RANS optimization after only 20 iterations, and corresponds to the initial optimization phase

described previously. Most of the improvements small detailed shape and twist changes in the Euler optimization are

evidently not realized in the viscous flow case.

Geometry CL CDtotal
∆CDtotal

CDpressure
∆CDpressure

CDfriction
∆CDfriction

Baseline (L2) 0.2710 0.01725 – 0.01199 – 0.00526 –

Optimized (L2) 0.2710 0.01400 −0.00325 0.00847 −0.00343 0.00553 0.00027
Euler Design (L2) 0.2710 0.01437 −0.00288 0.00875 −0.00324 0.00561 0.00035

Baseline (L3) 0.2710 0.01687 – 0.01158 – 0.00529 –

Optimized (L3) 0.2710 0.01364 −0.00323 0.00816 −0.00342 0.00548 0.00019

Table 6. Drag break down for baseline and optimized designs on two mesh levels

A timing beak-down of the various components of each optimization is given in Figure 7. The Miscellaneous

category accounts for the time required for initial setup time, I/O, geometric manipulation, total sensitivity calculations

and the optimization algorithm. Since the Euler optimization used few processors, the Processor Hours row indicates

the true computational cost of the respective optimization. While, the full RANS simulation converges to a slightly

better optimum in the same number iterations, the computation cost of the full RANS optimization is significantly

more. Referring to Table 7, the main increase in cost for the full RANS simulation is the increased cost of residual

assembly due to the extra state to be perturbed and the additional cost of solving the adjoint system. The increase

in the adjoint solving cost is twofold: The matrix-vector products and preconditioner application is more costly due

to the larger number of non-zeros (a factor of (6/5)2 = 1.44) and the systems require more GMRES iterations for

convergence. This results in the Full RANS optimization requiring approximately 70% more CPU time that the frozen-

turbulence assumption optimization. For the remainder of this section, for comparison, purposes we use the frozen

turbulence optimization results.

16

D
o
w

n
lo

ad
ed

 b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 M

IC
H

IG
A

N
 o

n
 A

p
ri

l 
2
, 
2
0
1
4
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
3
-2

5
8
1
 



X

C
p

0.2 0.3 0.4 0.5 0.6 0.7 0.8

-1

-0.5

0

0.5
Baseline
Optimized (Frozen turbulence)
Optimized (Full RANS)

a) 2z/b = 0.20

X
C

p

0.4 0.5 0.6 0.7 0.8 0.9

-1

-0.5

0

0.5

b) 2z/b = 0.44

X

C
p

0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

c) 2z/b = 0.65

X

C
p

0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

d) 2z/b = 0.80

X

C
p

0.7 0.8 0.9 1 1.1

-1

-0.5

0

0.5

e) 2z/b = 0.90

X

C
p

0.7 0.8 0.9 1 1.1

-1

-0.5

0

0.5

f) 2z/b = 0.95

Figure 14. Cp contours for RANS optimized designs.

Component
Euler RANS (Frozen Turbulence) RANS

Time (h) Fraction Time (h) Fraction Time (h) Fraction

Flow solution 1.82 0.167 5.98 0.397 5.43 0.212
Adjoint assembly 0.70 0.065 1.32 0.088 1.73 0.067
Adjoint solution 7.88 0.724 7.37 0.490 17.93 0.701

Miscellaneous 0.49 0.045 0.37 0.025 0.50 0.020

Wall-time Total 10.89 1.000 15.04 1.000 25.59 1.000

Processor Hours 348.5 – 1323.52 – 2251.0 –

Table 7. Timing breakdown for each optimization

We compared our optimization results with previous optimization studies of the ONERA M6 wing, summarized

in Table 8. We obtained a large drag reduction of 19.1%. Present work used a relatively large grid size and compar-
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Figure 15. Cp contours for Euler optimized design.

atively a large number of design variables. Due to the clustering of shape design variables near the leading edge, the

optimization was able to completely eliminate the leading edge shock.
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Figure 16. Cross section shapes for RANS and Euler optimized designs.

Origin Grid Size NDV
Initial Optimized

CL CD L/D CL CD ∆CD (%) L/D

Present Work (L3) 8M 150 0.2710 0.01687 16.06 0.2710 0.01364 −19.1 19.86
Present Work (L2) 1M 150 0.2710 0.01725 15.71 0.2710 0.01400 −18.8 19.36

Osusky and Zingg [10] 2.2M 226 0.2590 – – 0.2590 – −17.1 –

Bueno-Orovio et al. [41] 43K 12 – 0.01712 – – 0.01558 −10.0 –

Le Moigne and Qin [35] 312K 86 0.2697 0.01736 15.54 0.2964 0.01478 −14.9 18.23
Neilson and Anderson [34] 359K 21 0.2530 0.01680 15.06 0.2530 0.01420 −15.5 17.82

Lee et al. [36] 291K 40 0.2622 0.01751 14.97 0.2580 0.01586 −9.4 16.27

Table 8. Comparison of aerodynamic coefficients with previous work.

The Cp contours for both the Euler and RANS optimized designs are shown in Figure 17. We can see that both

Euler and RANS achieved a shock-free solution. The Euler optimized design has a rapid pressure recovery near the TE.

The RANS optimized solution, however, has parallel pressure contour lines with nearly constant spacing, indicating a
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gradual increase of pressure.

a) Euler optimization

b) RANS optimization

Figure 17. Cp contours for baseline and optimized designs for Euler and RANS

We also investigated the drag divergence at different CL. Figure 18 shows the drag divergence plot for three differ-

ent CL values. Both Euler and RANS optimized design reduced drag over the entire Mach range and the divergence

Mach number are increased at all CL values as compared to the baseline design. The drag coefficient remains nearly

constant up to the divergence Mach numbers. At higher CL, we see a drag pocket at the optimized Mach number for

Euler solution. However, the drag dip on the RANS design is not significant. The effect could be due to the relatively

low CL. The drag dip at the optimized Mach number may become more prominent at higher loadings.

The baseline designs have lift distributions that are already reasonably close to elliptic. Both Euler and RANS

optimized designs result in lift distributions that are very close to the optimum elliptical distribution, as shown in

Figure 19. As a result, lift-induced drags were decreased, contributing to the pressure drag reduction shown in Table 6.

The shift in lift distributions were obtained by the change in twist distributions shown in Figure 20. We also see that

the Euler optimization tends to change t/c more significantly than the RANS optimization.
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Figure 18. Drag divergence curves for three fixed lift coefficients.
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Figure 19. Lift distribution for baseline and optimized designs.

V. Conclusion

We presented an approach for rapid development of the adjoint to the Reynolds-Averaged Navier–Stokes equations

with a Spalart–Allmaras turbulence model. Automatic differentiation is used to construct the partial derivatives for the

discrete adjoint formulation. The resulting adjoint is computationally efficient and highly accurate. We use an analytic

coloring acceleration technique to improve the adjoint assembly efficiency. The resulting RANS adjoint is verified

with complex-step method using a flow over a bump test case. The aerodynamic gradients differ by O
(

10−9
)

, and

the spatial gradients differ by O
(

10−4
)

when compared with the complex-step method. A RANS aerodynamic shape

optimization of the ONERA M6 wing is presented as a preliminary test case. The results are compared with a design

obtained by a comparable Euler optimization. We achieved a drag reduction of 19% as compared the baseline wing.

The shocks on the upper surface was completely eliminated and the optimized design improved the drag coefficient at

all flight Mach numbers. The drag divergence Mach number of the optimized design is also increased. For the ONERA

M6 optimization problem considered, the full RANS adjoint formulation resulted in a slightly better optimized design,
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Figure 20. Thickness-to-chord ratio and twist distributions for baseline and optimized designs.

but the optimization was 70% more costly than the frozen turbulence formulation.
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