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Abstract

Automatic differentiation (AD) is an ensemble of techniques that allow to evaluate accurate
numerical derivatives of a mathematical function expressed in a computer programming language.
In this paper we use AD for stating and solving solid mechanics problems. Given a finite element
discretization of the domain, we evaluate the free energy of the solid as the integral of its strain
energy density, and we make use of AD for directly obtaining the residual force vector and the tan-
gent stiffness matrix of the problem, as the gradient and the Hessian of the free energy respectively.
The result is a remarkable simplification in the statement and the solution of complex problems
involving non trivial constraints systems and both geometrical and material non linearities. To-
gether with the continuum mechanics theoretical basis, and with a description of the specific AD
technique adopted, the paper illustrates the solution of a number of solid mechanics problems,
with the aim of presenting a convenient numerical implementation approach, made easily available
by recent programming languages, to the solid mechanics community.

1 Introduction

The general problem of solid mechanics hinges on the following familiar pointwise Cauchy’s equilibrium
equations [Asaro and Lubarda, 2006]

σij,j + bi = 0 in V (1a)

σijnj − ti = 0 on S, (1b)

which describes the equilibrium of a body subjected to a system of external forces, where i ∈ {1, 2, 3}
are the coordinate directions of a Cartesian frame of reference, V is the current volume of the body,
S ≡ ∂V is the boundary of V , σij are the components of the Cauchy stress tensor, with the letters
after the comma in the subscript denoting derivatives along spatial directions and the repeated in-
dex denoting summation; furthermore ti denotes the components of the tractions on S, and bi the
components of the body forces in V . Together with stress-strain relationships, and with the kine-
matic compatibility relations, equations (1) define a boundary value problem that allows to find the
deformed configuration of a body, given its initial configuration, its material’s constitutive laws and a
set of boundary conditions.
For the simple cases it is possible to find analytical solutions for the above equilibrium equations [Tim-
oshenko and Goodier, 1987]. Nevertheless, in the general practice, solutions are usually sought through
numerical methods, such as the Finite Element (FE) method [Zienkiewicz et al., 2005, Bathe, 2014].
FE methods are based on a twofold discretization of the problem: (i) the domain and its boundary are
discretized in elements connected at nodes; and (ii), the solution is approximated as the weighted sum
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of a finite set of shape functions, associated with the elements. The weighting coefficients that control
the solution define the Degrees of Freedom (DoFs) of the problem. In this framework, the problem
can be stated and solved, using weighted residual methods such as Galerkin [Zienkiewicz and Taylor,
2005], that are based on selecting the values of the DoFs that minimize a given norm of the error over
the domain of interest. Thus, the problem reduces to finding the solutions of a system of non-linear
equations in terms of the DoFs. The error on each equation defines the residual force vector, and a
particular solution can be found bringing the residual to zero, by means of iterative techniques, such
as Newton-Raphson, that make use of the tangent stiffness matrix, which coincides with the Jacobian
of the residual vector, to update the trial solution on the basis of its residual.

Despite the procedural and algorithmic nature of the general approach, the computer implementa-
tion of FE methods for the solution of complex boundary value problems includes many challenging
aspects. With particular reference to solid mechanics (but similar considerations apply to any contin-
uum mechanics problem), the actual statement of equilibrium, (1), involves the modelling of complex
material behaviours and requires expressing several vector and tensor quantities, which are best de-
fined in specific, and distinct, reference systems. The implementation of these steps can in principle be
automated, and a number of methodologies have been proposed to facilitate and, at various extents,
automate the generation of computer programs capable of efficiently state and solve FE problems. To
this end, the FEniCS project [Logg, 2007, Logg et al., 2012] set the goal of automating Computa-
tional Mathematics Modelling (CMM) problems in general, including the FE methods. The project
aimed at the mechanization of the essential discretization steps of any CMM problem, by means of a
suite of general purpose, high level, C++ and python libraries that allow to deal with the numerical
implementation of general physical models in a quite abstract, yet efficient, manner, and provide an
interface for the definition of the variational problem, its boundary conditions, and its solution.

One essential undertaking in the FE implementation of complex solid mechanics problems is trans-
lating the mathematical models of the physical processes into a form that can be incorporated into the
FE formalism. This step generally involves analytical manipulations of various sorts, that are normally
done by hand and can be source of errors. In order to address this matter, Korelc and Wriggers [2016]
proposed an integrated methodology based on the use of a symbolic engine for the automation of code
generation starting from an abstract mathematical statement of the physics under consideration. In
the approach proposed by Korelc and Wriggers the handling of the symbolic expressions is carried
out through the use of AceGen, a package within the Mathematica software suite, whose end-product
is the source code implementing the models, in different programming languages, for the use in FE
programs. The entire environment includes different components that are capable to produce efficient
source code for the generation of the FE residual vector and stiffness matrix.

The approach presented here makes use of Automatic Differentiation (AD) for the numerical eval-
uation of the FE residual force vector and stiffness matrix. In fact, if the material of the body is a
Green elastic type, for which the deformation work is an exact differential, it is possible to write the
expression for the free energy of the solid, and the gradient and the Hessian of the free energy, with
respect to the DoFs of the problem, take the meaning of the residual force vector and of the tangent
stiffness matrix. According to the method described in the paper, the gradient and the Hessian of
the free energy are not explicitly calculated, but are automatically obtained, through AD, from the
function that evaluates the free energy. The resulting formulation is particularly streamlined and in-
sightful, with the surprising consequence that, with the approach described here, it is possible to write
a finite element program without introducing the concept of a stress tensor.

AD is an ensemble of techniques that allows for the numerical evaluation of the derivatives of a
function with the same accuracy of the function itself. AD differs from finite differences, because it
does not approximate the continuous derivatives with discrete differences, thus it does not suffer from
truncation error, and the only source of error is the inevitable round-off error, due to the finite precision
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representation of real numbers. The differentiation techniques based on AD rely on the assumption
that the numerical evaluation of the value of a function, regardless of the complexity of the function
itself, is always decomposed into in a sequence of elementary sub-expressions by computers. Therefore,
if the analytical derivatives of the sub-expressions are know, it is possible to evaluate the derivatives
of the entire function, with respect to the given independent variables, by operating on the partial re-
sults. In this way, AD allows the evaluation of the gradient, along with higher order derivatives, of any
computable differentiable function, without having to explicitly write computer code for the derivatives.

The paper is structured as follows. First, we recall the equivalency between the pointwise, strong
form statement of equilibrium equations and free energy stationarity. Subsequently, we discuss the
properties of the dual numbers systems, which is the numerical method chosen to implement automatic
differentiation in the present paper. Lastly we discuss a number of examples of solid mechanics
problems that have been solved using AD. The approach presented in here has been implemented in
the Julia programming language, an open source programming language of recent introduction that
combines high level of abstraction, high expressiveness and fast execution time [Bezanson et al., 2017,
Perkel, 2019]. All the scripts developed for producing the examples presented in this paper are available
under a collaborative licence [Vigliotti, 2019].

2 Mechanical equilibrium as free energy minimum

In conservative systems the deformation work is an exact differential, and it is possible to use the con-
cept of free energy of the system for finding its equilibrium configurations. In fact, thermodynamics
guarantees that all, and only, the configurations that make the free energy stationary are equilibrated
[Callen, 1985]. Therefore, it is possible to directly write the equilibrium statement by setting the
gradient of the system’s free energy to nought. The advantage in using free energy minimization is
that free energy is always a scalar quantity, independent of the frame of reference, which is generally
well defined and can be calculated using a FE discretization. In the following we will illustrate the
equivalence between free energy minima and equilibria as stated by equation (1), which will allow us
to introduce all the relevant solid mechanics quantities as well as to expose the connections between
the stress tensor and the gradient of free energy density.

Let B be a deformable body, occupying a region of an Euclidean space. Let’s assume that B

is subjected to some external actions from the surrounding environment, in the form of body and
surface forces, and in the form of mechanical constraints that restrict its motion. In its interactions
with the environment, the body deforms and can take different configurations. Let us define the
reference configuration of B as the configuration taken by the body when all of external actions are
removed. Given the reference configuration, the Cartesian coordinates of the points of B in any
deformed configuration are given by

xi = Xi + ui, (2)

whereXi are the coordinates of the points ofB in the reference configuration and ui are the components
of a displacement field mapping the position of the points of B from the reference configuration to the
current configuration. In association with ui, it is possible to introduce the deformation tensor F, as
a pointwise measure of the deformation in B, whose components are given as

Fij = xi,j = δij + ui,j (3)

where δij is the Kronecker symbol and the letter after the comma in the subscript denotes differentiation
along direction i. If we assume that B is made of a Green elastic material, it is possible to define a
strain energy density function, φ, such that the total deformation energy can be expressed as

Φ =

∫

V0

φ dV0 , (4)

3



where V0 is the volume occupied by B in the reference configuration and φ is a function of Fij in V0,
with units of energy per reference unit volume. Let us also assume that B is subjected to a system
of conservative body and surface forces, whose potentials, per unit reference volume and per unit
reference surface, are b0 and t0 respectively. In accordance with the above assumptions the total free
energy of the body is given as

Ψ =

∫

V0

(φ− b0) dV0 −

∫

S0

t0 dS0 , (5)

with S0 ≡ ∂V0. Thermodynamics minimum free energy principle ensures that equilibrium configu-
rations coincide with the configurations that make the free energy stationary. Therefore, ui is an
equilibrium configuration if and only if

δΨ = 0 ∀ δui, (6)

where δui is an arbitrary variation in the space of the configurations compatible with the boundary
conditions. We now recall that, through a mere change of variables, the integral (5), and its variations,
can be evaluated in any arbitrary configuration, provided that a mapping exists between the points of
the reference configuration and the given configuration. Therefore the following holds

δΨ =

∫

V0

[

∂φ

∂Fij
δFij −

∂b0
∂ui

δui

]

dV0 −

∫

S0

∂t0
∂ui

δui dS0 = (7a)

=

∫

V

[

J−1 ∂φ

∂Fij
δFij −

∂b

∂ui
δui

]

dV −

∫

S

∂t

∂ui
δui dS, (7b)

with

δFij = δui,j (8a)

J = det (F ) (8b)

b = b0 J
−1 (8c)

t = t0 niFikFjknj J−1 (8d)

where V and S denote the current configuration, as in (1), and ni are the components of the local
normal on S. We observe that with the substitutions (8c) and (8d), b and t take the meaning of
the potential of the external forces per unit current volume and unit current surface, respectively.
We also observe that through mathematical manipulations, equation (7b) can be written in terms of
displacement variations taken with respect to the current configuration, δũi, as follows

δΨ =

∫

V

[

J−1 ∂φ

∂Fij
FkjF

−1
hk δFih −

∂b

∂ui
F−1
ik Fkjδuj

]

dV −

∫

S

∂t

∂ui
F−1
ik Fkjδuj dS =

=

∫

V

[σijδǫij − bi δũi] dV −

∫

S

ti δũi dS ,

(9)

where F−1
ij are the components of the inverse of F , thus FkjF

−1
hk = δjh, with the following substitutions:
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σij = J−1 ∂φ

∂Fih
Fjh (10a)

δũi = Fij δuj (10b)

∂ ·

∂ũi
=

∂ ·

∂uk
F−1
ki (10c)

δǫij = δũi,j = F−1
hj δFih (10d)

bi =
∂b

∂ũi
(10e)

ti =
∂t

∂ũi
, (10f)

After observing that the following identity holds

(σijδũi), j = σij,jδũi + σijδũi,j , (11)

we can express the first variation of the free energy of B, making use of the divergence theorem, as

δΨ = −

∫

V

(σij,j + bi) δũi dV +

∫

S

(σijnj − ti) δũi dS = 0 ∀ δũi . (12)

Standing the arbitrariness of δũi, it follows that each of the integrands in equation (12) have to be
separately equal to nought everywhere in dV and on dS. Therefore, equation (12) is equivalent to
equation (1). We also observe that the same procedure, starting from equation (7a), also leads to the
equilibrium equation in terms of the nominal stress tensor, or first Piola-Kirchoff tensor, as follows

Pij,j + b0i = 0 in V0 (13a)

Pij Nj − t0i = 0 on S0, (13b)

where Nj are the component of the local normal to the surface on the undeformed configuration, with

Pij =
∂φ

∂Fik
(14a)

b0i =
∂b0
∂ui

(14b)

t0i =
∂t0
∂ui

. (14c)

We have thus obtained the equivalence between mechanical equilibrium, in the Newton’s laws sense,
and the equilibrium in the thermodynamic sense, as the minima of free energy.

3 Automatic differentiation through dual numbers

In the following we discuss various means for numerically evaluate the derivatives of a function and
illustrate the general aspects of automatic differentiation. In particular, we will discuss with greater
detail the dual number system, which is the frame used to implement AD in the present study.
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3.1 Discrete derivatives approximations

Finding accurate estimates of the derivatives of multivariate functions at low computational costs is
essential in many fields of applied sciences and engineering. The simplest numerical estimate for a
derivative is finite difference. Finite difference is based on the truncated Taylor expansion formula for
analytical functions, and produces the following approximation for a first order derivative

∂f

∂xi
=

f(x+∆xi ıi)− f(x)

∆xi
+O (|∆xi|) , (15)

where f is a scalar function of the vector x = xiii while ii are the independent directions of the
space of x and ∆xi is a finite increment for the i-th component. The estimates obtained through
equation (15) require one additional function evaluation per each independent variable, and suffer
from a truncation error of order O (|∆xi|). We remark that the term O (·) does not represents an
actual quantification of the approximation of the formula, but it rather represents the convergence
rate to the exact value as ∆xi collapses. In addition to truncation error, another important source of
inaccuracy is represented by the inevitable round-off, due to the finite precision of the floating point
representation of real numbers. The effects of round-off error are particularly significant in expressions
of the type of equation (15), which involves small differences of finite quantities on the numerator,
and on the ratio of two small numbers. As a consequence, it is not possible to arbitrarily enhance
the accuracy in the estimate of the derivatives by simply reducing the step length ∆xi. One way to
improve the accuracy in the estimation of first derivatives for a fixed ∆xi is through central difference
scheme as follows

∂f

∂xi
=

f(x+∆xi ıi)− f(x−∆xi ıi)

2∆xi
+O

(

|∆xi|
2
)

, (16)

at the cost of two additional function evaluations per variable. In a similar way, other formulas can
be devised that offer improved estimates of the derivative at the cost of a larger number of function
evaluation. We also observe that although the above formulas can be applied recursively for the cal-
culation of higher order derivatives, the accuracy of such estimates rapidly deteriorates since they are
based on already noisy estimates of lower order derivatives.

Complex step is an alternative technique that allows to mitigate round-off error from finite difference
[Lyness and Moler, 1967, Lyness, 1968]. The complex step method allows to estimate the derivatives
of the analytical functions that can be evaluated on the complex plane as follows. Given the following
Taylor series expansion of the function along the imaginary axes of the i-th component,

f(x+ ı∆xi ıi) = f(x) +
∂f

∂xi
ı∆xi −

∂2f

∂xi∂xj

∆xi∆xj

2!
+O

(

‖∆x‖2
)

, (17)

where ı is the imaginary unit, an estimate of the first partial derivative with respect to xi can be
obtained from the imaginary part of the above series as follows

∂f

∂xi
=

Im{f(x+ ı∆xi ıi)}

∆xi
+O

(

|∆xi|
2
)

. (18)

As we can observe, equation (18) provides an approximation O
(

|∆xi|
2
)

of the first derivatives in a

single complex valued evaluation of f(x), which does not suffer from the round-off error due to the
difference on the numerator. Nonetheless, formulas based on (18) still need to be evaluated once per
each independent variable, at the higher cost of the evaluation on the complex field.

3.2 Symbolic differentiation

As opposite to finite difference, symbolic differentiation treats mathematical expressions as strings of
symbols, and applies the analytical differentiation and simplification rules to produce mathematical
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symbolic expressions that can be evaluated in any programming language. The availability of robust
symbolic differentiation engines has prompted the development of computational approaches tending
to the automation of FE code generation [Korelc and Wriggers, 2016]. However, the expressions
of the derivatives obtained by symbolic differentiation are often far from optimal with respect to
computation and memory allocation cost, as they might include redundancy and repetitions that
symbolic simplification steps are not capable of removing. In addition, symbolic differentiation is not
directly suitable for dealing with non mathematical functions, like algorithms or computer programs
that might include for loops or if-then-else constructs that are common practice in the computer
implementation of numerical problems.

3.3 Automatic Differentiation

An alternative approach for calculating the numerical values of the derivatives of a function is through
Automatic Differentiation (AD). AD is based on the idea that any mathematical expression is evalu-
ated by computers as a sequence of elementary algebraic operations, or call to mathematical functions,
with the result being accumulated as the sub-expressions are evaluated [Margossian, 2018]. In contrast
to finite difference that is based on the discretization of the derivative operator, AD techniques do no
try to approximate the differentials but numerically evaluate the derivatives of the sub-expressions,
alongside the value of the function itself, using the analytic rules of calculus.
Therefore, if the derivatives of all the functions and operators used in the main expression are known, it
is possible to evaluate the derivatives of the results with respect to the operands alongside to the value
of the function itself. As a result, AD is not affected by round off errors and allows for the numerical
evaluation of derivatives within the same accuracy of the function itself, with the error only being
limited by the machine’s representation of floating point numbers. In addition, AD can be applied
recursively to evaluate higher order derivatives with no accuracy detriment, or error build up, because
of re-using noisy estimates of lower order derivatives.
Two general approaches for the implementation of AD are mostly employed, forward mode and reverse
mode. In forward mode AD the derivatives of the function, with respect to each of its independent
variables, are evaluated along with the main function, in the same order they are encountered, for each
sub-expression. Accordingly, the cost for derivatives evaluation is roughly the cost of one function call
per independent variable. In reverse mode AD the evaluation of the function and of its derivatives
takes place in two separate steps. First, the main function is parsed into sub-expressions that are indi-
vidually evaluated, whose result is stored, alongside with their derivatives with respect to the argument
of each individual sub-expression. Secondly, the derivatives of the function value with respect to the
independent variables are reconstructed using the intermediate derivative of the sub-expressions that
have been evaluated, and stored, in the first step. Thus, at the end of the second step, all the partial
derivatives are available in one full run. Because of its structure, the cost of the reverse mode AD is
a few times the cost of the function evaluation alone, depending on how the main expression tree is
structured and on how the partial sub-expressions are interconnected, and it is essentially indifferent
to the number of the partial derivatives required. In typical situations we can expect roughly up to
a few tens ot times the cost of the evaluation of the function value alone, for a number of partial
derivative that can be in the order of more than a few hundred thousands. Nonetheless, reverse mode
AD suffers from the necessity of allocating, and keeping available to the CPU, all of the intermediate
results until the entire function is evaluated. Griewank and Walther [2008], Hogan [2014] and Elliott
[2018] provide detailed and thorough description of the forward and the reverse mode AD algorithms.

Both forward and reverse mode AD have been traditionally implemented as algorithmic differenti-
ation techniques [Bischof et al., 1996, Corliss et al., 2002, Naumann, 2012, Forth et al., 2012], which
would take a function’s source code as input, and produce the source code for the derivative of the
function as output. While reverse mode AD necessarily requires to operate on the function’s source
code, forward mode AD also allows a different type of implementation. Since forward mode AD is
based on a single passage, and it only requires to access the value and the derivatives of the operands at
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each operation singularly, it can also be implemented by purposely defining a data type that is capable
to store both the value and the derivatives of a variable. Therefore, in the programming languages
that allow to extend the ordinary maths operators and function to deal with user defined data types,
through a functionality known as operator overloading, once the arithmetic of the extended numerical
types is defined, it is possible to call the same code that evaluates a function on the ordinary floating
point numeric types, with the newly defined data types, and obtain both the value and the derivatives
of the result. Appendix A illustrates one application of such technique in the Julia programming
language [Bezanson et al., 2017, Perkel, 2019].

In this paper we implement forward mode AD through operator overloading. Therefore, in the case
of conservative systems, it is only necessary to write the code for evaluating the free energy at the in-
tegration points of the elements, and the result will also include its gradient and Hessian, that coincide
with the element nodal forces and stiffness matrix, respectively. The choice of operator overloading
forces us to use forward mode AD, which is less efficient then reverse mode AD when the number of
independent variables increases. Nonetheless, since we operate on the model element-wise, we only
deal with a reduced number of DoFs each time, for instance a QUAD element in 2D involves only 8
DoFs, while a HEXA element in 3D involves 24 DoFs. At such number of DoFs forward mode is still
more efficient than reverse mode because of the reduced no overhead cost needed for preprocessing,
and the absence of additional costs for memory allocation and garbage collection, due to the storage
of the intermediate results until the end of the function.

3.3.1 The dual numbers field

The particular implementation of the forward mode AD adopted here is based on the recurs to dual
numbers, an enriched number system, whose elements have multiple, higher dimensional parts that
can deal with the derivative information up to a desired order. Dual numbers, together with the
related algebra, extend real numbers in a way similar to complex numbers and quaternions. As the
complex field allows dealing with expressions that include the square root of negative numbers, and
the arithmetic of the quaternions allows to simplify the treatment of rotation in three dimensions, the
arithmetic of dual numbers allows the simultaneous calculation of the value of a given expression and
its derivatives up to an arbitrary order.

In introducing the dual numbers and their properties, we follow the general treatment of higher
dimensional number systems as given by Shenitzer et al. [2011]; a similar treatment of the subject is
given by Fike and Alonso [2011]. Howbeit, the treatment of the cited authors did not cover numbers
with multiple, separate, higher-order components, with different dimensionality, while the treatment
presented in this paper makes use of such structures to deal with derivatives with arbitrary differenti-
ation order. For the sake of simplicity, in this sections we refer to dual numbers of the second order,
and we leave to Appendix B the generalization to dual numbers of arbitrary order.

In the present study, dual numbers are the structures chosen to store, and operate, both on the
value of a given parameter, x0, and on its derivatives with respect to the independent variables of the
problem. We define dual numbers of the second order and dimension N the quantities of the kind

x ≡ x0 + xiıi + xijıij with
i ∈ 1 . . . N

j ∈ i . . . N
, (19)

where x0 is the value taken by x, xi are the values taken by the first derivatives of x0 with respect to
the i-th independent variable, and xij are the second derivatives of x0 with respect to the i-th and the
j-th independent variable; furthermore, the symbols ıi are the elements of the canonical base of RN ,
while ıij are defined as

ıij ≡ ıi ⊗ ıj + ıj ⊗ ıi , (20)
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with ıi ⊗ ıj being the dyadic product of ıi over ıj , thus the following statement holds

ıij ≡ ıji , (21)

which translates the symmetry of the Hessian and, more in general, the independence of higher deriva-
tives from the order of differentiation. In the following we refer to the first summand in equation (19),
x0, as the real part of x, and to the second summand, xiıi, as its first order dual part and to xijıij as
the second order dual part or x. As we can observe, the first order dual part of x is the vector space
of real numbers of dimension N , while xijıij is the vector space of real symmetric square matrices of
dimension N.

We will now show that over the set of dual numbers, it is possible to define the operations of
addition as well as subtraction, and the operation of multiplication and division. The neutral element
for the sum is the dual zero, i.e. the dual number whose components are all nought, while the neutral
element for the product is the dual unity, i.e. the dual number whose value is one, and the derivatives
components are all nought. Therefore, the set of dual numbers as defined above is a field, and the dual
zero and unity coincide with the zero and the unity of the real field.

By definition, two dual numbers are equal if all of their components are equal, therefore, the
following equality statement for dual numbers holds

x = y ⇐⇒











y0 = x0

yi = xi

yij = xij

∀ i ∈ 1 . . . N

∀ j ∈ i . . . N
. (22)

For the sake of brevity of notation we will omit to specify the limits value for i and j in the following.

We define the sum/the difference of two dual numbers as the sum/the difference of their components,
component by component, as follows

z = x± y ⇐⇒











z0 = x0 ± y0

zi = xi ± yi

zij = xij ± yij

. (23)

As we can observe, the above definition of sum also induces the definition of the opposite of a dual
number as the symmetric with respect to zero for the sum operation. In a similar way, we define the
product of two dual numbers as the sum of all the mixed products of their components, where the
following product rules apply for the symbols ıi and ıij

ıiıj ≡ ıij (24a)

ıijık ≡ 0 , (24b)

with ıij defined in equation (20). With the above positions, the product of two dual numbers follows
as

z = xy ⇐⇒











z0 = x0y0

zi = xiy0 + x0yi

zij = xijy0 + xiyj + xjyi + x0yij

, (25)

we observe that the product of two dual numbers is commutative and associative, thus the following
holds

xy = yx (26)

x (yz) = (xy) z . (27)
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As we can observe, given the above definition of multiplication we can define the quotient of two dual
numbers z = x/y as the solution to the following equation zy = x, therefore the following holds

z =
x

y
⇐⇒ yz = x ⇐⇒

⇐⇒







































z0 =
x0

y0

zi =
xi

y0
−

x0 yi

y20

zij =
xij

y0
−

xiyj + xjyi

y20
+ 2x0

yiyj

y30
−

x0

y20
yij

,
(28)

which also defines the inverse of a dual number, as the symmetric to unity with respect to multipli-
cation, obtained by replacing x with 1 in the above equation. We observe that, with the definitions
given above, the dual numbers field, similarly to the complex number field, is an associative algebra.

We now observe that, by recursively applying the identity (25), it is possible to extend the operation
of raising to integer power over the field of second order dual numbers as

y = xn ⇐⇒











y0 = xn
0

yi = nxn−1
0 xi

yij = n (n− 1) xn−2
0 xixj + nxn−1

0 xij

. (29)

More in general, it is possible to extend any continuous, twice differentiable, function f(x) over the
second order dual number field by making use of the chain rule for the derivatives as follows

f (x) = f (x0) +
∂f

∂x
xi ıi +

(

∂2f

∂x2
xixj +

∂f

∂x
xij

)

ıij , (30)

where all the derivatives are evaluated in x = x0.

As an example let’s assume that we are interested in evaluating the expression

y(x1, x2, x3) = x3
1 x

2
2 + x2

3 (31)

over the second order dual number field, i.e. by treating xi as second order independent dual quantities,
we will show that the result will be a dual quantity itself, retaining the value of the function, and its
derivatives with respect to the xi, up to the second order. Assuming that x1, x2 and x3 are the
independent variables, by definition their first derivative with respect to themselves is one, and any
other derivatives is zero, therefore their dual representation is the following

x1 = x1 + ı1

x2 = x2 + ı2

x3 = x3 + ı3

, (32)

and the expression (31), evaluated as a dual quantity, takes the following value

y = (x1 + ı1)
3(x2 + ı2)

2 + (x3 + ı3)
2 =

= (x3
1 + 3x2

1ı1 + 3x1ı11)(x
2
2 + 2x2ı2 + ı22) + x2

3 + 2x3ı3 + ı33 =

= x3
1x

2
2 + x2

3 + 3x2
1x

2
2 ı1 + 2x3

1x2 ı2 + 2x3ı3 + 3x1x
2
2 ı11 + 6x2

1x2 ı12 + x3
1 ı22 + ı33 =

= y0 + yiıi + yijıij ,

(33)

10



with:
y0 = x3

1x
2
2 + x2

3 ,

yi ıi = 3x2
1x

2
2 ı1 + 2x3

1x2 ı2 + 2x3ı3 ≡







3x2
1x

2
2

2x3
1x2

2x3






,

yij ıij = 3x1x
2
2 ı11 + 6x2

1x2 ı12 + x3
1 ı22 + ı33 ≡







6x1x
2
2 6x2

1x2 0

6x2
1x2 2x3

1 0

0 0 2






,

as we can observe yi and yij coincide with the gradient of y0 with respect to xi and with its Hessian,
respectively. Appendix A shows an implementation of the above example in the Julia programming
language, carried out with numerical values for x1, x2 and x3.

The dual numbers system can be readily implemented in the programming languages that allow
the users to define data types and overload of existing arithmetic operators over the newly defined
types. The dual numbers type should include data members to hold the real value of the number,
and as many higher dimensional arrays up to the desired order of differentiation, with the number of
elements in each dimension equal to the number of independent parameters the real part of the number
depend on. Once the data type and the operators have been implemented, scripts with mathematical
operations carried out on dual numbers take the same form of the scripts operating on real numbers,
and virtually no change is necessary. The source code of all the script developed for producing the
results presented in this paper are available from the web repositories indicated in [Vigliotti, 2020].

4 Application to solid mechanics

In this section we will implement AD for the solution of solid mechanics problems. In first place
we will recap how a continuum mechanics problem is generally stated and solved within the FE
framework. We will then use the same FE discretization for evaluating only the free energy of a solid
in a given configuration, and we will recognize how the Jacobian and the Hessian of the system’s free
energy coincide with the residual force vector and the tangent stiffness matrix, respectively. Thus, we
will show how the complexity of the direct calculation of the residual force vector and the tangent
stiffness matrix in FE contrasts with the simplicity of the calculation of the free energy alone. We will
also discuss the implementation, within the AD-assisted framework, of some important components in
classical solid mechanics problem, such as non trivial boundary conditions and the hyperelastic material
models, while the treatment of geometric non linearity is essentially built-in the AD framework.

4.1 The Finite Elements framework

The FE method is generally presented starting from the statement of the principle of virtual work
(PVW) [Bathe, 2014, Zienkiewicz et al., 2005, Bonet and Wood, 2008], which is equivalent to equations
(7) and (9), in the reference and the current configuration, respectively. In particular, with reference
to (7a), the PVW can be expressed, in terms of quantities defined on the reference configuration, as

∫

V0

Pij δFijdV0 =

∫

V0

∂b0k
∂uk

δukdV0 +

∫

S0

∂t0k
∂uk

δukdS0 ∀ δuk with δFij =
∂Fij

∂uk
δuk, (34)

where δuk is a virtual displacement field compliant with the boundary conditions, δFij is the corre-
sponding virtual deformation gradient, and it has been made use of the positions (14) for the remaining
symbols. The FE approach consists in approximating the evaluation of the integrals in equation (34)
by discretizing both the domain of integration and the functional space over which the solution is
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sought. The domain of integration is partitioned into elements connected in nodes, and the solution
is expressed as the weighted sum of a finite set of shape functions. The shape functions are defined
over the elements, and are selected in a way that guarantees a number of requisites, such as adequate
differentiability, continuity across element boundaries and convergence to the analytical solution as
the size of the elements collapses. To this end, the classical choice in FE approaches are multivariate
polynomials, which are used to interpolate the nodal values of the unknown function on the interior
of each element. Nonetheless other options are possible, such as the Isogeometric Analysis approach
[Hughes et al., 2005] where the geometry is described by Non-Uniform Rational B-Splines, and the
same rational functions used for the geometry take the role of the shape functions that interpolate the
solution over the domain, while the control weights coincide with the coordinates of the vertices of the
control polygon for the unknown field.

Once the domain has been discretized in elements, and a suitable set of shape functions has been
selected, the integrands in equation (34) are a function of a discrete number of degrees of freedom only.
In this framework the components of the displacement field, and of the displacement gradient at any
point of a given element of the domain can be written as

ui = Ni · u (35a)

Fij = Ni,j · u+ δij (35b)

where u is the array of the DoFs, Ni is the array of the shape functions for the i-th component
of the displacement field, · is the dot product, and Ni,j is the j-th component of the gradient of
Ni, as usual. We remark that in this section vector and matrices are marked in bold face, and the
product to two vector quantities should be interpreted as the dyadic product, whose result is a matrix.
Therefore, for a given u, given Ni,j , it is possible to evaluate ui, Fij and any quantity depending on
the displacement field, at any point of any element of the FE model of the domain. In the same way
the virtual displacement field can be obtained by means of the same interpolation as

δui = Ni · δu (36a)

δFij =
∂Fij

∂u
· δu = Ni,j · δu, (36b)

where the arbitrariness of δuk over the functional space of the displacement fields that are compatible
with the boundary conditions of the problem translates into the arbitrariness of the components of δu.
Thus, by means of equations (35) and (36) it is possible to rewrite equation (34) as

∫

V0

Pij
∂Fij

∂u
dV0 =

∫

V0

∂b0
∂u

dV0 +

∫

S0

∂t0
∂u

dS0, (37)

which is a system of non linear equations, in the unknown unconstrained components of u. Therefore,
the differential problem of the equilibrium, as stated in equation (1), is translated into a system of
non-linear equations, where the unknowns are represented by the unconstrained DoFs. The integrals
in equation (37) can be numerically evaluated by means of quadrature rules, and the solution of the
FE problem can be found as the zero of the residual vector given by the following

r =

NBE
∑

m=1

Nm

BW
∑

l=1

wm
l

[

Pij
∂Fij

∂u
−

∂b0
∂u

]

rm
l

−

NSE
∑

m=1

Nm

SW
∑

l=1

vml

[

∂t0
∂u

]

rm
l

= 0, (38)

where NBE is the number of volume elements, Nm
BW is the number of integration points of the m-th

volume element, wm
l is the l-th volume integration weight of the m-th element; while NSE is the

number of surface elements, vml is the l-th surface integration weight of the m-th surface element, and
the subscripts of the square bracket indicate that the quantities enclosed are evaluated at the point
rml , the position of the wm

l integration weight.
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In the finite element formulation equation (38) can be solved through Newton-Raphson iterative
schemes, after an expression for the Jacobian of r, or the tangent stiffness matrix, has been obtained
by differentiating equation (38) with respect to u, as follows

∂r

∂u
=

NBE
∑

m=1

Nm

BW
∑

i=1

wm
l

[

∂Pij

∂Fhk

∂Fhk

∂u

∂Fij

∂u
−

∂2b0
∂u∂u

]

rm
l

−

NSE
∑

m=1

Nm

SW
∑

i=1

vml

[

∂2t0
∂u∂u

]

rm
l

, (39)

where we made us of the fact that, since Fij is linear in u, the following holds

∂2Fij

∂u∂u
= 0 . (40)

The calculation of the summands in equation (38) and (39) is the core of the FE methods and represent
the most challenging aspect of the computer implementation of the method. In particular the calcu-
lation the components of the stress tensor, Pij , and their derivatives ∂Pij/∂Fhk, is in general a quite
sophisticated task, since it requires dealing with second order and fourth order tensors respectively.

4.2 The automatic differentiation formulation

We now turn our attention to the use of the AD for the solution of the equilibrium problem. We begin
by assuming that the material of the solid is a Green elastic material, because under this assumption
the resulting formulation is particularly simple and insightful. For Green elastic solid the deformation
work is an exact differential, and the free energy function for the system is given by equation (5).
In order to numerically evaluate the integrals in equation (5) we can make use of the same twofold
discretization used for FE, obtaining the following expression

Ψ(u) =

NBE
∑

m=1

Nm

BW
∑

i=1

wm
l [φ+ b0]rm

l

+

NSE
∑

m=1

Nm

SW
∑

i=1

vml [t0]rm
l

, (41)

where it has been highlighted that the free energy, within the FE discretization, is a function of the
array of DoFs, u. As discussed in section 2, equilibrium configurations are those that satisfy equation
(6), which in the FE discretization can be written as

δΨ =
∂Ψ

∂u
· δu = 0 , ∀ δu ⇐⇒

∂Ψ

∂u
= 0 . (42)

The expression above is a system of non-linear equations in the unknown u, whose residual and
Jacobian, are given as the gradient and Hessian of Ψ, respectively, as

r =
∂Ψ

∂u
(43a)

∂r

∂u
=

∂2 Ψ

∂u∂u
. (43b)

We remark that the residual on equation (38), which derives from the PVW statement given in (34),
and the residual on equation (42), which is obtained as the first the deformation work in the equilibrium
configuration given in (41), are both work-conjugated through the same virtual nodal displacements,
δu, hence they must coincide. Therefore the gradient of the free energy coincides with the residual
force vector of the finite element problem. At the same time, the tangent stiffness matrix coincides
with the Hessian of the free energy, being both the derivative of r with respect to u.

We now remark that the gradient and the Hessian of Ψ, in equations (43a) and (43b), respectively,
can be both immediately calculated by the same computer program that evaluates equation (41),

13



through automatic differentiation, if u is treated as an array of dual numbers, and the dual number
algebra has been implemented in the programming language. Therefore, AD allows to evaluate the
residual force vector and the tangent stiffness matrix by simply calculating the numerical integral of
the free energy density over the domain.

We finally remark that the same approach can be used in the cases when a functional relation exists
between Pij and Fij , but no elastic potential can be defined. For these materials equation (43b) is
replaced by (38), through equations (35) and (36), with the components of u being independent dual
quantities, while equation (43b) still holds and it is obtained as the first order dual components of r.

In the sections that follow we will illustrate how some of the fundamental elements in a solid
mechanics problem, such as non linear constitutive laws, or complex boundary conditions, can be easily
included in the problem formulation with recurs to automatic differentiation for their implementation.

4.3 Boundary conditions and constraint equations

Non trivial boundary conditions can be applied with the use of Lagrange multipliers using automatic
differentiation technique for the direct evaluation of the gradient and of the Hessian of the Lagrange
function. We recall that, following the Lagrange multipliers technique, the minimization of a function,
in the presence of constraints can be achieved by weighting the residuals of the constraint equations
through unknown factors, the Lagrange multipliers, and adding them to the function to be minimized,
as follows

L (u,λ) = Ψ (u)− λ · g (u) , (44)

where Ψ is the function to be minimized in the first place, which in our case is the free energy of the
solid, u are the degrees of freedom of the problem, g (xi) is the array of the constraint equations and
λ is the array of the Lagrange Multipliers.

Since the problem of minimizing L with respect to u and λ, is essentially identical to the problem
of minimizing Ψ with respect to u only, it can be treated in the same way. Nonetheless, since L (u,λ)
is linear in λ, it is not necessary to treat λ as dual quantity, but suffices to evaluate Ψ (ui) and g (ui)
over the dual number field of u, while the components of the augmented gradient and Hessian of L
can be obtained from the expression of the first and second variation of L, which is given as

δL =

(

∂Ψ

∂u
− λ ·

∂g

∂u

)

· δu− g · δλ (45a)

δ2L =

(

∂2Ψ

∂u∂u
− λ ·

∂2g

∂u∂u

)

: δuδu−
∂g

∂u
: δuδλ+

− δλ ·
∂g

∂u
· δu ,

(45b)

which yields the following, in block matrix notation,

∇L =





∂Ψ

∂u
− λ ·

∂g

∂u
−g



 (46a)

∇2L =







∂2Ψ

∂u∂u
− λ ·

∂2g

∂u∂u
−
∂g

∂u

T

−
∂g

∂u
0






. (46b)

Therefore the problem reduces to solving the following

∇L = 0 , (47)

where equation (46b) takes the meaning of the tangent stiffness matrix of the problem.
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4.4 Hyperelastic material models

We now turn our attention to the most common expressions for the strain energy density functions
of materials. In very simple cases, such as for the small deformations of strut or beam elements, the
stress is uniaxial, the deformation state of the solid is adequately described by a single scalar quantity,
and the material behaviour can be treated as linear elastic, with a strain energy density function of
the type

ΦH =
1

2
Es (1 + ǫn)

2
, (48)

where Es is the Young modulus of the material, and ǫn the component of the nominal strain tensor
conjugated to only non zero stress tensor component . In these cases the calculation of the deformation
work is particularly simple; however, for a general solid mechanics problem, the state of deformation has
arbitrary principal directions and distinct principal stretches, therefore, more sophisticated expressions
for the deformation energy density are used. Green elastic materials are a quite general class of material
models for which the strain energy density function is assumed as a local function of the components
of the right Cauchy-Green deformation tensor, C = F TF [Ogden, 2013], as

φG = φG (Cij) , (49)

where Cij are the components of C. Among Green elastic materials, one class of material models
that are of great interest for engineering applications are the isotropic hyperelastic materials, whose
behaviour is invariant to rigid rotations of the applied strain. For these material models, the strain
energy density function can be expressed as a function the invariants of C only, defined as

φiso = φiso (I1, I2, I3) with:

I1 = C11 + C22 + C33

I2 = C11C22 + C22C33 + C11C33 − C2
21 − C2

31 − C2
32

I3 = C11C22C33 + 2C21C31C32 − C11C
2
32 − C22C

2
31 − C33C

2
21

(50)

Incompressible isotropic materials are subject to the internal isochoric constraint, I3 = 1, therefore
φiso depend on I1 and I2 only, and its general expression is of the type [Ogden, 2013]

φinc =

∞
∑

p,q=0

cpq (I1 − 3)
p
(I2 − 3)

q
with I3 = 1 , (51)

where p and q are non negative integers and cpq are non negative real parameters. Expression (51) is
only valid if the isochoric constraint is explicitly enforced, however, since such a constraint often yields
to convergence problems in the finite element formulation, when using an incompressible material
model, the following decomposition of the C can be assumed,

C = CCv where
Cv = J2/3

I

C = J−2/3C
, (52)

where J = det (F ) and I is the identity tensor. It is straightforward to verify that det
(

C
)

= 1,
therefore equation (52) decompose the total deformation into a isochoric deformation, represented
by C, and a purely volumetric deformation, given by Cv. Following the decomposition (52), Φinc is
approximated as

Φ =
∞
∑

p,q=0

cpq
(

I1 − 3
)p (

I2 − 3
)q

+ f (J) , (53)

where I are the invariants of C, and f (J) is a positive function of J that effectively penalizes volume
variations. In the example section of this paper we will use, in particular, the Mooney-Rivlin and the
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Neo-Hokkean models, whose strain energy density expression is given by

Neo-Hookean

φNH = c10(I1 − 3) +G (J − 1)
2 (54a)

Mooney-Rivlin

φMR = c10(I1 − 3) + c01(I2 − 3) +G (J − 1)
2 (54b)

where c10, c01 and G are constant, non negative, parameters that define the material behaviour.

4.5 Derivation of the stress tensor in an AD framework

We remark that in the approach presented here, since the residual force vector and the tangent stiffness
matrix are automatically obtained from the free energy, we never explicitly calculate the components
of the stress tensor. However, the value of the entries of the stress tensor are still important quantities,
since resistance criterion, such as Von Mises, are based on it. Nonetheless, they can always be evaluated,
as a post processing step, from the equalities (10a) and (14a), by means of the applicable expression
for the strain energy density, by treating the components of F as independent dual quantities, whose
value is obtained from the displacement field of the equilibrium configuration.

5 Examples

In this section we present a selection of solid mechanics problems whose solution has been found with
the recurs to the automatic differentiation techniques described in the paper. The examples presented
include structural elements, such as rods and beams (section 5.1 and 5.2), continuous plane stress
elements (section 5.3), a problem with cylindrical symmetry (section 5.4), and a full three-dimensional
problem (section 5.5).
All the problems included the effects of geometric non-linearities, non trivial boundary conditions, and
the hyperelastic material models described in section 4.4. The non trivial boundary conditions were
introduced using the Lagrange multipliers technique, as described in section 4.3.
All problems presented here were solved using the Julia programming language [Bezanson et al., 2017,
Perkel, 2019], and the script files used for the solution have been made available to the reader [Vigliotti,
2020].

5.1 The non linear truss

In this section we consider the equilibrium of a tridimensional structure made of prismatic elements,
connected at their endpoints to form a truss. We also assume that the material of the struts is linear
elastic, with Young modulus Es, and that cross section deformations are negligible with respect to
the axial deformation of the elements. Under these assumptions, the elements can only store elastic
energy by variations of their length, and the deformation energy of a single element, is given as

φrod = A l0Φ
H , (55)

where A is the cross section area, l0 is the reference length, ΦH is defined by equation (48), with
ǫn = l/l0 − 1, and l is the length of the element in the current configuration. The total deformation
energy of the truss can then be readily obtained as the sum of the deformation energy of all of its
elements, and it is given as

Φtruss =
∑

i

φrod
i , (56)
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Figure 1: (a) Rod element, r1 and r2 are the nodes positions in the reference configuration, u1 and u2

are the displacement vectors. (b) Sketch of the regular octet unit cell, all struts have the same length
L0.(c) Sketch of the entire truss structure

where φrod
i is the strain energy of the i−th element. With reference to figure 1.a, let r1 and r2 be the

positions of the end nodes of a rod in the reference configuration, and u1 and u2 be the displacement
vectors of the nodes, l and l0 can be easily obtained for a given element as

l0 = ‖r2 − r1‖

l = ‖r2 + u2 − (r1 + u1) ‖.
(57)

Therefore, since a truss can be idealized as network of rods connecting in nodes, given the topology
of the connections, and the cross section and material properties of the struts, the deformation en-
ergy of a truss can be easily computed as function of the components of the displacements of the nodes.

Here we consider the equilibrium of a structure obtained by replicating the regular octet unit cell,
shown in figure 1.b along the directions ı1, ı2 and ı3, without duplicating the coincident rods. The
regular octet is a well known structure, which is characterized for its lightness and strength [Fuller,
1966, Deshpande et al., 2001a]. Since the regular octet topology is both statically and kinematically
determined, no mechanisms arise from its deformation, and it can withstand any external load by
stretching of its elements only [Deshpande et al., 2001b]. In particular we consider a structure made
of 2 unit cells in the directions ı1, N1 = 2, three units in direction ı2, N2 = 3, and 10 cells in direction
ı3, N3 = 10, as shown in figure 1.c.

The selected boundary conditions produce the bending of the domain around an axis parallel
to ı1 by constraining the nodes on both the the ends of the domain to remain on planes that are
symmetrically rotated around an axes parallel to ı1, for a prescribed angle θ. Under such boundary
conditions the rigid body translation along direction ı1 is still available to the structure, and it is
removed by constraining any motion of the center of gravity in direction ı1. In summary, the boundary
conditions are implemented through Lagrange multipliers and are expressed as

(X2 + u2) cos (θ) + (X3 + u3) sin (θ)−
1

2
L3 = 0 (58a)

(X2 + u2) cos (θ)− (X3 + u3) sin (θ) +
1

2
L3 = 0 (58b)

∑

u1 = 0 , (58c)
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Figure 2: Shape of the lattice structure for different rotation angle of the top and bottom planes. The
rotation on the top and the bottom planes have equal amplitude and opposite sign.

where the condition (58a) applies to the nodes at X3 = L3/2, condition (58b) applies to the nodes at
Z3 = −L3/2, while the summation in (58c) extends to all the nodes of the model and serves the purpose
of removing the residual rigid body degrees of freedom. The model comprised 368 nodes and 2160
rods, boundary conditions were applied in π/8 steps between π/8 and 7π/8. In all cases convergence
was achieved in 5 iterations, except in steps 6 and 7 where convergence was achieved in 6 and 7 steps
respectively, which confirmed that the Hessian of the free energy was accurate. Simulation results for
different values of θ between 0 and 7π/8 are shown in figure 2. As it can be observed, the formulation
adopted was capable to attain convergence also in the presence of very large displacements, with each
step taking only three iterations to converge.

5.2 Euler beams

In a similar way it is possible to analyse the response of structures made of Euler beams. Given a
prismatic bar, the Euler beam model assumes that each cross section rigidly rotates around an axis
orthogonal to the beam axis, passing through the centre of gravity of the section, neglecting any shear
contribution to deformation energy and load bearing. With reference to figure 3, in a reference frame
with ı1 aligned with the beam axis, and ı2 aligned with the axis of rotation of the cross section, under
the assumption of small local cross section rotation, the following displacement model for the points
of the beam holds

u1 = u1 −X2 u2,1

u2 = u2,
(59)

where ui are the components of the displacement of the points on the beam axis, Xi are the coordinate
of the points of the beam in the reference configuration, and the subscript after the comma denotes
differentiation with respect to the coordinate Xi. Since the shear contributions to deformation energy
are neglected, under finite displacement assumption, the elastic energy is only a function of the first
component of the Green Lagrange deformation tensor, which, in accordance to equation (59), is given
as

E11 =
1

2

[

(1 + u1,1)
2
+ u2

2,1 − 1
]

=

=
1

2

[

(1 + u1,1 −X2 u2,11)
2
+ u2

2,1 − 1
]

.

(60)

Under the assumption that a linear elastic model is adequate for representing the material behaviour,
the deformation energy of an individual beam and of a structure made of beam elements are given
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Figure 3: Euler beam displacement model

respectively as

φi =
1

2
Es

∫

Vi

E2
11 dV (61)

Φ =
∑

i

φi. (62)

Therefore, once a parametric representation for the displacement of the points of the axis of the beams
is given, the deformation energy of the structure can be expressed as a function of the chosen parame-
ter, and the equilibrium configuration can be found by minimizing the free energy of the structure. A
common parametric representation for u assumes the nodal displacement and rotations as the degrees
of freedom of the elements, and takes the axial component of the displacement as a linear function of
X1, and the transverse components as cubic functions of X1 [Bathe, 2014].

Figure 4 shows the equilibrium configuration of a bidimensional hexagonal lattice under tension
obtained using equation (62) for evaluating the deformation energy and the automatic differentiation
approach described in this paper to find the stationary energy configurations. Displacement boundary
conditions have been applied to the nodes on the top and bottom of the model, by preventing horizontal
displacement and rotation around the axis orthogonal the plane of the model, and prescribing the
vertical displacement of the top nodes. All elements have the same length, L0, and the same square
cross section with side t = L0/10. Figure 4a shows the deformed configuration for a prescribed total
displacement in the vertical direction of ∆L = 0.75L2, where L2 is the initial length of the model in
the direction ı2, while figure 4b shows the total reaction force, obtained as the sum of the residuals
conjugated to vertical displacement for the top nodes of the model, normalized by the Young Modulus
of the material, Es, and the cross section area, A = t2, as a function of the applied displacement. The
solution was obtained in 20 steps, with every step taking between 6 and 9 Newton-Raphson iterations.

5.3 The plane stress problem

In this section we consider the equilibrium of an hyperelastic plate subjected to in-plane boundary
conditions. In particular we consider the domain, and the boundary conditions shown in figure 5, where
a vertical displacement ∆u2 is applied to the points of the top boundary, while the displacements of
the points of the bottom boundary are fixed. The domain features two types of internal boundaries.
The internal boundaries with radii R0 are empty cavities, where standard traction free boundary
conditions applied. The internal boundaries with radii RI are rigid, circular, frictionless inclusions,
whose points are constrained to remain at a fixed distance from the centre of the inclusion, which is
free to move in both directions. The material of the domain is assumed to be a Mooney-Rivlin type the
modulus c10 = 10 and G = 103. The presence of the inclusions has been introduced through Lagrange
multipliers, by constraining the nodes lying on each inclusion boundary to remain on a circle having
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Figure 4: Simulation results for a bidimensional hexagonal lattice made of Euler beam elements,
the beam elements have square cross section with side t = L0/10. (a) Deformed and undeformed
configuration of the lattice for total applied. (b) Normalized total reaction force vs applied displacement
curve, R2 is the sum of the residual conjugated to the vertical component of the displacement of the
top nodes, Es is the Young Modulus of the material, A = (L0/10)

2
is the cross section area of the

elements.

i1
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L = 20

L = 20
Inclusions, RI = 1.25

Openings, RO = 1.50

Figure 5: Plane stress problem, undeformed domain with boundary conditions, ∆u2 is the applied
displacement, the radius of the openings is RO = 1.5 while the radius of the inclusions is RI = 1.25.

radius RI , whose centre’s coordinates were an unknowns, introduced through additional boundary
conditions, determined at the equilibrium. Figure 6.a shows the plot of the normalized constraint
reaction as a function of the displacement, while figure 6.a shows the equilibrium configuration. As
it can be observed, while the cavities dramatically changed their shape, both in compression and in
tension, the inclusions maintained their circular shape. The solution was achieved in 150 increments
for the compressive branch and 100 increments for the tensile branch, with each increment converging
in 4 or 5 iterations.

5.4 Cylindrical symmetry problem with internal volume constraint

In this section we discuss the solution of problems with cylindrical symmetry. In the cases where
the geometry of the domain, the material, and boundary conditions all have cylindrical symmetry, the
problem can be significantly simplified incorporating the symmetry conditions within the displacement
model. Assuming that the axis of symmetry coincides with the ı2 axis, in the absence of torsion, the
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(a) (b) (c)

Figure 6: Plane stress problem, simulation results. (a) Normalized force-displacement plot, ∆u2 is the
vertical displacement applied to the top side of the boundary, R2 is the total reaction force conjugated to
∆u2, L is the side of the domain, t is the thickness. Deformed configuration at maximum displacement
in compression (b) and tension (c), c10 is the modulus of the Neo-Hookean material model, the colormap
is based on the first invariant of the deformation tensor.

deformation gradient takes the following form

F cyl =





1 + u1,1 u1,2 0
u2,1 1 + u2,2 0
0 0 1 + u1

X1



 , (63)

and it is invariant to rotations around the symmetry axis.

In this example we consider the domain shown in figure 7a, obtained by completely a complete
rotation of the section shown in figure 7b around the axis ı2. We assume that the material follows
a Neo-Hookean model with modulus c10 = 10.0, as per equation (54a). In addition to the boundary
conditions illustrated in figure 7b, we consider two cases for the behaviour of the internal cavity. In
one case we assume that the cavity is filled with an incompressible fluids. For this case no particular
shape is enforced, but only the value of the cavity’s volume is kept constant during the solution. In
the second case we consider the cavity as an empty volume that can take any shape, with no other
constraint than the external boundary conditions.

For any given configuration of the body, the volume of the internal cavity is given as

Vc = 2π

∫

Σc

x1 dΣ = π

∫

Γc

x1 x2 dx1 (64)

where Σc is the intersection of the internal cavity volume with the plane ı1 − ı2 in the initial configu-
ration, and Γc its boundary, as shown in figure 7b. We recall that the second equality in equation (64)
holds thanks to the Gauss-Green theorem, and allows replacing the area integral with a curvilinear
integral, without the need of discretizing the interior of the cavity. The constraint on the volume of the
inner cavity can then be introduced by means of Lagrange multipliers by requiring that the following
holds

Vc (uk) = Vc0 , (65)

where Vc (uk) is the current volume of the cavity and Vc0 is the initial volume. Therefore, the expression
of the Lagrange functional to be minimized in order to solve the problem is the following

Lcyl (uk, λc) = Φcyl(uk)− λc [Vc (uk)− Vc0 ] , (66)

where Φcyl is the deformation energy of the body, given as

Φcyl = 2π

∫

Σ

φ
(

F cyl
)

X1dΣ , (67)
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where Σ is the section of the domain on the plane ı1− ı2, X1, the first coordinate, is the distance from
the rotation axis, and φ is the strain energy density of the material. Figure 8 shows the results of the

i1

i2i3

(a)

i1

i2
20.0

15.0

15.0

R=50

u2

D1=20

D2=50

(b)

Figure 7: Axi-symmetric problem, domain geometry, dimensions and boundary conditions, R is the
distance of the centre of the section from the symmetry axes, the fillet radius are 2.0 and 5.0. The
thicker line in (b) marks the portion of the boundary where displacement constraints were applied.

simulations for the axisymmetric problem for a Neo-Hookean material model with modulus c10 = 10.
As expected, the presence of an incompressible fluid within the cavity, introduced through the con-
straint (65), results in a general macroscopic stiffening of the solid, which enforces a lager widespread
of the deformation across the domain, and lager average value of the deformation. In both cases the
solution was achieved in 200 steps with each steps taking 5 iterations to converge in the case with the
cavity volume constraint, and 6 iterations in the cases without the constraint.

(a) (b) (c)

Figure 8: Axi-symmetric problem, simulation results. (a) Normalized force displacement plot, ∆u2

is the displacement applied in direction 2, L2 is the initial height of the domain, R2 is the total
reaction force, A is the area over which the boundary condition is applied, c10 is the modulus of the
Neo-Hookean material. Line 1. is the response with internal volume constraint (i.v.c.), line 2. is the
response without i.v.c. . (b) Deformed cross section with i.v.c., and (c) without i.v.c. at maximum
deformation.

We remark that the cylindrical symmetry, in the above example, was introduced by simply incor-
porating it in the displacement model and in the definition of F , in equation (63), while at no point, in
the statement of the elastic problem, it was necessary to express the equilibrium equation in cylindrical
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coordinates.

5.5 Three-dimensional solid with large geometrical non-linearities

In this section we analyse the response of a three dimensional hyperelastic solid undergoing large
displacements. Figure 9a shows the domain geometry, which consists in a right-handed helicoidal solid
with circular cross section. The helix has radius Re = 20, pitch p = 20 and height h = 40. In this
example the boundary conditions have been applied constraining the displacement of the centre of
mass of the two ends of the helix to move along direction ı3, increasing the height of the helix, has
shown in figure 9a. Therefore the following set of equation was imposed on the nodes of the end cross
sections

∫

Abtm

u1 dA = 0 ,

∫

Atop

u1 dA = 0 (68a)

∫

Abtm

u2 dA = 0 ,

∫

Atop

u2 dA = 0 (68b)

∫

Abtm

u3 dA = −
∆h

2
,

∫

Atop

u3 dA =
∆h

2
(68c)

where Atop and Abtm are the top and the bottom cross section, respectively. The boundary conditions
have been applied, similarly to the previous example, through Lagrange multipliers, adding a constraint
equation for each of the equations 68. We observe that the value of Lagrange multipliers conjugated
to equations (68c), at equilibrium correspond to the total constraint reactions in direction ı3 on the
bottom and the top faces, respectively, which are the active forces, producing the deformation of the
spring. Because of the symmetry of the domain and of the boundary conditions, at equilibrium both
the active reaction forces have the same value, R3. Figure 9b shows the normalized plot of R3 as a
function of ∆h, and figure 9c shows the deformed configurations of the helix corresponding to the points
marked in figure 9b. As we can observe the plot of the reaction force shows the expected hardening
behaviour due to the alignment of the helix with the applied force. The solution was obtained in 300
increments, with each increment taking 3 iterations to converge.

i1
i2

i3

Abtm

h

Atop

(a) (b)

i1

i3
a

b

c

d

e

f

(c)

Figure 9: Three-dimensional solid. (a) Domain’s geometry, Atop and Abtm are the top and the bot-
tom end cross sections of the helix, respectively; (b) Reaction force, R3, A is the cross section area,
versus normalized applied displacement, c10 is the modulus of the Neo-Hookean model; (c) Deformed
configurations at the stages of the simulation marked with dots in (b).
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6 Concluding remarks

Automatic differentiation (AD) techniques allow for the accurate and efficient numerical evaluation of
the derivatives of a multivariate function. In this paper, AD has been used for stating and solving
non-linear finite element solid mechanics problems. The approach presented here focuses in particular
on Green elastic materials, for which the deformation work is an exact differential, and the solid can be
treated as a proper conservative thermodynamic system. In these cases, the residual force vector and
the tangent stiffness matrix of the model coincide, respectively, with the gradient and the Hessian of the
system’s free energy, which can be numerically evaluated through AD. Therefore, with the approach
presented here no explicit calculation of the stress tensor, nor of the elasticity tensor is required, nor
it is necessary to implement the complex kinematics that link the degrees of freedom of the model to
the internal forces and their derivatives. The same framework can also be applied with arbitrary, non
conservative, material models, although, here the explicit calculation of the components of the stress
tensor is required, while the calculation of the elasticity tensor and of the tangent stiffness matrix can
still be automated. In the same way, sophisticated constraints equations and boundary conditions,
can be introduced by means of Lagrange multipliers, and treated through AD. The method has been
presented with a number of examples that illustrate the solution of selected non-linear problems,
featuring hyperelastic material models, and complex constraints, along with the computer programs
developed for producing the results included in this article.
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Appendices

A Implementation of dual number systems in the Julia pro-

gramming language

In this section we illustrate a possible implementation of the dual number system in the Julia pro-
gramming language. Julia is a dynamically typed scientific programming language, whose semantic
is particularly suitable for the description of physical problems [Bezanson et al., 2017, Perkel, 2019].
Aside to user-defined data types, Julia permits to overload existing operators or functions to be eval-
uated on the new types. Therefore the same script that evaluates a numeric function on floating point
numbers, can be used to operate on dual numbers, once their arithmetic has been implemented, and
produce dual number as a result.

The script blocks reported below show a possible implementation of dual numbers in Julia. The
dual number type is called D2 and it is defined in Listing 1 as having a scalar component v, that stores
the current value of the variable, a one dimensional array, d1, that stores all of the first derivatives of
v, and a two dimensional array, d2, that stores all of the second derivatives of v.

1 s t r u c t D2 <: Number
2 v : : Float64
3 d1 : : Array{Float64 ,1}
4 d2 : : Array{Float64 ,2}
5 end

Listing 1: Definition of dual numbers in Julia

The code in Listing 2 extends some ordinary maths operators to function with the D2 type. The first
line in the script block informs the language that the scope of the mentioned operators, defined in the
Base module, will be extended, while the remaining lines implement the arithmetic of dual numbers
as defined in section 3.3.1, where each component of a dual number value is accessed through the dot
syntax (.), and the single quote (') denotes array transposition.

1 import Base : + ,− ,∗ ,/ ,ˆ
2 +(x : : D2 , y : : D2) = D2(x . v+y . v , x . d1+y . d1 ,
3 x . d2+y . d2 )
4 −(x : : D2 , y : : D2) = D2(x . v−y . v , x . d1−y . d1 ,
5 x . d2−y . d2 )
6 ∗( x : : D2 , y : : D2) = D2(x . v∗y . v ,
7 x . d1∗y . v+y . d1∗x . v ,
8 x . d2∗y . v+x . v∗y . d2+
9 x . d1∗y . d1 '+y . d1∗x . d1 ' )

10 /(x : : D2 , y : : D2) = D2(x . v/y . v ,
11 x . d1/y . v−(x . v/y . vˆ2)∗y . d1 ,
12 x . d2/y . v−(x . d1∗y . d1 '+y . d1∗x . d1 ' ) /
13 y . vˆ2+2x . v∗( y . d1∗y . d1 ' ) / y . vˆ3−
14 ( x . v/y . vˆ2)∗y . d2 )
15 ˆ(x : : D2 , n : : Int64 ) = D2(x . vˆn ,
16 (n∗x . vˆ(n−1))∗x . d1 ,
17 (n∗(n−1)∗x . vˆ(n−2))∗
18 ( x . d1∗x . d1 ')+(n∗x . vˆ(n−1))∗x . d2 )

Listing 2: Operators overloading
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In Listing 3 the function given by equation (31) is defined in the first line, in the following line it is
evaluated for the double precision floating point values x1=x2=x3=1.0 and the result is printed.

1 y ( x1 , x2 , x3 ) = x1ˆ3∗x2ˆ2 + x3ˆ2
2 p r i n t l n (”\n y0 : ” , y ( 1 . , 1 . , 1 . ) )
3

4 y0 : 2 . 0

Listing 3: Numerical example with Float64 arguments

In Listing 4, the variables x1, x2 and x3 are defined as dual quantities, of the D2 type, where the
first argument of the call to the D2 constructor is the value of the variable, the second argument is the
gradient of each variable, and the third argument is the Hessian. We remark that independent variables
are defined by properly specifying the components of their gradient and Hessian. In fact, independent
variables are such that the derivative with respect to themselves is one, while all other derivatives are
nought. Thus x1 is the independent variable that occupies the first position of the gradient, x2 the
second and x3 the third. As a result, the derivative with respect to x1 of any operation involving x1,
x2 and x3, with will be stored in the first component of the d1 array of the result, and similarly for
the derivatives with respect to x2 and x3, and for higher order derivatives. Following in Listing 4, the
same function y, defined in Listing 3, is called with the dual quantities just defined and the result,
which is a dual quantity itself, is printed. As we can observe, the result returned by the function this
time includes both the value of the function y(x1,x2,x3), and its gradient and Hessian.

1 x1 = D2( 1 . , [ 1 . , 0 , 0 ] , z e r o s ( 3 , 3 ) )
2 x2 = D2( 1 . , [ 0 , 1 . , 0 ] , z e r o s ( 3 , 3 ) )
3 x3 = D2( 1 . , [ 0 , 0 , 1 . ] , z e r o s ( 3 , 3 ) )
4 p r i n t l n (”\n yd : ” , y ( x1 , x2 , x3 ) )
5

6 yd : D2 ( 2 . 0 , [ 3 . 0 , 2 . 0 , 2 . 0 ] ,
7 [ 6 . 0 6 . 0 0 . 0 ;
8 6 .0 2 .0 0 . 0 ;
9 0 .0 0 .0 2 . 0 ] )

Listing 4: Numerical example with D2 arguments

We observe that having overloaded the operators involved in the definition of y(x1,x2,x3) allowed us
to call the same function with both data type without making any modification or having to add any
specification to the function itself.

We remark that the implementation of dual numbers in Julia as presented in this section is an
attempt to provide a brief and clear illustration of a possible computer implementation of AD, through
operators overloading, nonetheless in this form it does not exploit any of the powerful features offered
by the Julia programming language, like parametric types, and macros [Perkel, 2019, Bezanson et al.,
2017]. The implementation developed for the solution of the example presented in the paper, available
through [Vigliotti, 2020], which is based on Revels et al. [2016], makes a better use of Julia’s features
and functionalities and ensures better performances than the example presented in this section.

28



B Arbitrary order dual number systems

In this section we briefly generalize the definition of dual numbers to an arbitrary order of differentia-
tion. Let x be a dual number of dimension N and order K

x ≡ x0 + xi1 ıi1 + xi1i2 ıi1i2 + xi1i2i3 ıi1i2i3 + · · ·

+ xi1...iK ıi1...iK with































i1 ∈ 1 . . . N

i2 ∈ i1 . . . N

i3 ∈ i2 . . . N
...

iK ∈ iK−1 . . . N

(69)

with ıj the canonical base of RN , with j ∈ 1 . . . N , and ıi, ıij , ıijk . . . , ıi1...iK are symbols defined as

ıi1i2 ≡ ıi1 ⊗ ıi2 + ıi2 ⊗ ıi1

ıi1i2i3 ≡ ıi1 ⊗ ıi2 ⊗ ıi3 + ıi1 ⊗ ıi3 ⊗ ıi2 + ıi3 ⊗ ıi1 ⊗ ıi2+

ıi3 ⊗ ıi2 ⊗ ıi1 + ıi2 ⊗ ıi3 ⊗ ıi1 + ıi2 ⊗ ıi1 ⊗ ıi3
...

...

ıi1...iK ≡
∑

IK∈Π(K)

ıIK

1
⊗ · · · ⊗ ıIK

K

(70)

where IK is a permutation of the indices 1 . . .K, IKi are its elements, and Π(K) is the set of all the
permutations of the indices 1 . . .K. With respect to equations (70) we observe that the following holds

ıij = ıji

ıijk = ıikj = ıjik = ıjki = ıkij = ıkji

...
...

ıIK = ıJK ∀ IK , JK ∈ Π(K)

. (71)

The quantities x0, xi, xij , xijk . . . , xi1...iK are real scalars and are the components of x, x0 is the real
part of x, the remaining are dual parts of order 1, 2, . . .K. Two dual numbers of dimension N and
order K are identical if and only if all of their components are identical, as follows

x = y ⇐⇒























x0 = y0

xi = yi
...

...

xi1...iK = yi1...iK

(72)

The sum of two dual numbers is defined as the dual number whose components are the sum of the
components, as follows

z = x+ y ⇐⇒























z0 = x0 + y0

zi = xi + yi
...

...

zi1...iK = xi1...iK + yi1...iK

(73)
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The product of two dual numbers is a dual number obtained as the sum of the mixed products of their
components, where the following rules applies for the product of the symbols ıi, ıij , ıijk . . . , ıi1...iK

ıiıj ≡ ıij

ıiıjık = ıiıjk ≡ ıijk

...
...

ı1 . . . ıK = ı1ı2...K ≡ ı1...K

, (74)

ıiı1...K ≡ 0 , (75)

where equations (74) produce the contribution to higher terms in the product as results of the products
of lower order terms in the factors, and equation (75) ensures that no component with order higher
than K appears in the result. The components of the product are given as

z = xy ⇐⇒











































z0 = x0y0

zi = xiy0 + x0yi

zij = xijy0 + xiyj + xjyi + x0yij

zijk = xijky0 + xijyk + xiyjk + x0yijk
...

...

zi1...iK = xi1...iKy0 + xi1...iK−1
yiK + · · ·+ x0yi1...iK

, (76)

With reference to the quotient of two dual numbers, we observe that this operation is equivalent to
the product of the first time the inverse of the second, where the inverse of a dual number is obtained
by solving the following

1

x
= y ⇐⇒ yx = 1, (77)

from which it results

1

x
= y ⇐⇒











































y0x0 = 1

xiy0 + x0yi = 0

xijy0 + xiyj + xjyi + x0yij = 0

xijky0 + xijyk + xiyjk + x0yijk = 0
...

...

xi1...iKy0 + xi1...iK−1
yiK + · · ·+ x0yi1...iK = 0

, (78)

where we observe that the right hand side of the definition (78) is an lower diagonal linear system in
the unknowns y···, which can be easily solved by back-substitution starting from the first equation.
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