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Automatic Differentiation of Multichannel EEG Signals

B. O. Peters, G. Pfurtscheller, and H. Flyvbjerg*

Abstract—Intention of movement of left or right index finger, or right
foot is recognized in electroencephalograms (EEGs) from three subjects.
We present a multichannel classification method that uses a “committee”
of artificial neural networks to do this. The classification methodautomati-
cally finds spatial regions on the skull relevant for the classification task. De-
pending on subject, correct recognition of intended movement was achieved
in 75%–98% of trials not seen previously by the committee, on the basis of
single EEGs of one-second duration. Frequency filtering did not improve
recognition. Classification was optimal during the actual movement, but a
first peak in the classification success rate was observed in all subjects al-
ready when they had been cued which movement later to perform.

Index Terms—Artificial neural nets, autoregressive modeling,
brain-computer interface, multichannel time series analysis.

I. INTRODUCTION

It has long been known that human electroencephalogram (EEG) ac-
tivity is altered before, during, and after sensory-motor processing and
other mental activities. It has also been known for some time that EEGs
produced during a very limited set of mental tasks can be classified,
hence recognized, according to tasks [1]–[7]. A classifier doing this
can then be used to control a device by having each task correspond
to a command. This concept is referred to as abrain-computer inter-
face(BCI). For such applications, speed and reliability of recognition
matter. A purely academical interest in the information content in EEG
takes a similar interest in its dependence on the duration of the signal,
circumstances of recording, and enhancement by filtering.

In this paper, we present a method that automatically finds relevant
EEG channels, and classifies as well or better than other schemes. Our
method was developed on data presented and studied first in [4]. These
data were recorded on three subjects before, during, and after move-
ments of right foot, left index finger, and right index finger.

Section II describes the EEG experiment. Section III describes our
preprocessing, feature extraction, and classification scheme. Section IV
describes our filter settings and the time course of classification of three
types of movement for various frequency bands and spatial regions on
the skull. In Section V, we compare our classification rates to results
obtained by other groups.

II. EXPERIMENTAL SETUP

The test subjects’ EEG potentials were measured on 56
silver/silver-chloride electrodes with a reference electrode on
the nose-tip. The electrodes were positioned on a rectangular grid with
an approximate spacing between neighboring electrodes of 2.5 cm.
Four electrodes corresponded to the international 10–20 system [8],
see Fig. 1. The sampling rate,fs, was 128 Hz, giving56�128 = 7168
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Fig. 1. Electrode positions on skull and corresponding numbering. Channel
26 corresponds approximately to position C3 in the international 10–20 system,
channel 32 to C4, channel 2 to Fz, and channel 29 to Cz, respectively.

values/s to be stored. Data was recorded for at least 8 s. The EEG
signals were amplified between 0.15 and 60 Hz (3 dB points, 16
dB/octave) with two coupled 32-channel amplifier systems (BEST,
Fa. Grossegger, Austria).

The experimental protocol used to obtain these EEGs is as follows:
Two seconds after recording was begun, the subject was alerted by a
short beep [warning stimulus(WS)]. One second after the beep, an
arrow pointing left, right, up, or down appeared on a screen for 300
ms, indicating that the left (left arrow) or right index finger (right), the
right foot (down), or the tongue (up) soon was to be moved (CUE).
Data recorded for tongue movement were mostly corrupted by elec-
trical signals from the movement itself, and were excluded from further
analysis. The remaining three events we refer to as L, R, and F, respec-
tively. The subject had been instructed to move the relevant extremity
in a brisk movement, but only some timeaftera second acousticreac-
tion stimulus(RS) had sounded at 5 s [4]. The time between RS and
onset of movement was 0.5 to 1.5 s.

In this way, 37–77 trials were recorded for each of L, R, and F from
three subjects, referred to as A4, B6, and B8 below (cf. Table I). The
subjects were all healthy, right-handed students, aged 23–29, two male
(A4 and B8) and one female (B6).

III. SIGNAL PROCESSING

A. Autoregressive Models and Feature Vector Extraction

We use standard autoregressive (AR) models as power spectrum
estimators, and use their coefficients as feature vectors: Each EEG-
channel’s signalx(t) at timet is estimated by a linear combination of
its values at thep former instants,̂x(t) = p

k=1 a
p
kx(t�k��t), where

�t = 1=fs is the sampling time andp is the AR model order. The AR
coefficients,(apk)k=1...p, are obtained by minimizing the squared error

tfe(t)g
2 = tfx̂(t)�x(t)g2. The differencee(t) = x(t)�x̂(t) is

assumed to be white noise with variance�2. Consequently, the power
spectrum is estimated by

j ~XAR(f)j
2 =

�2

1� p
k=1 a

p
k � e�i2�(f=f )�k 2

TABLE I
NUMBER OFTRIALS RECORDED FOREACH SUBJECT ANDEACH EVENT

and the AR coefficients,(apk)k=1...p, are used asfeature vector, repre-
senting the data in this one channel during a time interval of 1 or 0.5 s
during one trial.

The optimal AR model order,p, can be determined by information
theoretic methods [9]. The classification result of our classifier is al-
ready an information measure, however. Thus, the optimal value forp
is the one yielding maximal classification success, once that has been
defined.

B. Artificial Neural Network as classifier

An artificial neural network (ANN) is a general-purpose function
approximator for multidimensional functions of several variables [10].
We used an ANN consisting of three perceptrons, one perceptron for
each of the classes L, R, and F. (Initially, we used ANNs with one
hidden layer, but an investigation of their weights after training indi-
cated that the simpler perceptrons would be as efficient, and they actu-
ally were better [11]. This indicates that simpler, purely linear schemes
may work as well, e.g., independent component analysis [12].) The
p-dimensional feature vectors were used as input variables. The output
of a perceptron was supposed to be positive if a feature vector at its
input encoded the movement that the perceptron classified for, and neg-
ative if it did not. An output value close to zero indicated that the per-
ceptron did not have much of an “opinion,” while a numerically larger
output indicated a stronger opinion.

The gradient descent method [10] was used to train the ANN on a
subset of all feature vectors, thetraining set. The ability of the ANN to
correctly classify feature vectors was monitored on a second, indepen-
dent subset of trials, thevalidation set. As training proceeded, the clas-
sification success on the validation set first increased, but eventually de-
creased when the ANN started over-learning [10]. We stopped training
when the classification success on the validation set had reached its
maximum, in order to ensure the ANNs generalization ability.

The ANNs success on the validation set does not represent its true
generalization ability. The latter is lower because the validation set was
used for optimization. Consequently, we used a third, independent,test
seton which we evaluate the classifier’s success rate. The partitioning
of the available experimental trials on training, validation, and test sets
was done at random. The training set and the validation set must both
consist of an equal number of trials from classes L, R, and F. Otherwise,
the classifier will be biased toward the class from which it has seen most
feature vectors. For subject A4, e.g., we used50+50+50 trials in the
training set,16 + 16 + 16 trials in the validation set, and7 + 7 + 11
trials in the test set, for each of the classes L, R and F, respectively.

C. Multichannel Signal Processing: The “Committee” Method

For each individual channel in the EEG, an ANN was trained as just
described. Each ANN gave a three-dimensional output vector with its
“opinion” about a given input. These output vectors were summed up,
and the sum was used to classify the input, according to which compo-
nent in the output vector sum was largest, i.e., “received the strongest
vote.”

This procedure was based on the observation that perceptrons with a
“strong conviction” (large output value) tended to be right, while per-
ceptrons with a weak conviction (output near zero) more often were
wrong. Thus, by weighting an opinion by its strength, the emphasis is
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Fig. 2. Classification success averaged over trials from the validation set as
function of committee size. The results shown were obtained by averaging over
5000 random partitions of available trials in training, validation, and test set.
Laplace filtered data (Section III-D1) from subject A4 were used, analyzed as
AR(10) coefficients computed in the period from 5 to 6 s. No bandpass filter
(Section III-D2) was applied.

placed on opinions that are correct with a high probability, while opin-
ions that are less probably correct are de-emphasised and left to cancel
each other. Since the latter’s contribution mainly is noise, we conse-
quently left the decision to a committee that excluded them, as follows.

According to the classification success on the trials in the validation
set, the 30 channels were rank-ordered.N -member “committees” were
formed from theN ANNs with the best classification success, with
N ranging from one to 30. The classification success rate, averaged
over the trials in the validation set, was computed as a function of the
committee sizeN . Fig. 2 shows this function.

The committees’ classification accuracy depends onN , the number
of committee members. The accuracy rises first quickly with increasing
N , then very slowly forN > 10. The average classification success
does not vary significantly for committee sizes bigger than 15: The
channels above this size do not contribute any additional information.
Hence, we decided to use a committee of sizeN = 20.

With the committee size and the corresponding member-ANNs
chosen, our design procedure for a classifier is complete (for given
pre-processing; see following section): We have a particular set of
channels with associated trained ANNs, and a rule for how to combine
and interpret the outputs of these ANNs. The predictive power of this
committee is then tested on the trials in the test set.

The whole procedure just described was repeated 100 to 500 times,
each time partitioning the set of trials in a random manner on training,
validation, and test set, and each time initiating each ANN with new
random weights before training.

The committee yielded better classification accuracy than any in-
dividual channel could provide, and is a way to combine information
from several channels, i.e., from different spatial regions. Thus, a non-
trivial task is solved, that of choosing optimal electrode positions and
the optimal number of channels for an EEG-based brain-state clas-
sifier. In the literature, the choice of EEG channels for this purpose
is done either by hand, by competent physiologists, or in preliminary
studies [13].

D. Preprocessing and Parameter Settings

Before the power spectra are modeled with AR models, some pre-
processing is necessary to obtain an optimal result. Ideally, the prepro-
cessing scheme should be tailored to the individual subject, if the goal
is an optimized BCI for a given subject. Since this is computationally
difficult, we did this only for one subject, A4. We changed the algo-
rithmic parameters only one by one, keeping the others constant, while
monitoring our scheme’s classification success. For this reason, and

TABLE II
THREE-STATES CLASSIFICATION RESULTSOBTAINED WITH VARIOUS SPATIAL

AND FREQUENCYFILTER SETTINGS FORSUBJECTA4

EEG data were extracted in the period of the onset of
movement, between 5 and 6 s. Classification was done
on coefficients of AR (10) models fitted to data in each
channel. Results given are percent of trials in the test
set correctly classified by the committee. Differences of
more than 2% are statistically significant.

because we only study three subjects in total, our results should not
be considered conclusive. More subjects need to be studied, in a more
general search for optimal parameter settings. For now, we observe that
such a wider search for optimal performance only can yield higher suc-
cess rates than those obtained here, everything equal and assuming our
three subjects typical.

1) Spatial Filtering: The 56 channels do not provide independent
information. We computed the correlations between channels in subject
A4’s EEG, and found channels as far as 15 cm apart were 60%–70%
correlated. Spatial filtering can remove much of this correlation. With
the notationxk(t) for the signal in channelk, the spatial filters con-
sidered werecommon average reference, or CAR (x0

k(t) = xk(t) �
(1=56) 56

i=1
xi(t)), andLaplace filter(x0

26 = x26 � (1=4)fx15 +
x25 + x27 + x37g). In addition, we studied alocal average technique,
or LAT (e.g.,x0

26 = (1=5)fx15 + x25 + x26 + x27 + x37g),
Both CAR and Laplace filtering remove the influence of the refer-

ence electrode. Laplace filtering additionally removes any linear spatial
component, and has hence some high-pass filter characteristics. On the
other hand, LAT introduces a spatial low-pass filter. For both LAT and
Laplace filter, only the 30 electrodes with four nearest neighbors could
be analyzed, of course.

2) Frequency Filtering: Even before actual movement, EEG ac-
tivity in characteristic regions are synchronised or desynchronised in
specific frequency bands [14]–[16]. Low and high frequency activity
in surface EEGs is not related to movement [17]. We used a causal
Kaiser filter of lengthNK = 25 (�200 ms at ourfs = 128 Hz) and
Kaiser parameter�K = 2 [18]. We filtered the data in thetheta(0–6
Hz), thealpha(8–12 Hz), thebeta(19–26 Hz), and thegamma(38–42
Hz) frequency band.

IV. RESULTS

A. AR Model Order and Filter Settings

We measured the classification success rate of subject A4, on
Laplace filtered segments of EEG data taken in the period from 5
to 6 s. The classification was done on the coefficients of AR(p)
models, withp varying from two to 50. The classification success rate
increased withp until p � 10, then stayed at approximately the same
level until p � 20, and decreased slowly for larger values ofp. We
consequently chosep = 10. This procedure relied on brute force, of
which we had plenty, and is intellectually economical by its directness.

To study the influence of spatial and bandpass filters, we classified
EEG data from subject A4 in the time interval between 5 and 6 s, i.e.,
before the onset of movements in most trials. The lower right entry
in Table II shows that raw data already yield 87% success. The last
column in Table II shows that bandpass filtering does not improve the
success rate.
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Fig. 3. Classification results as function of time for subjects A4, B6, and B8.
Success rate 1 represents perfect recognition. Random guessing would result
in success rate1=3. (a) Classification based on 1 s-intervals. (b) Classification
based on 500-ms intervals. The plotting symbols are located in the middle of the
corresponding time intervals. Results shown are averages of 500 partitionings
of the trials on training, validation, and test set.

Of the spatial filtering techniques, LAT was worse than no filter.
CAR and Laplace filters work equally well in the absense of bandpass
filters, yielding 98% success. We chose the Laplace filter because it
works equally well with all bandpass filters. But we might as well have
chosen CAR, because we chose to use no bandpass filter. All results
reported below were obtained with this choice.

B. Error Reduction

In order to reduce fluctuations due to finite statistics, the random
partitioning of trials on training, validation, and test sets was repeated
at least 100 times, and performance results were averaged [19]. This
procedure reduced the standard error on our rates by a factor two,
approximately. This we found by applying the method to synthetic
data sets with known properties. The resulting standard error of
approximately 5% compares well with the fluctuations around the
value 1=3 seen in the recognition rates before the cue at 3 s in
Figs. 3 and 4.

C. Time Course of Classification

The classifier’s performance on the EEG signal is shown as a func-
tion of time in Fig. 3. Before the subjects have been told which move-
ment to perform, the success rate corresponds to random guessing, as
it should. Immediately after they have been told, but before the actual

Fig. 4. Classification success rates for individual events: left finger (L), right
finger (R), and right foot (F), for subjects A4, B6, and B8. Rates shown are the
number of correctly recognized trials of event X divided by the number of trials
of event X in the test set.

movement, the success rate grows. It peaks at the time of the actual
movement, and it is high even 2–3 safter.

Fig. 3(b) has twice the time resolution of Fig. 3(a) and reveals more
structure in the EEG. Success rates in Fig. 3(b) are slightly lower than
in Fig. 3(a) because the EEG signals used last half as long. But in the
time window 500 ms after the visual cue was presented, the rates briefly
reach a maximum for all subjects. For subject A4 the rate remains near
70% until just before RS, while for subjects B6 and B8 the rate quickly
drops to the randomness level, then grows to a higher maximum at the
time of the actual movement. For subject B8 there is a third, higher
maximum in the classification success rate near the end of the EEG
recording period. This increased classification rate in subject B8 after



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 48, NO. 1, JANUARY 2001 115

movement-offset may be explained by the post-movement beta syn-
chronization localized close to the corresponding primary motor area
[20]–[22].

D. Classification Accuracy for Individual Movements

Fig. 4 shows the classification success rates for the individual events.
We note that these rates differ a good deal from each other and between
subjects. A4 and B8 have some properties in common: Recognition of
foot movement (F) and intention of foot movement is higher than L and
R recognition; recognition of R is higher than L before the movement,
but lower than L after the movement. Fig. 4 also reveals that the peak
in Fig. 3 immediately after the CUE is caused by different events for
the three subjects. Finally, in all subjects the classification of L and R
decreases after the movement, then increases again after approximately
7 s recording time.

E. Spatial Analysis

The electrodes chosen for the committee were mostly grouped
around the electrode positions C3 and C4 (cf. Fig. 1), i.e., above
the motor cortex. There were, however, considerable intersubject
differences. For subject A4, the spatial regions of good recognition
remained the same during the time from 3.5 to 8 s; the central region
of the skull did not play an important role in the classification task.
In subject B6, there was a peak at the frontal and central electrodes
during the time period of early classification (3.5–4 s) which vanished
during the movement. The electrodes situated frontally and parietally
from the positions C3 and C4 are those included most often in the
committee. In subject B8, the first peak of classification at time 3.5–4
s (cf. Fig. 3) goes out from right regions of the skull, a phenomenon
which can be explained by the higher L, contralateral, recognition at
this time (cf. Fig. 4).

V. DISCUSSION

In this section, we compare our results with other published results
obtained with the same subjects. Because of the high intersubject vari-
ability of EEGs, this comparison provides the best possible test of our
classification method against other methods. We also compare our re-
sults with results from different experiments: The subjects providing
the data analyzed above have participated in earlier experiments [13]
with a slightly different experimental paradigm: Between the visual cue
on the screen and the reaction stimulus, there was only one second in-
stead of two, and the average time between reaction stimulus and onset
of movement was 500 ms instead of the 1000 ms in our study. Classi-
fication was done on up to 56 EEG channels, using the ERD or ERS
in specific frequency bands as features. The classifier was a so-called
distinction sensitive learning vector quantiser(DSLVQ) [23].

The bestresults for the classification of left and right index finger
movements reported in [13] were as follows.

Subject A4:all 56 electrodes, power in the 10–12 Hz frequency
band:79:3 � 2:5%;
Subject B6:11 electrodes pre-selected on the same data set by a
preliminary experiment, power in the 20–24 Hz frequency band:
88:6 � 1:2%;
Subject B8:11 electrodes preselected by an expert, frequency
band 10–12 Hz:84:5 � 2:2%.

In [4], classification success rates up to 89% were reported for
left/right index finger movement discrimination for a subject whose
records in earlier experiments had shown significant changes in 40-Hz
EEG during finger movement.

Our classification results were obtained for the same subjects as
studied in [13]. When we applied our classifier to mere left/right index
finger discrimination, we found succes rates of 94% for subject A4,

95% for subject B6, and 91% for subject B8, for EEGs measured in the
time interval between 5 and 6 s recording time.

In another experiment investigating the possibility of a BCI, the ERD
was used to classify three types of movement (L, R, and F) in four
subjects, including subject B8 of our study [7]. After a short WS, a
visual cue was presented to the subjects for 1.25 s, during which ERD
patterns in narrow frequency bands were extracted from channels C3,
Cz, and C4. After the visual cue had vanished, the corresponding L,
R, or F movement had to be performed. Approximately one second
later, the estimate of the DSLVQ classifier was fed back to the subject.
The classification result for the three movements of that study reached
50%–70% after several sessions.

With our method, we obtained 98% correct classification of the three
events for subject A4, a maximum of 96% for subject B6, and 75%
correct recognition for subject B8 before movement, and even 85% in
the interval from 7 to 8 s, see Fig. 3.

Our results raise hope that it may be possible in general to classify
EEGs according to tasks with quite high accuracy. The data, however,
were taken from subjects who were prompted to specific tasks by a
computer. With a BCI, one wants the subject to prompt the computer to
specific tasks. Thus, further progress toward a BCI requires data from
experiments where thesubjectsdecide which “brain state” to produce,
e.g., by thinking about a movement as if intending to perform it. In such
experiments, the classification results could with advantage be fed back
to the subject, as Wolpaw and McFarland do [2], to help the subject
learn to produce a small “dictionary” of distinguishable EEG patterns.
But as the subject through feedback optimizes his performance with
the classifier, the classifier should also be reoptimized every so often, it
should be “retrained” to the subject’s changed EEGs, and the change in
classifier will provide a measure of the change in the EEGs, including
the change in their information content. The classifier presented here is
convenient for this purpose, since retraining can be done automatically
whenever desired, as long as EEGs have been recorded for the purpose.
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Strain Imaging and Elasticity Reconstruction of Arteries
Based on Intravascular Ultrasound Video Images

Mingxi Wan*, Yangmei Li, Junbo Li, Student Member, IEEE,
Yaoyao Cui, and Xiaodong Zhou

Abstract—Based on intravascular ultrasound (IVUS) video images, a
novel motion estimation method combining the genetic algorithm-based
optical flow method and a step-by-step and sum strategy has been
developed to estimate the displacement and strain distributions on the
scan cross sections of the arteries. And then, real elasticity distributions
were reconstructed under the conditions of small and large deformation.
Experimental results of in vitro porcine arteries demonstrated the feasi-
bility of the method. This investigation may have potentials to provide
new technological means for monitoring and evaluating percutaneous
transluminal coronary angioplasty procedure, especially, for the end users
of IVUSpercimaging equipment.

Index Terms—Elasticity reconstruction, in vitro porcine artery, intravas-
cular ultrasound, strain imaging, video echo image.

I. INTRODUCTION

Percutaneous transluminal coronary angioplasty (PTCA), during
which a small balloon is inserted into a partially occluded coronary
artery and pressurized with fluid to expand the vessel, is evolving
into one of the accepted most common therapeutic procedures for
atherosclerotic coronary diseases [1]. However, the plaques in the
artery with different elasticity moduli respond differently to the PTCA
procedure. Furthermore, the appraisement of the PTCA procedure
depends on the morphological and mechanical properties of the treated
plaques and artery tissues. Therefore, the acquisition of the artery
elasticity with submillimeter resolution is of great importance during
PTCA procedure.

Several groups are now investigating in feasibility of intravascular
ultrasound (IVUS) elasticity imaging. De Korteet al. [2] devel-
oped a technique for obtaining the local strains of the vessel-like
phantoms. Time shifts between radio frequency (RF) gated echoes
acquired at two levels of intravascular pressures were estimated using
one-dimensional correlation with bandlimited interpolation around
the correlation peaks. Shapoet al. [3] employed a correlation-based
phase-sensitive speckle tracking algorithm acted on RF echoes to
compute strains of a cylindrical homogeneous phantom and generate
radial strain profiles. Talhamiet al. [4] described a spectral process on
IVUS echoes to compute the average radial strains for the entire vessel
wall thickness at each angular position of the scan beam, which were
displayed as a color-coded ring overlaid on conventional IVUS image.
This method is based on the Fourier scaling property of IVUS RF
echoes and the change of the mean scatterer spacing that resulted from
vessel wall compression. Ryanet al. [5] used a two-dimensional (2-D)
correlation speckle tracking algorithm acted on serial intravascular
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