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Abstract 

The ADIFOR automatic differentiation tool is applied to a 3-D storm-scale 
meteorological model to generate a sensitivity-enhanced code capable of providing 
derivatives of all model output variables and related diagnostic (derived} parameters as 
a function of specified control parameters. The tangent linear approximation, applied 
to a deep convective storm by the first of its kind using a full-physics compressible 
model, is valid up to 50 min for a 1 % water vapor perturbations. The result is very 
encouraging considering the highly nonlinear and discontinuous properties of solutions. 
The ADIFOR-generated code has provided valuable sensitivity information on storm 
dynamics. Especially, it is very efficient and useful for investigating how a perturbation 
inserted at earlier time propagates through the model variables at later times. However, 
it is computationally very expensive to be applied to the variational data assimilation, 
especially for 3-D meteorological models, which potentially have a large number of input 
variables. 

Keywords: tangent linear approximation, forward sensitivity, adjoint sensitivity, vartia- 
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1 Introduction 

The dynamical evolution of numerically simulated storms is highly dependent on the 

physical and computational parameters in the model, as well as on the initial and boundary 

conditions. The deterministic approach to sensitivity analysis, which employs both the 

tangent linear and adjoint of the original nonlinear model, can provide a wealth of sensitivity 

infcrmation at  a very low cost compared with traditional brute force and Monte Carlo 

methods, which make numerous simulations with the full numerical model and perform 

various types of statistical analysis on the output. 
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In the deterministic approach, one develops a set of differential sensitivity equations, 

which is used to express the gradient of the solution vector with respect to input 

parameters [21]. Sensitivity coefficients are then computed exactly by solving the differential 

equations using a nonlinear solution as a basic state (e.g., [S,  17, 51). In this sense. the 

sensitivity is defined as the gradient (i.e., the first-order derivative) of the model response 

with respect to any input parameter [HI. 
The gradients can be computed efficiently and accurately by using automatic differ- 

entiation (AD) tools, which apply the chain rule systematically to elementary operations 

or functions to generate derivative codes of given nonlinear models E2]. Besides providing 

basic sensitivity information, AD tools are indispensable in variational data assimilation, 

whose optimization processes require accurate gradient information. 

In meteorology. the adjoint model (XDJM) has been used substantially in both 

sensitivity analysis (e.g., [8]) and variational data assimilation (e.g., [14]). Although -AD 

tools exist for generating the ADJM (e.g., OdyssGe [19], AMC [lo]), the ADJMs, especially 

of 3-D models, are still routinely generated by hand. Bischof et al. [53 have successfully 

applied in AD tool to  generate the tangent linear model (TLM) of a 3-D mesoscale model 

(the PSU/NCAR MbI5). A compilation of currently available AD tools can be found in [4] 

and on the World Wide Web at 

h t t p :  //wvw.mcs. an1 .gov/Projects/autodiff/ADTools. 

In this study, we apply the ADIFOR (Automatic Differentiation of FORtran) general- 

purpose AD tool [2, 31 to the 3-D Advanced Regional Prediction System (ARPS) [22] 

to generate a sensitivity-enhanced (SE-ARPS) code capable of providing derivatives of 

all model output variables and related diagnostic (derived) parameters as a function of 

specified control parameters, including initial and boundary conditions as well as physical 

and computational const ants. 

IR this manner, we obtain exact derivative information, which is used to establish 

physical/dynamical cause and effect between changes in input and changes in output. 

Specifically, we compute the sensitivity of model outputs with respect to water vapor, which 

is a major factor to control storm life and morphology. We also compute sensitivities of 

the cost function, which measures distance in the Euclidean norm between the observation 

data and model results, with respect to  all forecast aspects. Subsequently, we discuss 

implications of the sensitivity results on data assimilation. 

ARPS is a fully compressible cloud model with full physics. Although an AD tool 

has been applied to a nonhydrostatic mesoscale model [ 5 ] ,  no AD tool has been applied 

to a compressible model. In a compressible model, meteorologically unimportant acoustic 

waves are also supported, which severely limit the timestep size of explicit time integration 

schemes. To improve efficiency, ARPS employs the mode-splitting time integration 

technique [13]. In this technique, a large integration timestep is divided into a number 

of small timesteps; the acoustically active terms are updated every small timestep, while 

all other terms are computed only once every large timestep. This research is the first of its 

kind to apply an AD tool to a storm-scale model (meteorologically) with a mode-splitting 

time integration scheme (computationally). 

2 Automatic Differentiation - ADIFOR 

Developing the adjoint model by hand is tedious, time-consuming, and error-prone work, 

especially for a large model such as ARPS, which is composed of more than two hundred 

subroutines. We therefore use ADIFOR to  compute sensitivities of all given dependent 
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variables (DVs. e.g., forecast aspects and their diagnostic functions) with respect to all 

given independent variables (IVs, e.g., initial and boundary conditions). For a single run, 

ADIFOR performs one control run and as many TLM runs as the number of IVs, implicitly. 

The final results are exactly the same as would be obtained from as many ADJM runs as 

the number of DVs. In meteorology, ADIFOR has been applied to a l-D convective cloud 

model [17, 161, a 3-D storm-scale model 1151, a mesoscale model [5] ,  and an air quality 

model [Ill. 

3 

In the context of 3-D models, the number of IVs is potentially very large when grid 

variables are considered. and this may inhibit the practical computation of sensitivity 

because of memory limitations. We propose to compute sensitivities with respect to the 

perturbations inserted in model variables rather than the grid variables themselves. That 

is, by introducing an artificial perturbation parameter, e, into the original forward model 

(.-IRPS), ADIFOR can generate a sensitivity code that regards e as one of the IVs [5]. 

Consider, for example, the water vapor field. Q,. If we perturb it by a factor e, 

Methodology - Sensitivity t o  Perturbations 

any quantity P that is influenced by the water vapor field implicitly depends upon e .  

Expanding P(e) in a Taylor series about the reference state [P(e = O)] and retaining only 

the first-order term, we obtain an approximation of the sensitivity of P with respect to  e: 

Here, SP can be interpreted as the sensitivity of P to a uniform relative change in the water 

vapor field. We have modified the ARPS to include e as an input parameter, as shown in 

(l), and have applied ADIFOR to differentiate this code with respect to e. 

Since the perturbation e is added to the input parameters, which already have their own 

characteristic distribution in the model domain, sensitivities computed from this approach 

implicitly involve the effect of distribution for those parameters. We limit our experiments 

only to  initial conditions. Boundary conditions, including lateral, top, and bottom, are 

excluded for sensitivity experiments and TLM validation. 

We also compute sensitivities of the cost function with respect to perturbations in all 
forecast aspects. The cost function, J, is defined as the squared distance between the model 

state, .f, and the corresponding observations, 2?": 

(3) 

where < x , B >  denotes a scalar product between A' and B' and n represents the time 

index. Here, the scalar product implies the sum of the products of corresponding 

components of the two vectors [9]. W2 is a weighting factor matrix, where WZ = 
(Wu, W,, W,, We, W,, WQ", W Q ~ ,  W Q , ) ~  for the 3-D ARPS with subscripts corresponding 

to model variables, where u, v, and w are the Cartesian components of velocity, B is the 

potential temperature, p is the pressure, Q w ,  Qc and QT are mixing ratios of water vapor, 

cloud water, and rain water, respectively. 
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The weight for the vertical velocity, W,, for example, is computed following Wang l20], 

1 -* 

with similar expressions for other variables. Here, IC denotes the grid space index. In this 

manner, the cost function is nondimensionalized and becomes unity at the beginning of the 

variational data assimilation window. 

4 3-D Storm Model and Control Run 

Our experiments are performed using the sensitivity-enhanced code generated from Version 

4.0 of the ARPS, which is three dimensional, fully compressible, and nonhydrostatic. 

The prognostic variables, solved on the Arakawa C grid [l], include Cartesian velocity 

components, perturbations of potential temperature and pressure, mixing ratios of water 

vapor, cloud water, and rain water, and turbulent kinetic energy. The advective modes 

are computed on large timesteps with a leap-frog time scheme and second-order centered 

space differencing, whereas the acoustic modes are integrated on small timesteps with an 

implicit scheme. Kessler-explicit warm-rain microphysics is employed [ 121. An extensive 

description of the model can be found in the ARPS users guide [22]. 

The computational domain consists of 53 x 53 grids in the horizontal with a grid size 

of 1 km'. In the vertical, a stretched grid system is employed for 35 grids with a resolution 

of 150 rn near the ground and 850 rn at the top of the model domain. The model is run for 

140 min, with a large timestep of 6 sec and a small timestep of 1 sec. The detailed model 

configuration for our experiments is described in [15]. 

The simulation to verify the computation of derivatives by ADIFOR is made by using 

the HALF4 (supercell) hodograph and thermodynamic sounding from [7], the latter of 

which has a surface mixing ratio of 15 g/kg. This wind profile consists of a semi-circular 

arc of 10 m/s radius that turns clockwise over the lowest 4 km starting with the surface 

easterly winds. The (westerly) wind is constant, with height above 4 km at a speed of 10 

m/s. The convection is initiated by a 4 K thermal perturbation placed in the boundary 

layer. The simulated supercell develops rapidly during the first 30 minutes and becomes 

quasi-steady thereafter, with a sustained updraft of around 47 m/s. In Figure 1, the surface 

outflow boundary velocity and vertical velocity at  4 km are depicted for t = 50 and 120 

min. The storm moves to the west initially and then turns northeastward as it grows in 

vertical extent, forming a strong surface cold pool. 

Another storm is triggered by convergence along the northern gust front. Also, as 

the northeast part of the gust front intensifies, a new cell develops along it ( t  = 50 min; 

Figure la). constituting three distinct cells. As the northern part of the gust front moves 

northward out of the model domain by 60 min, the two northern storms decay, and other 

weak secondary storms mill around the northern lateral boundary. The dominant storm 

thereafter is the isolated supercell, which travels southeastward along the leading edge of 

the expanding cold pool. A secondary storm develops northeast of the main storm after 

100 min (Figure lb),  merging into the main storm by 140 min. 

. 

5 TLM Validation 

Before we proceed to the sensitivity computation, we validate the TLM solutions computed 

by the ADIFOR-generated code, which describe the linear evolution of perturbations. The 
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evolving) nonlinear base state interact to a significant extent, and the absence of this 

interaction in the TLM leads to erroneous results. The correlation drops rapidly below 0.13 

after about 45 min. In a case without subgrid-scale turbulent mixing, which is a highly 

nonlinear process. the time over which the two fields agree increases. 

6 Sensitivity Results 

We now investigate the effect of perturbations introduced in the water vapor field in 

different regions of storm environments on storm dynamics. The water vapor field is a 

major factor for storm life and morphology. We introduce four perturbation equations 

following the equation (1) for four different regions in the model: (e l )  inside the rain 

region ( Q P  > le-'g g-') above the cloud base, (e2) in the ambient environment outside 

in the subcloud layer, and (e4) the downdraft region in the subcloud layer. For the 

cost function, sensitivities are computed for perturbations in all forecast aspects (i.e., 

eu, e,, ew, eo, e p ,  eQv, eQc, and eQ,) both inside and outside the rain region of the storm. 

To investigate the sensitivity of our storms to perturbations in the water vapor, we 

run the SE-ARPS starting at 50 min, Le., the effect of the perturbation begins when the 

storm is in its developing stage ( see Figure la). Among the many available results, we 

investigate the sensitivity of ground rainfall (GR) to water vapor perturbations in the four 

regions described above. 

The cloud base at  50 min is around 640 m. Four model levels are involved in the 

subcloud layer (excluding the bottom boundary). The numbers of grid points involved in 

perturbation are 8280 for el ,  61720 for e2, 5972 for e3, and 4028 for e4. 

The amount and location of ground rainfall are among the most important quantities 

in storm-scale prediction. Figure 3 shows the sensitivity of GR at 120 min with respect 

to the previous four perturbations inserted a t  50 min. Recall that, at 120 min, the main 

updraft is located near the center of the domain with a lima-bean shape, while a secondary 

storm develops to the west (see Figure lb). Also, a prominent secondary storm exists to 

the northeast of the main storm, along with another weak storm near the northern lateral 

boundary. 

Among all perturbations, the largest sensitivity of GR is due to the el perturbation. 

For vapor perturbations inside the rain region (el), the major increase in GR occurs in 

the secondary storm with a maximum of 527 mm (Figure 3a). The GR decreases at the 

weak downdraft region to the north of the main storm with a minimum of -479 mm. This 

indicates that a 1% moisture perturbation inside the rain region above the cloud base at 

t = .70 min induces a maximum increase of 5-27 mm and a decrease of 4.79 mm in the 

secondary storm rainfall at t = 120 min. 

The major influence of the e2 perturbation occurs in the main storm area, with a large 

increase beneath the main storm and a decrease in the western part and north of the storm 

(Figure 3b). Both the e3 and e4 perturbations result in a decrease below the main storm 

and increase below the secondary storm in the west (Figures 3c and 3d). The sensitivity 

to the e3 perturbation is about three times larger than that to the e4 perturbation. The e4 

perturbation also increases GR at the region of north secondary storm. 

Overall, the largest influence on GR comes from the el perturbation, but at the 

secondary storm to the north. For the main storm, while the moisture perturbation 

in the ambient environment above the cloud base ( e2 )  increases the ground rainfall, the 

perturbations in both the updraft and downdraft region below the cloud base (e3 and e4) 

the rain region and above the cloud base, ( e3 )  the updraft region (including 20 = 0 1 
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El: Ground Rainfall (mm) at  t=7200.O s (2:OO:OO) EZ: Ground Rainfall (mm) at t=7200.O s (2:OO:OO) 

/ ' /  " " ' I ~ ' ' " " I "  'W" a I " " " ' I ' ~  

48 2 

W: Ground Rainfall (mm) at t=7200.O s (2:OOOO) E4: Ground Rainfall (mm) at t=7200.0 s (20000) 

FIG. 3. Sensitivities of ground rainfall at t = 120 min with respect to  the moisture perturbations 

of (a) e l ,  (6) e2, (c)  e3 and (d) e4 at  t = 50 min (in mm)  

decrease the ground rainfall at  120 min. 

We now discuss the sensitivity results in the cost function and their implications on data 

assimilation. We consider the control simulation (see Figure 1) as our pseudo-observations. 

The sensitivity period is 30 min, from t = 80 min to t = 110 min. A 1% perturbation is 

added to all variables at  all grid points at 80 min for the perturbation run, which serves as 

the nonlinear basic field for the sensitivity computation. 

With this perturbation, model solutions show little difference from the observations. 

Note that ARPS actually predicts the perturbations of potential temperature (0) and 

pressure ( p ) .  Since the total fields of 6 and p are observed in practice (i.e., base state 

+ perturbation), we specify their total fields as independent variables for the sensitivity 

computation rather than using the perturbation fields. 
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TABLE 1 

Sensztivity of cost functaon at 110 mzn with respect t o  the perturbations offorecast aspects a t  80 

man both inside (r-v) and outszde (OUT) the ram regaon 

B.//i3e, d J / d e ,  d J / d e ,  i3Jli3ee d J / d e ,  i3J/i3eQV dJ/i3eQc BJIBeQ,. 
IN .0069 -.281 -043 1-43.4 25.47 3.78 -.013 - .32 

OUT -.68 .188 -.003 -107.7 -.74 -4.63 .0008 -.0011 

The weight functions computed from (4) for this experiment are W ,  = 7.21 x loe8 

(m/s)-2, kV,, = 5-12 x lo-* (m/s)-27 Ww = 9.66 x lo-' (m/s)-2, We = 3.0'2 x K-2, 
W, = 2.66 x lo-'' Pa-2, WQ, = 1.90 (g /g ) -2 ,  W Q c  = 14.36 (g /g ) -2 ,  and WQ,. = 0.87 

(g /g ) -2 .  -4s defined in (4). the weight function of any variable is inversely proportional 

to the amount of forecast error in that variable, which is summed from the perturbation 

insertion time to the verification time. 

In Table 1, we show the adjoint sensitivities of the cost function ( J )  at 110 min to 

perturbations at  80 min in specified variables both inside (IN) and outside (OUT) the rain 

region. Because they are nondimensional and the cost function is unity at this time (110 

min), we can compare the relative importance among variables. 

For the perturbations inside the rain region, the largest sensitivity in the cost function 

(i.e., forecasting error) is due to errors in potential temperature ( B ) ,  followed by pressure ( p )  

and water vapor ( Q v ) .  The sensitivities are positive for all three perturbations. Among all 

variables, the cloud water ( Q c )  perturbation exerts the smallest effect on the cost function. 

Among the moisture variables inside the cloud, water vapor exerts the largest influence on 

J, followed by rainwater ( Q T )  and cloud water. 

Perturbations in the momentum variables (u, v and w) inside the rain region yield small 

changes in J .  Among them, the largest sensitivity of J is due to the v perturbation, and 

the smallest is due to the u perturbation. For perturbations outside the rain region, the 

sensitivities are generally smaller than those for perturbations inside the rain region, except 

for the sensitivity to the u perturbation. Note the prominent decrease in the influence on 

J of perturbations in p .  Since Qc and QT are effectively zero in the environment, the 

sensitivities of J to  them are extremely small. The largest sensitivity in the cost function 

is due to  8, followed by Qv and p .  

The perturbations in 8, Qv and v outside the rain region induce similar changes in 

J ,  but in different directions compared with those inside the rain region. Other variables 

demonstrate significant changes in sensitivity values. For example, the absolute sensitivity 

of the cost function to  the u perturbation outside the rain region is about 100 times larger 

than inside the rain region. while the sensitivity to the Qu perturbation is about 1.2 times 

larger. 

In both cases, the p field has the largest effect on the cost function during the early 

sensitivity period (not shown). This is because p is directly responsible for the mass 

balance through the pressure gradient forces in the momentum equations. When p is 

perturbed, the flow accelerates until terms involving the velocity become comparable with 

the pressure gradient force. Therefore, the flow immediately and significantly responds to 

the p perturbations. In contrast, perturbations in 8 affect the system initially through only 

buoyancy term in the vertical momentum equation. That is, p affects all three components 

of velocity simultaneously through the pressure gradient force, while 8 affects only the 

vertical velocity initially and then other variables through mass continuity. Hence, during 

the early sensitivity period, the p perturbations exert the largest influence on forecast 
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errors among all variables. However: the increased buoyancy through the 0 perturbation 

eventually influences storm dynamics and forecast error. 

7 Discussion 

For the deep convective storm studied here, the tangent linear solutions, which describe 

the evolution of perturbations along trajectories of a time-dependent nonlinear base state. 

represent the corresponding nonlinear perturbation fields very accurately up to about 50 

min for a 1% moisture perturbation. Considering the highly nonlinear and discontinuous 

properties of solutions in a full-physics nonhydrostatic cloud model such as ARPS, these 

results are encouraging for future studies of storm predictability, data assimilation, Doppler 

radar retrieval, and ensemble forecasting, all of which require derivative or sensitivity 

information. 

In the supercell simulation, bias-type errors in the water vapor in different regions of 

the model exert influences on storm dynamics in different ways. Perturbations introduced 

inside the rain region above cloud base mostly affect the secondary cells, while those outside 

the rain region mainly influence the main storm. When the perturbations are introduced 

in the subcloud layer, both the main and secondary cells are affected. Among the vapor 

perturbations in different regions, the perturbations inside the rain region have the largest 

influence on storm dynamics. 

These results imply that we may need high-quality vapor data from either observations 

or retrievals in order to  obtain accurate predictions of storm behavior. The required 

accuracy of water vapor can be estimated once the criteria on the forecast accuracy is 

determined. For example, suppose that a relative sensitivity of the forecast error E151 to  

water vapor is 20. which implies that the forecast error changes by 20% as a result of a 1% 

error in water vapor. If one wishes a forecast with only a 10% error, the observation for 

water vapor should have an error smaller than 0.5%. 

For perturbations inside the rain region, the cost function showed the largest sensitivity 

with respect to  temperature, followed by pressure and then water vapor. For perturbations 

in ambient environment, the cost function showed the largest sensitivity to temperature, 

followed by water vapor and then pressure. All other variables have almost negligible effect 

on the cost function. This result is also demonstrated in our l-D experiments [16]. 

When applied to  variational data assimilation, sensitivity information, especially 

derivatives of the cost function with respect to all initial fields, can indicate which initial 

field must be modified by a large amount and which may be altered by only a small amount 

to  change a specific amount of cost function on the way to its minimum state. With this 

information, the minimization algorithm can be appled in a selective way to save computing 

times: that is, a variable that exerts little influence on the cost function may be put in the 

minimization process in a larger iteration step, while a variable with strong effect (especially 

temperature) may be applied in every step. 

Even though ADIFOR does not produce the adjoint, it gives more information than 

handcoded tangent linear or adjoint models. In our experience, an AD tool dispenses 

with much labor and time in handcoding the adjoint model, yet provides a great amount 

of gradient information needed for sensitivity analysis and data assimilation. Compared 

with the divided-difference approach, AD avoids the difficulty of choosing an optimal 

perturbation size, to which the solutions of cloud model are extremely sensitive, and also 

saves a great amount of computing time by avoiding numerous runs with full numerical 

model. The ADIFOR-generated code is especially efficient and useful for investigating 
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how a perturbation inserted at any given intermediate time propagates through the model 

variables at later times. Furthermore, it is demonstrated that automatic differentiation can 

be applied with no problem to a compressible model using a mode-splitting time integration 

technique. 

In the context of data assimilation especially for 3-D models, however, we note that 

it is computationally impractical to compute sensitivities with respect to all model grid 

variables through the ADIFOR-generated code, mainly because of memory limitations. 

For example. the nonlinear -4RPS with 53 x 53 x 35 grids requires about 9.5 MWords on a 

Cray-C9O. while that machine in the Pittsburgh Supercomputing Center has a maximum 

memory of 512 MWords. Therefore. the maximum number of IVs that can be computed 

through the SE-ARPS is only about 50. In data assimilation and Doppler radar retrieval, 

we usually require the gradient information of the cost function with respect to all model 

grid variables, which constitutes 98315 IVs for only one forecast aspect in our case. 

Furthermore, for the purpose of data assimilation, the ADIFOR-generated code is 

computationally very expensive compared with the pure adjoint model. The reason is 

that the former is basically a forward model and thus repeats the sensitivity computation 

implicitly for the number of Ivs. Although we may save computing time by applying the 

sparse matrix option in generating the derivative codes and by using the pseudo-adjoint 

technique [6], a comparative study has not been performed yet for a 3-D model. 
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