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Abstract

Probabilistic modeling is iterative. A scientist posits a simple model, fits it to her data, refines it

according to her analysis, and repeats. However, fitting complex models to large data is a bottleneck

in this process. Deriving algorithms for new models can be both mathematically and computationally

challenging, which makes it difficult to efficiently cycle through the steps. To this end, we develop

automatic differentiation variational inference (advi). Using our method, the scientist only provides

a probabilistic model and a dataset, nothing else. advi automatically derives an efficient variational

inference algorithm, freeing the scientist to refine and explore many models. advi supports a

broad class of models—no conjugacy assumptions are required. We study advi across ten modern

probabilistic models and apply it to a dataset with millions of observations. We deploy advi as part

of Stan, a probabilistic programming system.

Keywords: Bayesian inference, approximate inference, probabilistic programming

1. Introduction

We develop an automatic method that derives variational inference algorithms for complex proba-

bilistic models. We implement our method in a probabilistic programming system that lets a user

specify a model in an intuitive programming language and then compiles that model into an inference
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executable. Our method enables automatic inference with large datasets on a practical class of modern

probabilistic models.

The context of this research is the field of probabilistic modeling, which has emerged as a powerful

language for customized data analysis. Probabilistic modeling lets us express our assumptions about

data in a formal mathematical way, and then derive algorithms that use those assumptions to compute

about an observed dataset. It has had an impact on myriad applications in both statistics and machine

learning, including natural language processing, speech recognition, computer vision, population

genetics, and computational neuroscience.

Figure 14 presents an example. Say we want to analyze how people navigate a city by car. We

have a dataset of all the taxi rides taken over the course of a year: 1.7 million trajectories. To explore

patterns in this data, we propose a mixture model with an unknown number of components. This is a

non-conjugate model that we seek to fit to a large dataset. Previously, we would have to manually

derive an inference algorithm that scales to large data. With our method, we write a probabilistic

program and compile it; we can then fit the model in minutes and analyze the results with ease.

Probabilistic modeling leads to a natural research cycle. First, we use our domain knowledge to

posit a simple model that includes latent variables; then, we use an inference algorithm to infer those

variables from our data; next, we analyze our results and identify where the model works and where

it falls short; last, we refine the model and repeat the process. When we cycle through these steps, we

find expressive, interpretable, and useful models (Gelman et al., 2013; Blei, 2014). One of the broad

goals of machine learning is to make this process easy.

Looping around this cycle, however, is not easy. The data we study are often large and complex;

accordingly, we want to propose rich probabilistic models and scale them up. But using such models

requires complex algorithms that are difficult to derive, implement, and scale. The bottleneck is this

computation. The efforts involved in deriving, programming, debugging, and scaling each model

precludes us from taking full advantage of the probabilistic modeling cycle.

It is this problem that motivates the ideas of probabilistic programming and automated inference.

Probabilistic programming allows a user to write a probability model as a computer program and then

compile that program into an efficient inference executable. Automated inference is the backbone

of such a system—it inputs a probability model, expressed as a program, and outputs an efficient

algorithm for computing with it. Previous approaches to automatic inference have mainly relied on

Markov chain Monte Carlo (mcmc) algorithms. The results have been successful, but automated

mcmc can be too slow for many real-world applications.

We approach the problem through variational inference (Jordan et al., 1999; Wainwright and

Jordan, 2008), a faster alternative to mcmc that has been used in many large-scale problems (Hoffman

et al., 2013; Blei et al., 2016). Though it is a promising method, developing a variational inference

algorithm still requires tedious model-specific derivations and implementation; it has not seen

widespread use in probabilistic programming. Here we automate the process of deriving scalable

variational inference algorithms. We build on recent ideas in variational inference to leverage some

of the capabilities of probabilistic programming systems, namely the ability to transform the space

of latent variables and to automate derivatives of the joint distribution. The result, called automatic

differentiation variational inference (advi), provides an automated solution to variational inference:

the inputs are a probabilistic model and a dataset; the outputs are posterior inferences about the model’s
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latent variables.1,2 We implement and deploy advi as part of Stan, a probabilistic programming

system (Stan Development Team, 2016).

advi resolves the computational bottleneck of the probabilistic modeling cycle. We can easily

propose a probabilistic model, analyze a large dataset, and revise the model, without worrying about

computation. advi enables this cycle by providing automated and scalable variational inference for

an expansive class of models. Sections 3 and 4 present ten direct applications of advi to modern

probabilistic modeling examples, including an iterative analysis of 1.7 million taxi trajectories.

Technical summary. Formally, a probabilistic model defines a joint distribution of observations x

and latent variables θ, p(x,θ). The inference problem is to compute the posterior, the conditional

distribution of the latent variables given the observations p(θ | x). The posterior reveals patterns in

the data and forms predictions through the posterior predictive distribution. The problem is that, for

many models, the posterior is not tractable to compute.

Variational inference turns the task of computing a posterior into an optimization problem. We

posit a parameterized family of distributions q(θ) ∈ Q and then find the member of that family

that minimizes the Kullback-Leibler (kl) divergence to the exact posterior. Traditionally, using a

variational inference algorithm requires the painstaking work of developing and implementing a

custom optimization routine: specifying a variational family appropriate to the model, computing the

corresponding objective function, taking derivatives, and running a gradient-based or coordinate-

ascent optimization.

advi solves this problem automatically. The user specifies the model, expressed as a program, and

advi automatically generates a corresponding variational algorithm. The idea is to first automatically

transform the inference problem into a common space and then to solve the variational optimization

problem. Solving the problem in this common space solves variational inference for all models in a

large class. In more detail, advi follows these steps.

1. advi transforms the model into one with unconstrained real-valued latent variables. Specif-

ically, it transforms p(x,θ) to p(x, ζ), where the mapping from θ to ζ is built into the joint

distribution. This removes all original constraints on the latent variables θ. advi then de-

fines the corresponding variational problem on the transformed variables, that is, to minimize

KL (q(ζ) ‖ p(ζ | x)). With this transformation, all latent variables are defined on the same

space. advi can now use a single variational family for all models.

2. advi recasts the gradient of the variational objective function as an expectation over q. This

involves the gradient of the log joint with respect to the latent variables∇θ log p(x,θ). Express-

ing the gradient as an expectation opens the door to Monte Carlo methods for approximating it

(Robert and Casella, 1999; Ranganath et al., 2014).

3. advi further reparameterizes the gradient in terms of a standard Gaussian. To do this, it uses

another transformation, this time within the variational family. This second transformation

enables advi to efficiently compute Monte Carlo approximations—it needs only to sample

from a standard Gaussian (Kingma and Welling, 2014; Rezende et al., 2014).

4. advi uses noisy gradients to optimize the variational distribution (Robbins and Monro, 1951).

An adaptively tuned step-size sequence provides good convergence in practice.

1. This paper extends the method presented in Kucukelbir et al. (2015).

2. Automatic differentation has enjoyed a recent resurgence in machine learning; see Section 2.7.
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Each step above is carefully designed to make advi work “out of the box” for a practical class of modern

probabilistic models. This focus on developing an automated inference algorithm differentiates advi

from other “black box” variational methods (Ranganath et al., 2014; Ruiz et al., 2016b).

We deploy advi in the Stan probabilistic programming system, which gives us two impor-

tant types of automatic computation around probabilistic models. First, Stan provides a library

of transformations—ways to convert a variety of constrained latent variables (e.g., positive reals)

to be unconstrained, without changing the underlying joint distribution. Stan’s library of transfor-

mations helps us with step 1 above. Second, Stan implements automatic differentiation to calculate

∇θ log p(x,θ) (Carpenter et al., 2015; Baydin et al., 2015). These derivatives are crucial in step 2,

when computing the gradient of the advi objective.

Organization of paper. Section 2 develops the recipe that makes advi. We expose the details of each

of the steps above and present a concrete algorithm. Section 3 studies the properties of advi. We

explore its accuracy, its stochastic nature, and its sensitivity to transformations. Section 4 applies

advi to an array of probability models. We compare its speed to mcmc sampling techniques and

present a case study using a dataset with millions of observations. Section 5 concludes the paper

with a discussion.

2. Automatic Differentiation Variational Inference

advi offers a recipe for automating the computations involved in variational inference. The strategy

is as follows: transform the latent variables of the model into a common space, choose a variational

approximation in the common space, and use generic computational techniques to solve the variational

problem.

2.1 Differentiable Probability Models

We begin by defining the class of probability models that advi supports. Consider a dataset x = x1:N
with N observations. Each xn is a realization of a discrete or continuous (multivariate) random

variable. The likelihood p(x | θ) relates the observations to a set of latent random variables θ. A

Bayesian model posits a prior density p(θ) on the latent variables. Combining the likelihood with

the prior gives the joint density p(x,θ) = p(x | θ) p(θ). The goal of inference is to compute the

posterior density p(θ | x), which describes how the latent variables vary, conditioned on data.

Many posterior densities are not tractable; their normalizing constants lack analytic (closed-form)

solutions. Thus we often seek to approximate the posterior. advi approximates the posterior of

differentiable probability models. Members of this class of models have continuous latent variables

θ and a gradient of the log-joint with respect to them∇θ log p(x,θ). The gradient is valid within the

support of the prior

supp(p(θ)) =
{

θ | θ ∈ R
K and p(θ) > 0

}

⊆ R
K ,

where K is the dimension of the latent variable space. This support set is important: it will play a

role later in the paper. We make no assumptions about conjugacy, either full (Diaconis and Ylvisaker,

1979) or conditional (Hoffman et al., 2013).

Consider a model that contains a Poisson likelihood with unknown rate p(x | θ). The observed

variable x is discrete; the latent rate θ is continuous and positive. Place a Weibull prior on θ, defined

over the positive real numbers. The resulting joint density describes a nonconjugate probability model:
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the posterior distribution of θ is not in the same class as the prior. (The conjugate prior would be a

Gamma.) However, it is in the class of differentiable models. Its partial derivative ∂/∂θ log p(x, θ)
is valid within the support of the Weibull distribution, supp(p(θ)) = R>0 ⊂ R. While this model

would be a challenge for classical variational inference, it is not for advi.

Many machine learning models are differentiable. For example: linear and logistic regression,

matrix factorization with continuous or discrete observations, linear dynamical systems, and Gaussian

processes. (See Table 1.) At first blush, the restriction to differentiable random variables may seem

to leave out other common machine learning models, such as mixture models and topic models.

However, marginalizing out the discrete variables in the likelihoods of these models renders them

differentiable.

Generalized linear models (e.g., linear / logistic / probit)

Mixture models (e.g., mixture of Gaussians)

Deep exponential families (e.g., deep latent Gaussian models)

Topic models (e.g., latent Dirichlet allocation)

Linear dynamical systems (e.g., state space models)

Gaussian process models (e.g., regression / classification)

Table 1: Popular differentiable probability models in machine learning.

Marginalization is not tractable for all models, such as the Ising model, sigmoid belief networks,

and (untruncated) Bayesian nonparametric models, such as Dirichlet process mixtures (Antoniak,

1974). These are not differentiable probability models.

2.2 Variational Inference

Variational inference (vi) turns approximate posterior inference into an optimization problem (Wain-

wright and Jordan, 2008; Blei et al., 2016). Consider a family of approximating densities of the latent

variables q(θ ; φ), parameterized by a vector φ ∈ Φ. vi finds the parameters that minimize the kl

divergence to the posterior,

φ∗ = argmin
φ∈Φ

KL (q(θ ; φ) ‖ p(θ | x)) . (1)

The optimized q(θ ; φ∗) then serves as an approximation to the posterior.

The kl divergence lacks an analytic form because it involves the posterior. Instead we maximize

the evidence lower bound (elbo)

L(φ) = Eq(θ)

[

log p(x,θ)
]

− Eq(θ)

[

log q(θ ; φ)
]

. (2)

The first term is an expectation of the joint density under the approximation, and the second is the

entropy of the variational density. The elbo is equal to the negative kl divergence up to the constant

log p(x). Maximizing the elbo minimizes the kl divergence (Jordan et al., 1999; Bishop, 2006).

Optimizing the kl divergence implies a constraint that the support of the approximation q(θ ; φ)
lie within the support of the posterior p(θ | x).3 With this constraint made explicit, the optimization

3. If supp(q) 6⊆ supp(p) then outside the support of p we have KL (q ‖ p) = Eq[log q]− Eq[log p] = ∞.
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problem from Equation (1) becomes

φ∗ = argmax
φ∈Φ

L(φ) such that supp(q(θ ; φ)) ⊆ supp(p(θ | x)). (3)

We explicitly include this constraint because we have not specified the form of the variational

approximation; we must ensure that q(θ ; φ) stays within the support of the posterior.

The support of the posterior, however, may also be unknown. So, we further assume that the

support of the posterior equals that of the prior, supp(p(θ | x)) = supp(p(θ)). This is a benign

assumption, which holds for most models considered in machine learning. In detail, it holds when

the likelihood does not constrain the prior; i.e., the likelihood must be positive over the sample space

for any θ drawn from the prior.

Our recipe for automating vi. The traditional way of solving Equation (3) is difficult. We begin by

choosing a variational family q(θ ; φ) that, by definition, satisfies the support matching constraint.

We compute the expectations in the elbo, either analytically or through approximation. We then

decide on a strategy to maximize the elbo. For instance, we might use coordinate ascent by iteratively

updating the components of φ. Or, we might follow gradients of the elbo with respect to φ while

staying within Φ. Finally, we implement, test, and debug software that performs the above. Each step

requires expert thought and analysis in the service of a single algorithm for a single model.

In contrast, our approach allows a user to define any differentiable probability model for which

we automate the process of developing a corresponding vi algorithm. Our recipe for automating vi

has three ingredients. First, we automatically transform the support of the latent variables θ to the

real coordinate space (Section 2.3); this lets us choose from a variety of variational distributions q
without worrying about the support matching constraint (Section 2.4). Second, we compute the elbo

for any model using Monte Carlo (mc) integration, which only requires being able to sample from the

variational distribution (Section 2.5). Third, we employ stochastic gradient ascent to maximize the

elbo and use automatic differentiation to compute gradients without any user input (Section 2.6). With

these tools, we can develop a generic method that automatically solves the variational optimization

problem for a large class of models.

2.3 Automatic Transformation of Constrained Variables

We begin by transforming the support of the latent variables θ such that they live in the real coordinate

space R
K . Once we transform the joint density, we can choose the variational approximation

independent of the model.

Define a one-to-one differentiable function

T : supp(p(θ))→ R
K , (4)

and identify the transformed variables as ζ = T (θ). The transformed joint density p(x, ζ) is a

function of ζ; it has the representation

p(x, ζ) = p
(

x, T−1(ζ)
) ∣

∣ det JT−1(ζ)
∣

∣,

where p(x,θ = T−1(ζ)) is the joint density in the original latent variable space, and JT−1(ζ) is the

Jacobian of the inverse of T . Transformations of continuous probability densities require a Jacobian;

it accounts for how the transformation warps unit volumes and ensures that the transformed density

integrates to one (Olive, 2014). (See Appendix A.)
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Figure 1: Transforming the latent variable to real coordinate space. The purple line is the posterior.

The green line is the approximation. (a) The latent variable space is R>0. (a→b) T transforms the

latent variable space to R. (b) The variational approximation is a Gaussian in real coordinate space.

Consider again our Weibull-Poisson example from Section 2.1. The latent variable θ lives in R>0.

The logarithm ζ = T (θ) = log(θ) transforms R>0 to the real line R. Its Jacobian adjustment is the

derivative of the inverse of the logarithm | det JT−1(ζ)| = exp(ζ). The transformed density is

p(x, ζ) = Poisson(x | exp(ζ))×Weibull(exp(ζ) | 1.5, 1)× exp(ζ).

Figures 1a and 1b depict this transformation.

As we describe in the introduction, we implement our algorithm in Stan (Stan Development Team,

2016). Stan maintains a library of transformations and their corresponding Jacobians. Specifically,

it provides various transformations for upper and lower bounds, simplex and ordered vectors, and

structured matrices such as covariance matrices and Cholesky factors. With Stan, we can automatically

transform the joint density of any differentiable probability model to one with real-valued latent

variables. (See Figure 2.)

2.4 Variational Approximations in Real Coordinate Space

After the transformation, the latent variables ζ have support in the real coordinate space R
K . We

have a choice of variational approximations in this space. Here, we consider Gaussian distributions

(Figure 1b); these implicitly induce non-Gaussian variational distributions in the original latent

variable space (Figure 1a).

Mean-field Gaussian. One option is to posit a factorized (mean-field) Gaussian variational approxi-

mation

q(ζ ; φ) = Normal
(

ζ | µ, diag(σ2)
)

=
K
∏

k=1

Normal
(

ζk | µk, σ
2
k

)

,

where the vector φ = (µ1, · · · , µK , σ2
1, · · · , σ

2
K) concatenates the mean and variance of each Gaus-

sian factor. Since the variance parameters must always be positive, the variational parameters live

in the set Φ = {RK ,RK
>0}. Re-parameterizing the mean-field Gaussian removes this constraint.

Consider the logarithm of the standard deviations, ω = log(σ), applied element-wise. The support

of ω is now the real coordinate space and σ is always positive. The mean-field Gaussian becomes

q(ζ ; φ) = Normal
(

ζ | µ, diag(exp(ω)2)
)

, where the vector φ = (µ1, · · · , µK , ω1, · · · , ωK) con-

catenates the mean and logarithm of the standard deviation of each factor. Now, the variational

parameters are unconstrained in R
2K .
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xn

θ

α = 1.5, σ = 1

N

data {

int N; // number of observations

int x[N]; // discrete-valued observations

}

parameters {

// latent variable, must be positive

real<lower=0> theta;

}

model {

// non-conjugate prior for latent variable

theta ~ weibull(1.5, 1);

// likelihood

for (n in 1:N)

x[n] ~ poisson(theta);

}

Figure 2: Specifying a simple nonconjugate probability model in Stan.

Full-rank Gaussian. Another option is to posit a full-rank Gaussian variational approximation

q(ζ ; φ) = Normal (ζ | µ,Σ) ,

where the vector φ = (µ,Σ) concatenates the mean vector µ and covariance matrix Σ. To ensure that

Σ always remains positive semidefinite, we re-parameterize the covariance matrix using a Cholesky

factorization, Σ = LL⊤. We use the non-unique definition of the Cholesky factorization where the

diagonal elements of L need not be positively constrained (Pinheiro and Bates, 1996). Therefore L

lives in the unconstrained space of lower-triangular matrices with K(K + 1)/2 real-valued entries.

The full-rank Gaussian becomes q(ζ ; φ) = Normal
(

ζ | µ,LL⊤) , where the variational parameters

φ = (µ,L) are unconstrained in R
K+K(K+1)/2.

The full-rank Gaussian generalizes the mean-field Gaussian approximation. The off-diagonal

terms in the covariance matrix Σ capture posterior correlations across latent random variables.4 This

leads to a more accurate posterior approximation than the mean-field Gaussian; however, it comes at

a computational cost. Various low-rank approximations to the covariance matrix reduce this cost, yet

limit its ability to model complex posterior correlations (Seeger, 2010; Challis and Barber, 2013).

The choice of a Gaussian. Choosing a Gaussian distribution may call to mind the Laplace approxi-

mation technique, where a second-order Taylor expansion around the maximum-a-posteriori estimate

gives a Gaussian approximation to the posterior. However, using a Gaussian variational approximation

is not equivalent to the Laplace approximation (Opper and Archambeau, 2009). Our approach is

distinct in another way: the posterior approximation in the original latent variable space (Figure 1a)

is non-Gaussian.

The implicit variational density. The transformation T from Equation (4) maps the support of the

latent variables to the real coordinate space. Thus, its inverse T−1 maps back to the support of the

latent variables. This implicitly defines the variational approximation in the original latent variable

space as q (T (θ) ; φ)
∣

∣ det JT (θ)
∣

∣. The transformation ensures that the support of this approximation

is always bounded by that of the posterior in the original latent variable space.

Sensitivity to T . There are many ways to transform the support a variable to the real coordinate

space. The form of the transformation directly affects the shape of the variational approximation in

the original latent variable space. We study sensitivity to the choice of transformation in Section 3.3.

4. This is a form of structured mean-field variational inference (Wainwright and Jordan, 2008; Barber, 2012).
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2.5 The Variational Problem in Real Coordinate Space

Here is the story so far. We began with a differentiable probability model p(x,θ). We transformed the

latent variables into ζ, which live in the real coordinate space. We defined variational approximations

in the transformed space. Now, we consider the variational optimization problem.

Write the variational objective function, the elbo, in real coordinate space as

L(φ) = Eq(ζ ;φ)

[

log p
(

x, T−1(ζ)
)

+ log
∣

∣ det JT−1(ζ)
∣

∣

]

+H
[

q(ζ ; φ)
]

. (5)

The inverse of the transformation T−1 appears in the joint model, along with the determinant of the

Jacobian adjustment. The elbo is a function of the variational parameters φ and the entropy H, both

of which depend on the variational approximation. (Derivation in Appendix B.)

Now, we can freely optimize the elbo in the real coordinate space without worrying about the

support matching constraint. The optimization problem from Equation (3) becomes

φ∗ = argmax
φ

L(φ) (6)

where the parameter vector φ lives in some appropriately dimensioned real coordinate space. This is

an unconstrained optimization problem that we can solve using gradient ascent. Traditionally, this

would require manual computation of gradients. Instead, we develop a stochastic gradient ascent

algorithm that uses automatic differentiation to compute gradients and mc integration to approximate

intractable expectations.

We cannot directly use automatic differentiation on the elbo. This is because the elbo involves

an intractable expectation. However, we can automatically differentiate the functions inside the

expectation. (The model p and transformation T are both easy to represent as computer functions

(Baydin et al., 2015).) To apply automatic differentiation, we want to push the gradient operation

inside the expectation. To this end, we employ one final transformation: elliptical standardization5

(Härdle and Simar, 2012).

Elliptical standardization. Consider a transformation Sφ that absorbs the variational parameters

φ; this converts the Gaussian variational approximation into a standard Gaussian. In the mean-field

case, the standardization is η = Sφ(ζ) = diag (exp (ω))−1 (ζ − µ). In the full-rank Gaussian, the

standardization is η = Sφ(ζ) = L−1(ζ − µ).
In both cases, the standardization encapsulates the variational parameters; in return it gives a

fixed variational density

q(η) = Normal (η | 0, I) =
K
∏

k=1

Normal (ηk | 0, 1) ,

as shown in Figures 3a and 3b.

The standardization transforms the variational problem from Equation (5) into

φ∗ = argmax
φ

EN(η ;0,I)

[

log p
(

x, T−1(S−1
φ (η))

)

+ log
∣

∣ det JT−1

(

S−1
φ (η)

)

∣

∣

]

+H
[

q(ζ ; φ)
]

.

5. Also known as a “coordinate transformation” (Rezende et al., 2014), an “invertible transformation” (Titsias and

Lázaro-Gredilla, 2014), and the “re-parameterization trick” (Kingma and Welling, 2014).
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(a) Real coordinate space
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η
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(b) Standardized space

Figure 3: Elliptical standardization. The purple line is the posterior. The green line is the approxi-

mation. (a) The variational approximation is a Gaussian in real coordinate space. (a→b) Sφ absorbs

the parameters of the Gaussian. (b) We maximize the elbo in the standardized space, with a fixed

approximation. The green line is a standard Gaussian.

The expectation is now in terms of a standard Gaussian density. The Jacobian of elliptical standard-

ization evaluates to one, because the Gaussian distribution is a member of the location-scale family:

standardizing a Gaussian gives another Gaussian distribution. (See Appendix A.)

We do not need to transform the entropy term as it does not depend on the model or the transfor-

mation; we have a simple analytic form for the entropy of a Gaussian and its gradient. We implement

these once and reuse for all models.

2.6 Stochastic Optimization

We now reach the final step: stochastic optimization of the variational objective function.

Computing gradients. Since the expectation is no longer dependent on φ, we can directly calculate

its gradient. Push the gradient inside the expectation and apply the chain rule to get

∇µL = EN(η)

[

∇θ log p(x,θ)∇ζT
−1(ζ) +∇ζ log

∣

∣ det JT−1(ζ)
∣

∣

]

. (7)

We obtain gradients with respect to ω (mean-field) and L (full-rank) in a similar fashion

∇ωL = EN(η)

[

(

∇θ log p(x,θ)∇ζT
−1(ζ) +∇ζ log

∣

∣ det JT−1(ζ)
∣

∣

)

η⊤diag(exp(ω))
]

+ 1 (8)

∇LL = EN(η)

[

(

∇θ log p(x,θ)∇ζT
−1(ζ) +∇ζ log

∣

∣ det JT−1(ζ)
∣

∣

)

η⊤
]

+ (L−1)⊤. (9)

(Derivations in Appendix C.)

We can now compute the gradients inside the expectation with automatic differentiation. The

only thing left is the intractable expectation. mc integration provides a simple approximation: draw

samples from the standard Gaussian and evaluate the empirical mean of the gradients within the

expectation (Appendix D). In practice a single sample suffices. (We study this in detail in Section 3.2

and in the experiments in Section 4.)

This gives noisy unbiased gradients of the elbo for any differentiable probability model. We can

use these gradients in a stochastic optimization routine to automate variational inference.

Stochastic gradient ascent. Equipped with noisy unbiased gradients of the elbo, advi implements

stochastic gradient ascent (Algorithm 1). This algorithm is guaranteed to converge to a local maximum

of the elbo under certain conditions on the step-size sequence.6 Stochastic gradient ascent falls

6. This is also called a learning rate or schedule in the machine learning community.
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Algorithm 1: Automatic differentiation variational inference (advi)

Input: Dataset x = x1:N , model p(x,θ).
Set iteration counter i = 1.

Initialize µ(1) = 0.

Initialize ω(1) = 0 (mean-field) or L(1) = I (full-rank).

Determine η via a search over finite values.

while change in elbo is above some threshold do

Draw M samples ηm ∼ Normal(0, I) from the standard multivariate Gaussian.

Approximate ∇µL using mc integration (Equation (7)).

Approximate ∇ωL or ∇LL using mc integration (Equations (8) and (9)).

Calculate step-size ρ(i) (Equation (10)).

Update µ(i+1) ←− µ(i) + diag(ρ(i))∇µL.

Update ω(i+1) ←− ω(i) + diag(ρ(i))∇ωL or L(i+1) ←− L(i) + diag(ρ(i))∇LL.

Increment iteration counter.

end

Return µ∗ ←− µ(i).

Return ω∗ ←− ω(i) or L∗ ←− L(i).

under the class of stochastic approximations, where Robbins and Monro (1951) established a pair

of conditions that ensure convergence. Many sequences satisfy these criteria, but their specific

forms impact the success of stochastic gradient ascent in practice. We describe an adaptive step-size

sequence for advi below.

Adaptive step-size sequence. Adaptive step-size sequences retain (possibly infinite) memory about

past gradients and adapt to the high-dimensional curvature of the elbo optimization space (Amari,

1998; Duchi et al., 2011; Ranganath et al., 2013; Kingma and Adam, 2015). These sequences enjoy

theoretical bounds on their convergence rates. However, in practice, they can be slow to converge. The

empirically justified rmsprop sequence (Tieleman and Hinton, 2012) converges quickly in practice but

lacks any convergence guarantees. We propose a new step-size sequence which effectively combines

both approaches.

Consider the step-size ρ(i) and a gradient vector g(i) at iteration i. We define the kth element of

ρ(i) as

ρ
(i)
k = η × i−

1/2+ǫ ×

(

τ +

√

s
(i)
k

)−1

, (10)

where we apply the following recursive update

s
(i)
k = αg2k

(i)
+ (1− α)s

(i−1)
k , (11)

11
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with an initialization of s
(1)
k = g2k

(1)
.

The first factor η ∈ R>0 controls the scale of the step-size sequence. It mainly affects the

beginning of the optimization. We adaptively tune η by searching over η ∈ {0.01, 0.1, 1, 10, 100}
using a subset of the data and selecting the value that leads to the fastest convergence (Bottou, 2012).

The middle term i−1/2+ǫ decays as a function of the iteration i. We set ǫ = 10−16, a small value

that guarantees that the step-size sequence satisfies the Robbins and Monro (1951) conditions.

The last term adapts to the curvature of the elbo optimization space. Memory about past gradients

are processed in Equation (11). The weighting factor α ∈ (0, 1) defines a compromise of old and

new gradient information, which we set to 0.1. The quantity sk converges to a non-zero constant.

Without the previous decaying term, this would lead to possibly large oscillations around a local

optimum of the elbo. The additional perturbation τ > 0 prevents division by zero and down-weights

early iterations. In practice the step-size is not sensitive to this value (Hoffman et al., 2013), so we set

τ = 1.

Complexity and data subsampling. advi has complexity O(NMK) per iteration, where N is the

number of data points, M is the number of mc samples (typically between 1 and 10), and K is

the number of latent variables. Classical vi which hand-derives a coordinate ascent algorithm has

complexity O(NK) per pass over the dataset. The added complexity of automatic differentiation

over analytic gradients is roughly constant (Carpenter et al., 2015; Baydin et al., 2015).

We scale advi to large datasets using stochastic optimization with data subsampling (Hoffman

et al., 2013; Titsias and Lázaro-Gredilla, 2014). The adjustment to Algorithm 1 is simple: sample a

minibatch of size B ≪ N from the dataset and scale the likelihood of the model by N/B (Hoffman

et al., 2013). The stochastic extension of advi has a per-iteration complexity O(BMK).

In Sections 4.3 and 4.4, we apply this stochastic extension to analyze datasets with hundreds of

thousands to millions of observations.

2.7 Related Work

advi is an automatic variational inference algorithm, implemented within the Stan probabilistic

programming system. This draws on two major themes.

Probabilistic programming. The first theme is probabilistic programming. One class of systems

focuses on probabilistic models where the user specifies a joint probability distribution. Some

examples are BUGS (Spiegelhalter et al., 1995), JAGS (Plummer, 2003), and Stan (Stan Development

Team, 2016). Another class of systems allows the user to directly specify probabilistic programs that

may not admit a closed form probability distribution. Some examples are Church (Goodman et al.,

2008), Figaro (Pfeffer, 2009), Venture (Mansinghka et al., 2014), Anglican (Wood et al., 2014), and

WebPPL (Goodman and Stuhlmüller, 2014). Both classes primarily rely on various forms of mcmc

sampling for inference.

Variational inference. The second is a body of work that generalizes variational inference. Ranganath

et al. (2014) and Salimans and Knowles (2014) propose a black box technique that only requires

computing gradients of the variational approximating family. Kingma and Welling (2014) and Rezende

et al. (2014) describe a reparameterization of the variational problem that simplifies optimization.

Titsias and Lázaro-Gredilla (2014) leverage the gradient of the model for a class of real-valued

models. Rezende and Mohamed (2015), Ranganath et al. (2016) and Tran et al. (2016b) improve

the accuracy of black box variational approximations. Here we build on and extend these ideas to

12



Automatic Differentiation Variational Inference

automate variational inference; we highlight technical connections as we study the properties of advi

in Section 3.

Some notable work crosses both themes. Bishop et al. (2002) present an automated variational

algorithm for graphical models with conjugate exponential relationships between all parent-child pairs.

Winn and Bishop (2005) and Minka et al. (2014) extend this to graphical models with non-conjugate

relationships by either using custom approximations or sampling. advi automatically supports a more

comprehensive class of nonconjugate models; see Section 2.1. Wingate and Weber (2013) study a

more general setting, where the variational approximation itself is a probabilistic program.

Automatic differentiation. Automatic differentiation and machine learning enjoy a colorful and

intertwined history (Baydin et al., 2015). For example, the backpropagation algorithm, rediscovered

independently many times, is a form of automatic differentiation for neural network weights (Widrow

and Lehr, 1990). Similarly, researchers have applied automatic differentiation to specific models,

such as extended Kalman filters (Meyer et al., 2003) and computer vision models (Pock et al., 2007).

Automatic differentiation also appears in recent variational inference research. For instance, the Bayes-

by-backprop algorithm is a specific application of automatic differentiation to variational inference

in Bayesian neural networks (Blundell et al., 2015). Many of the methods described above could,

if applicable, use automatic differentiation to compute gradients of the model and the variational

approximating families.

Software. advi can also be implemented in other general-purpose software frameworks, such as

autograd (Maclaurin et al., 2015), Theano (Theano Development Team, 2016) and TensorFlow (Abadi

et al., 2016). These frameworks offer features such as symbolic or automatic differentiation and

abstractions for parallel computation. Two other implementations of advi are available, at the time of

publication. The first is in PyMC3 (Salvatier et al., 2016), a probabilistic programming package, that

implements advi in Python using Theano. The second is in Edward (Tran et al., 2016a), a Python

library for probabilistic modeling, inference, and criticism, that implements advi in Python using

TensorFlow.

3. Properties of Automatic Differentiation Variational Inference

Automatic differentiation variational inference (advi) extends classical variational inference tech-

niques in a few directions. In this section, we use simulated data to study three aspects of advi: the

accuracy of mean-field and full-rank approximations, the variance of the advi gradient estimator,

and the sensitivity to the transformation T .

3.1 Accuracy

We begin by considering three models that expose how the mean-field approximation affects the

accuracy of advi.

Two-dimensional Gaussian. We first study a simple model that does not require approximate

inference. Consider a multivariate Gaussian likelihood Normal(y | µ,Σ) with fixed, yet highly

correlated, covariance Σ; our goal is to estimate the mean µ. If we place a multivariate Gaussian

prior on µ then the posterior is also a Gaussian that we can compute analytically (Bernardo and

Smith, 2009).

We draw 1000 datapoints from the model and run both variants of advi, mean-field and full-rank,

until convergence. Figure 4 compares the advi methods to the exact posterior. Both procedures cor-
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x1

x2
Analytic

Full-rank

Mean-field

Analytic Full-rank Mean-field

Variance along x1 0.28 0.28 0.13
Variance along x2 0.31 0.31 0.14

Figure 4: Comparison of mean-field and full-rank advi on a two-dimensional Gaussian model. The

figure shows the accuracy of the full-rank approximation. Ellipses correspond to two-sigma level sets

of the Gaussian. The table quantifies the underestimation of marginal variances by the mean-field

approximation.

rectly identify the mean of the analytic posterior. However, the shape of the mean-field approximation

is incorrect. This is because the mean-field approximation ignores off-diagonal terms of the Gaussian

covariance. advi minimizes the kl divergence from the approximation to the exact posterior; this

leads to a systemic underestimation of marginal variances (Bishop, 2006).

Logistic regression. We now study a model for which we need approximate inference. Consider

logistic regression, a generalized linear model with a binary response y, covariates x, and likelihood

Bern(y | logit−1(x⊤β)); our goal is to estimate the coefficients β. We place an independent Gaussian

prior on each regression coefficient.

We simulated 9 random covariates from the prior distribution (plus a constant intercept) and

drew 1000 datapoints from the likelihood. We estimated the posterior of the coefficients with advi

and Stan’s default mcmc technique, the no-U-turn sampler (nuts) (Hoffman and Gelman, 2014).

Figure 5 shows the marginal posterior densities obtained from each approximation. mcmc and advi

perform similarly in their estimates of the posterior mean. The mean-field approximation, as expected,

underestimates marginal posterior variances on most of the coefficients. The full-rank approximation,

once again, better matches the posterior.

β0 β1 β2 β3 β4

Sampling

Mean-field

Full-rank

β5 β6 β7 β8 β9

Figure 5: Comparison of marginal posterior densities for a logistic regression model. Each plot

shows kernel density estimates for the posterior of each coefficient using 1000 samples. Mean-field

advi underestimates variances for most of the coefficients.
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Stochastic volatility time-series model. Finally, we study a model where the data are not exchangeable.

Consider an autoregressive process to model how the latent volatility (i.e., variance) of an economic

asset changes over time (Kim et al., 1998); our goal is to estimate the sequence of volatilities. We

expect these posterior estimates to be correlated, especially when the volatilities trend away from

their mean value.

In detail, the price data exhibit latent volatility as part of the variance of a zero-mean Gaussian

yt ∼ Normal (0, exp(ht/2))

where the log volatility follows an auto-regressive process

ht ∼ Normal (µ+ φ(ht−1 − µ), σ) with initialization h1 ∼ Normal

(

µ,
σ

√

1− φ2

)

.

We place the following priors on the latent variables

µ ∼ Cauchy(0, 10), φ ∼ Unif(−1, 1), and σ ∼ Lognormal(0, 10).

We set µ = −1.025, φ = 0.9 and σ = 0.6, and simulate a dataset of 500 time-steps from the

generative model above. Figure 6 plots the posterior mean of the log volatility ht as a function of time.

Mean-field advi struggles to describe the mean of the posterior, particularly when the log volatility

drifts far away from µ. This is expected behavior for a mean-field approximation to a time-series

model (Turner and Sahani, 2008). In contrast, full-rank advi matches the estimates obtained from

sampling.

We further investigate this by studying posterior correlations of the log volatility sequence. We

draw S = 1000 samples of 500-dimensional log volatility sequences {h(s)}S1 . Figure 7 shows

the empirical posterior covariance matrix, 1/S−1
∑

s(h
(s) − h)(h(s) − h)⊤ for each method. The

mean-field covariance (fig. 7a) fails to capture the locally correlated structure of the full-rank and

sampling covariance matrices (figs. 7b and 7c). All covariance matrices exhibit a blurry spread due

to finite sample size.

t

Posterior mean of log volatility ht

Sampling

Mean-field

Full-rank

Figure 6: Comparison of posterior mean estimates of volatility ht. Mean-field advi underestimates

ht, especially when it moves far away from its mean µ. Full-rank advi matches the accuracy of

sampling.

The regions where the local correlation is strongest correspond to the regions where mean-field

underestimates the log volatility. To help identify these regions, we overlay the sampling mean log

volatility estimate from Figure 6 above each matrix. Both full-rank advi and sampling results exhibit

correlation where the log volatility trends away from its mean value.
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(a) Mean-field (b) Full-rank (c) Sampling

0

0.82

Figure 7: Comparison of empirical posterior covariance matrices. The mean-field advi covariance

matrix fails to capture the local correlation structure seen in the full-rank advi and sampling results.

All covariance matrices exhibit a blurry spread due to finite sample size.

Recommendations. How to choose between full-rank and mean-field advi? Scientists interested in

posterior variances and covariances should use the full-rank approximation. Full-rank advi captures

posterior correlations, in turn producing more accurate marginal variance estimates. For large data,

however, full-rank advi can be prohibitively slow.

Scientists interested in prediction should initially rely on the mean-field approximation. Mean-

field advi offers a fast algorithm for approximating the posterior mean. In practice, accurate posterior

mean estimates dominate predictive accuracy; underestimated marginal variances matters less.

3.2 Variance of the Stochastic Gradients

advi uses Monte Carlo integration to approximate gradients of the elbo, and then uses these gradients

in a stochastic optimization algorithm (Section 2). The speed of advi hinges on the variance of the

gradient estimates. When a stochastic optimization algorithm suffers from high-variance gradients, it

must repeatedly recover from poor parameter estimates.

advi is not the only way to compute Monte Carlo approximations of the gradient of the elbo.

Black box variational inference (bbvi) takes a different approach (Ranganath et al., 2014). The bbvi

gradient estimator uses the gradient of the variational approximation and avoids using the gradient of

the model. For example, the following bbvi estimator

∇bbvi
µ L = Eq(ζ ;φ)

[

∇µ log q(ζ ; φ)
{

log p
(

x, T−1(ζ)
)

+ log
∣

∣ det JT−1(ζ)
∣

∣− log q(ζ ; φ)
}]

and the advi gradient estimator in Equation (7) both lead to unbiased estimates of the exact gradient.

While bbvi is more general—it does not require the gradient of the model and thus applies to more

settings—its gradients can suffer from high variance.

Figure 8 empirically compares the variance of both estimators for two models. Figure 8a shows

the variance of both gradient estimators for a simple univariate model, where the posterior is a

Gamma(10, 10). We estimate the variance using ten thousand re-calculations of the gradient ∇φL,

across an increasing number of mc samples M . The advi gradient has lower variance; in practice, a

single sample suffices. (See the experiments in Section 4.)
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(a) Univariate Model
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bbvi with

control variate

(b) Multivariate Nonlinear Regression Model

Figure 8: Comparison of gradient estimator variances. The advi gradient estimator exhibits lower

variance than the bbvi estimator. Moreover, it does not require control variate variance reduction,

which is not available in univariate situations.

Figure 8b shows the same calculation for a 100-dimensional nonlinear regression model with

likelihood Normal(y | tanh(x⊤β), I) and a Gaussian prior on the regression coefficients β. Because

this is a multivariate example, we also show the bbvi gradient with a variance reduction scheme using

control variates described in Ranganath et al. (2014). In both cases, the advi gradient is more sample

efficient.

3.3 Sensitivity to Transformations

advi uses a transformation T from the unconstrained space to the constrained space. We now study

how the choice of this transformation affects the non-Gaussian posterior approximation in the original

latent variable space.

Consider a posterior density in the Gamma family, with support over R>0. Figure 9 shows three

configurations of the Gamma, ranging from Gamma(1, 2), which places most of its mass close to

θ = 0, to Gamma(10, 10), which is centered at θ = 1. Consider two transformations T1 and T2

T1 : θ 7→ log(θ) and T2 : θ 7→ log(exp(θ)− 1),

both of which map R>0 to R. advi can use either transformation to approximate the Gamma posterior.

Which one is better?

Figures 9a to 9c show the advi approximation under both transformations. Table 2 reports the

corresponding kl divergences. Both graphical and numerical results prefer T2 over T1. A quick

analysis corroborates this. T1 is the logarithm, which flattens out for large values. However, T2 is

almost linear for large values of θ. Since both the Gamma (the posterior) and the Gaussian (the advi

approximation) densities are light-tailed, T2 is the preferable transformation.

Is there an optimal transformation? Without loss of generality, we consider fixing a standard

Gaussian distribution in the real coordinate space.7 The optimal transformation is then

T ∗ = Φ−1 ◦ P (θ | x)

7. For two transformations T1 and T2 from latent variable space to real coordinate space, there always exists a transforma-

tion T3 within the real coordinate space such that T1(θ) = T3(T2(θ)).
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(a) Gamma(1, 2)
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(b) Gamma(2.5, 4.2)
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θ

Exact Posterior

advi with T1

advi with T2

(c) Gamma(10, 10)

Figure 9: advi approximations to Gamma densities under two different transformations.

Gamma(1, 2) Gamma(2.5, 4.2) Gamma(10, 10)

KL (q ‖ p) with T1 8.1× 10−2 3.3× 10−2 8.5× 10−3

KL (q ‖ p) with T2 1.6× 10−2 3.6× 10−3 7.7× 10−4

Table 2: kl divergence of advi approximations to Gamma densities for two transformations.

where P is the cumulative density function of the posterior and Φ−1 is the inverse cumulative density

function of the standard Gaussian. P maps the posterior to a uniform distribution and Φ−1 maps

the uniform distribution to the standard Gaussian. The optimal choice of transformation enables

the Gaussian variational approximation to be exact. Sadly, estimating the optimal transformation

requires estimating the cumulative density function of the posterior P (θ | x); this is just as hard as

the original goal of estimating the posterior density p(θ | x).
This observation motivates pairing transformations with Gaussian variational approximations;

there is no need for more complex variational families. advi takes the approach of using a library

and a model compiler. This is not the only option. For example, Knowles (2015) posits a factorized

Gamma density for positively constrained latent variables. In theory, this is equivalent to a mean-field

Gaussian density paired with the transformation T = PGamma, the cumulative density function of

the Gamma. (In practice, PGamma is difficult to compute.) Challis and Barber (2012) study Fourier

transform techniques for location-scale variational approximations beyond the Gaussian. Another

option is to learn the transformation during optimization. We discuss recent approaches in this

direction in Section 5.

4. advi in Practice

We now apply advi to an array of nonconjugate probability models. With simulated and real data,

we study linear regression with automatic relevance determination, hierarchical logistic regression,

several variants of non-negative matrix factorization, mixture models, and probabilistic principal

component analysis. We compare mean-field advi to two mcmc sampling algorithms: Hamiltonian

Monte Carlo (hmc) (Neal, 2011) and the no-U-turn sampler (nuts) (Hoffman and Gelman, 2014).

nuts is an adaptive extension of hmc and the default sampler in Stan.

To place advi and mcmc on a common scale, we report predictive likelihood on held-out data as

a function of computation time. Specifically, we estimate the predictive likelihood

p(xheld-out | x) =

∫

p(xheld-out | θ)p(θ | x) dθ
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using Monte Carlo estimation. With mcmc, we run the chain and plug in each sample to estimate the

integral above; with advi, we draw a sample from the variational approximation at every iteration.

We conclude with a case study: an exploratory analysis of over a million taxi rides. Here we

show how a scientist might use advi in practice.

4.1 Hierarchical Regression Models

We begin with two nonconjugate regression models: linear regression with automatic relevance

determination (ard) (Bishop, 2006) and hierarchical logistic regression (Gelman and Hill, 2006).

Linear regression with ard. This is a linear regression model with a hierarchical prior structure that

leads to sparse estimates of the coefficients. (Details in Appendix F.1.) We simulate a dataset with

250 regressors such that half of the regressors have no predictive power. We use 10 000 data points

for training and withhold 1000 for evaluation.

Logistic regression with a spatial hierarchical prior. This is a hierarchical logistic regression model

from political science. The prior captures dependencies, such as states and regions, in a polling

dataset from the United States 1988 presidential election (Gelman and Hill, 2006). The model is

nonconjugate and would require some form of approximation to derive a classical vi algorithm.

(Details in Appendix F.2.)

The dataset includes 145 regressors, with age, education, and state and region indicators. We use

10 000 data points for training and withhold 1536 for evaluation.

Results. Figure 10 plots average log predictive accuracy as a function of time. For these simple

models, all methods reach the same predictive accuracy. We study advi with two settings of M , the

number of mc samples used to estimate gradients. A single sample per iteration is sufficient; it is

also the fastest. (We set M = 1 from here on.)
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(a) Linear regression with ard
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(b) Hierarchical logistic regression

Figure 10: Held-out predictive accuracy results | hierarchical generalized linear models on simulated

and real data.

4.2 Non-negative Matrix Factorization

We continue by exploring two nonconjugate non-negative matrix factorization models (Lee and Seung,

1999): a constrained Gamma Poisson model (Canny, 2004) and a Dirichlet Exponential Poisson

model. Here, we show how easy it is to explore new models using advi. In both models, we use the
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Frey Faces dataset, which contains 1956 frames (28× 20 pixels) of facial expressions extracted from

a video sequence.

Constrained Gamma Poisson. This is a Gamma Poisson matrix factorization model with an ordering

constraint: each row of one of the Gamma factors goes from small to large values. (Details in

Appendix F.3.)

Dirichlet Exponential Poisson. This is a nonconjugate Dirichlet Exponential factorization model

with a Poisson likelihood. (Details in Appendix F.4.)

Results. Figure 11 shows average log predictive accuracy as well as ten factors recovered from both

models. advi provides an order of magnitude speed improvement over nuts (Figure 11a). nuts

struggles with the Dirichlet Exponential model (Figure 11b). In both cases, hmc does not produce

any useful samples within a budget of one hour; we omit hmc from here on.

The Gamma Poisson model (Figure 11c) appears to pick significant frames out of the dataset.

The Dirichlet Exponential factors (Figure 11d) are sparse and indicate components of the face that

move, such as eyebrows, cheeks, and the mouth.
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Figure 11: Held-out predictive accuracy results | two non-negative matrix factorization models

applied to the Frey Faces dataset.

4.3 Gaussian Mixture Model

This is a nonconjugate Gaussian mixture model (gmm) applied to color image histograms. We place a

Dirichlet prior on the mixture proportions, a Gaussian prior on the component means, and a lognormal

prior on the standard deviations. (Details in Appendix F.5.) We explore the imageclef dataset, which

has 250 000 images (Villegas et al., 2013). We withhold 10 000 images for evaluation.

In Figure 12a we randomly select 1000 images and train a model with 10 mixture components.

advi quickly finds a good solution. nuts struggles to find an adequate solution and hmc fails altogether
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Figure 12: Held-out predictive accuracy results | gmm of the imageclef image histogram dataset. (a)

advi outperforms nuts (Hoffman and Gelman, 2014). (b) advi scales to large datasets by subsampling

minibatches of size B from the dataset at each iteration (Hoffman et al., 2013).

(not shown). This is likely due to label switching, which can affect hmc-based algorithms in mixture

models (Stan Development Team, 2016).

Figure 12b shows advi results on the full dataset. We increase the number of mixture components

to 30. Here we use advi, with additional stochastic subsampling of minibatches from the data

(Hoffman et al., 2013). With a minibatch size of 500 or larger, advi reaches high predictive accuracy.

Smaller minibatch sizes lead to suboptimal solutions, an effect also observed in Hoffman et al. (2013).

advi converges in about two hours; nuts cannot handle such large datasets.

4.4 A Case Study: Exploring Millions of Taxi Trajectories

How might a scientist use advi in practice? How easy is it to develop and revise new models? To

answer these questions, we apply advi to a modern exploratory data analysis task: analyzing traffic

patterns. In this section, we demonstrate how advi enables a scientist to quickly develop and revise

complex hierarchical models.

The city of Porto has a centralized taxi system of 442 cars. When serving customers, each taxi

reports its spatial location at 15 second intervals; this sequence of (x, y) coordinates describes the

trajectory and duration of each trip. A dataset of trajectories is publicly available: it contains all 1.7

million taxi rides taken during the year 2014 (European Conference of Machine Learning, 2015).

To gain insight into this dataset, we wish to cluster the trajectories. The first task is to process the

raw data. Each trajectory has a different length: shorter trips contain fewer (x, y) coordinates than

longer ones. The average trip is approximately 13 minutes long, which corresponds to 50 coordinates.

We want to cluster independent of length, so we interpolate all trajectories to 50 coordinate pairs.

This converts each trajectory into a point in R
100.

The trajectories have structure; for example, major roads and highways appear frequently. This

motivates an approach where we first identify a lower-dimensional representation of the data to

capture aggregate features, and then we cluster the trajectories in this representation. This is easier

than clustering them in the original data space.

We begin with simple dimension reduction: probabilistic principal component analysis (ppca)

(Bishop, 2006). This is a Bayesian generalization of classical principal component analysis, which
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is easy to write in Stan. However, like its classical counterpart, ppca does not identify how many

principal components to use for the subspace. To address this, we propose an extension: ppca with

automatic relevance determination (ard).

ppca with ard identifies the latent dimensions that are most effective at explaining variation

in the data. The strategy is similar to that in Section 4.1. We assume that there are 100 latent

dimensions (i.e., the same dimension as the data) and impose a hierarchical prior that encourages

sparsity. Consequently, the model only uses a subset of the latent dimensions to describe the data.

(Details in Appendix F.6.)

We randomly subsample ten thousand trajectories and use advi to infer a subspace. Figure 13

plots the progression of the elbo. advi converges in approximately an hour and finds an eleven-

dimensional subspace. We omit sampling results as both hmc and nuts struggle with the model;

neither produce useful samples within an hour.
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Figure 13: elbo of ppca model with ard. advi converges in approximately an hour.

Equipped with this eleven-dimensional subspace, we turn to analyzing the full dataset of 1.7

million taxi trajectories. We first project all trajectories into the subspace. We then use the gmm from

Section 4.3 (K = 30) components to cluster the trajectories. advi takes less than half an hour to

converge.

Figure 14 shows a visualization of fifty thousand randomly sampled trajectories. Each color

represents the set of trajectories that associate with a particular Gaussian mixture. The clustering is

geographical: taxi trajectories that are close to each other are bundled together. The clusters identify

frequently taken taxi trajectories.

When we processed the raw data, we interpolated each trajectory to an equal length. This discards

all duration information. What if some roads are particularly prone to traffic? Do these roads lead to

longer trips?

Supervised probabilistic principal component analysis (sup-ppca) is one way to model this. The

idea is to regress the durations of each trip onto a subspace that also explains variation in a response

variable, in this case, the duration. sup-ppca is a simple extension of ppca (Murphy, 2012). We

further extend it using the same ard prior as before. (Details in Appendix F.7.)

advi enables a quick repeat of the above analysis, this time with sup-ppca. With advi, we find

another set of gmm clusters in less than two hours. These clusters, however, are more informative.

Figure 15 shows two clusters that identify particularly busy roads: the bridges of Porto that cross

the Duoro river. Figure 15a shows a group of short trajectories that use the two old bridges near the

city center. Figure 15b show a group of longer trajectories that use the two newer bridges connecting

highways that circumscribe the city.
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Figure 14: A visualization of fifty thousand randomly sampled taxi trajectories. The colors represent

thirty Gaussian mixtures and the trajectories associated with each.

(a) Trajectories that take the inner bridges. (b) Trajectories that take the outer bridges.

Figure 15: Two clusters using sup-ppca subspace clustering.

Analyzing these taxi trajectories illustrates how exploratory data analysis is an iterative effort:

we want to rapidly evaluate models and modify them based on what we learn. advi, which provides

automatic and fast inference, enables effective exploration of massive datasets.

5. Discussion

We presented automatic differentiation variational inference (advi), a variational inference algorithm

that works “out of the box” for a large class of modern probabilistic models. The main idea is to

transform the latent variables into a common space. Solving the variational inference problem in this
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common space solves it for all models in the class. We studied advi using ten different probability

models and deployed it as part of Stan, a probabilistic programming system.

There are several avenues for research.

Accuracy. As we showed in Section 3.3, advi can be sensitive to the transformations that map

the constrained parameter space to the real coordinate space. Dinh et al. (2014) and Rezende and

Mohamed (2015) use a cascade of simple transformations to improve accuracy. Tran et al. (2016b)

place a Gaussian process to learn the optimal transformation and prove its expressiveness as a universal

approximator. Hierarchical variational models (Ranganath et al., 2016) develop rich approximations

for non-differentiable latent variable models.

Optimization. advi uses first-order automatic differentiation to implement stochastic gradient ascent.

Higher-order gradients may enable faster convergence; however computing higher-order gradients

comes at a computational cost (Fan et al., 2015). advi works with unbiased gradient estimators;

introducing some bias to reduce variance could also improve convergence speed (Ruiz et al., 2016a,b).

Optimization using line search could also improve convergence robustness (Mahsereci and Hennig,

2015), as well as natural gradient approaches for nonconjugate models (Khan et al., 2015).

Practical heuristics. Two things affect advi convergence: initialization and step-size scaling. We

initialize advi in the real coordinate space as a standard Gaussian. A better heuristic could adapt

to the model and dataset based on moment matching. We adaptively tune the scale of the step-size

sequence using a finite search. A better heuristic could avoid this additional computation.

Probabilistic programming. We designed and deployed advi with Stan in mind. Thus, we focused on

the class of differentiable probability models. How can we extend advi to discrete latent variables?

One approach would be to adapt advi to use the black box gradient estimator for these variables

(Ranganath et al., 2014). This requires some care as these gradients will exhibit higher variance than

the gradients with respect to the differentiable latent variables. (See Section 3.2.) With support for

discrete latent variables, modified versions of advi could be extended to more general probabilistic

programming systems, such as Church (Goodman et al., 2008), Figaro (Pfeffer, 2009), Venture

(Mansinghka et al., 2014), Anglican (Wood et al., 2014), WebPPL (Goodman and Stuhlmüller, 2014),

and Edward (Tran et al., 2016a).

Before we conclude, we offer some general advice. advi, like all of variational inference, is

an approximate inference technique. As such, we recommend carefully studying its accuracy for

new models. While Section 3.1 indicates a potential shortcoming, the quality of advi’s posterior

approximation will differ from model to model. We recommend validating advi for new models by

running “fake data” checks (Cook et al., 2006). One of the advantages of advi is that its speed of

convergence gives more opportunity for such checking in practice.

In summary, advi is a first step towards an automated variational inference algorithm that works

well for a large class of practical models on modern real-world datasets. Each step of the recipe for

advi highlights key design decisions: automating transformation of latent variables using a compiler,

choosing a variational family that leads to low-variance gradient estimators of the variational objective,

and developing an adaptive stochastic optimization step-size sequence that works not only in theory,

but also in practice. advi enables scientists to easily build, explore, and revise complex probabilistic

models with large data.

24



Automatic Differentiation Variational Inference

Acknowledgments

We thank Bruno Jacobs, Bob Carpenter, Daniel Lee, and the reviewers for their helpful comments.

This work is supported by NSF IIS-0745520, IIS-1247664, IIS-1009542, SES-1424962, ONR

N00014-11-1-0651, N00014-15-1-2541, DARPA FA8750-14-2-0009, N66001-15-C-4032, Sloan

G-2015-13987, IES DE R305D140059, NDSEG, Facebook, Adobe, Amazon, and the Siebel Scholar

and John Templeton Foundations.

25



Kucukelbir, Tran, Ranganath, Gelman and Blei

Appendix A. Transformations of Continuous Probability Densities

We present a brief summary of transformations, largely based on (Olive, 2014).

Consider a scalar (univariate) random variable X with probability density function fX(x). Let

X = supp(fX(x)) be the support of X . Now consider another random variable Y defined as

Y = T (X). Let Y = supp(fY (y)) be the support of Y .

If T is a one-to-one and differentiable function from X to Y , then Y has probability density

function

fY (y) = fX
(

T−1(y)
)

∣

∣

∣

∣

dT−1(y)

dy

∣

∣

∣

∣

.

Let us sketch a proof. Consider the cumulative density function Y . If the transformation T is

increasing, we directly apply its inverse to the cdf of Y . If the transformation T is decreasing, we

apply its inverse to one minus the cdf of Y . The probability density function is the derivative of the

cumulative density function. These things combined give the absolute value of the derivative above.

The extension to multivariate variables X and Y requires a multivariate version of the absolute

value of the derivative of the inverse transformation. This is the absolute determinant of the Jacobian,

| det JT−1(Y)| where the Jacobian is

JT−1(Y) =









∂T−1

1

∂y1
· · ·

∂T−1

1

∂yK
...

...
∂T−1

K

∂y1
· · ·

∂T−1

K

∂yK









.

Intuitively, the Jacobian describes how a transformation warps unit volumes across spaces. This

matters for transformations of random variables, since probability density functions must always

integrate to one.

Appendix B. Transformation of the Evidence Lower Bound

Recall that ζ = T (θ) and that the variational approximation in the real coordinate space is q(ζ ; φ).
We begin with the elbo in the original latent variable space. We then transform the latent variable

space to the real coordinate space.

L(φ) =

∫

q(θ) log

[

p(x,θ)

q(θ)

]

dθ

=

∫

q(ζ ; φ) log

[

p
(

x, T−1(ζ)
) ∣

∣ det JT−1(ζ)
∣

∣

q(ζ ; φ)

]

dζ

=

∫

q(ζ ; φ) log
[

p
(

x, T−1(ζ)
) ∣

∣ det JT−1(ζ)
∣

∣

]

dζ −

∫

q(ζ ; φ) log [q(ζ ; φ)] dζ

= Eq(ζ ;φ)

[

log p
(

x, T−1(ζ)
)

+ log
∣

∣ det JT−1(ζ)
∣

∣

]

− Eq(ζ ;φ) [log q(ζ ; φ)]

= Eq(ζ ;φ)

[

log p
(

x, T−1(ζ)
)

+ log
∣

∣ det JT−1(ζ)
∣

∣

]

+H
[

q(ζ ; φ)
]

.

Appendix C. Gradients of the Evidence Lower Bound

First, consider the gradient with respect to the µ parameter. We exchange the order of the gradient

and the integration through the dominated convergence theorem (Çınlar, 2011). The rest is the chain
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rule for differentiation.

∇µL = ∇µ

{

EN(η ;0,I)

[

log p
(

x, T−1(S−1
φ (η))

)

+ log
∣

∣ det JT−1

(

S−1
φ (η)

)

∣

∣

]

+H
[

q(ζ ; φ)
]

}

= EN(η ;0,I)

[

∇µ

{

log p
(

x, T−1(S−1(η))
)

+ log
∣

∣ det JT−1

(

S−1(η)
) ∣

∣

}]

= EN(η ;0,I)

[

(

∇θ log p(x,θ)∇ζT
−1(ζ) +∇ζ log

∣

∣ det JT−1(ζ)
∣

∣

)

∇µS
−1
φ (η)

]

= EN(η ;0,I)

[

∇θ log p(x,θ)∇ζT
−1(ζ) +∇ζ log

∣

∣ det JT−1(ζ)
∣

∣

]

Then, consider the gradient with respect to the mean-field ω parameter.

∇ωL = ∇ω

{

EN(η ;0,I)

[

log p
(

x, T−1(S−1
φ (η))

)

+ log
∣

∣ det JT−1

(

S−1
φ (η)

)

∣

∣

]

+
K

2
(1 + log(2π)) +

K
∑

k=1

log(exp(ωk))
}

= EN(η ;0,I)

[

∇ω

{

log p
(

x, T−1(S−1
φ (η))

)

+ log
∣

∣ det JT−1

(

S−1
φ (η)

)

∣

∣

}

]

+ 1

= EN(η ;0,I)

[

(

∇θ log p(x,θ)∇ζT
−1(ζ) +∇ζ log

∣

∣ det JT−1(ζ)
∣

∣

)

∇ωS
−1
φ (η))

]

+ 1

= EN(η ;0,I)

[

(

∇θ log p(x,θ)∇ζT
−1(ζ) +∇ζ log

∣

∣ det JT−1(ζ)
∣

∣

)

η⊤diag(exp(ω))
]

+ 1.

Finally, consider the gradient with respect to the full-rank L parameter.

∇LL = ∇L

{

EN(η ;0,I)

[

log p
(

x, T−1(S−1
φ (η))

)

+ log
∣

∣ det JT−1

(

S−1
φ (η)

)

∣

∣

]

+
K

2
(1 + log(2π)) +

1

2
log
∣

∣ det(LL⊤)
∣

∣

}

= EN(η ;0,I)

[

∇L

{

log p
(

x, T−1(S−1
φ (η))

)

+ log
∣

∣ det JT−1

(

S−1
φ (η)

)

∣

∣

}

]

+∇L

1

2
log
∣

∣ det(LL⊤)
∣

∣

= EN(η ;0,I)

[

(

∇θ log p(x,θ)∇ζT
−1(ζ) +∇ζ log

∣

∣ det JT−1(ζ)
∣

∣

)

∇LS
−1
φ (η))

]

+ (L−1)⊤

= EN(η ;0,I)

[

(

∇θ log p(x,θ)∇ζT
−1(ζ) +∇ζ log

∣

∣ det JT−1(ζ)
∣

∣

)

η⊤
]

+ (L−1)⊤

Appendix D. Automating Expectations: Monte Carlo Integration

Expectations of continuous random variables are integrals. We can use mc integration to approximate

them (Robert and Casella, 1999). All we need are samples from q.

Eq(η)

[

f(η)
]

=

∫

f(η)q(η) dη ≈
1

S

S
∑

s=1

f(ηs) where ηs ∼ q(η).

mc integration provides noisy, yet unbiased, estimates of the integral. The standard deviation of

the estimates decrease as O(1/
√
S).
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Appendix E. Running advi in Stan

Visit http://mc-stan.org/ to download the latest version of Stan. Follow instructions on how to

install Stan. You are then ready to use advi.

Stan offers multiple interfaces. We describe the command line interface (cmdStan) below.

./myModel variational

grad_samples=M ( M = 1 default )

data file=myData.data.R

output file=output_advi.csv

diagnostic_file=elbo_advi.csv

Figure 16: Syntax for using advi via cmdStan.

Here, myData.data.R is the dataset stored in the R language Rdump format. output_advi.csv

contains samples from the posterior and elbo_advi.csv reports the elbo.

Appendix F. Details of Studied Models

F.1 Linear Regression with Automatic Relevance Determination

Linear regression with ard is a high-dimensional sparse regression model (Bishop, 2006; Drugowitsch,

2013). This sort of regression model is sometimes referred to as an hierarchical or multilevel

regression model. We describe the model below. The Stan program is in Figure 17.

The inputs are x = x1:N where each xn is D-dimensional. The outputs are y = y1:N where each

yn is 1-dimensional. The weights vector w is D-dimensional. The likelihood

p(y | x,w, σ) =

N
∏

n=1

Normal
(

yn | w
⊤xn , σ

)

describes measurements corrupted by iid Gaussian noise with unknown standard deviation σ.

The ard prior and hyper-prior structure is as follows

p(w, σ,α) = p(w, σ | α)p(α)

= Normal
(

w | 0 , σ
(

diag
√

α
)−1
)

InvGamma(σ | a0, b0)
D
∏

i=1

Gamma(αi | c0, d0)

where α is a D-dimensional hyper-prior on the weights, where each component gets its own indepen-

dent Gamma prior.

We simulate data such that only half the regressors have predictive power. The results in Figure 10a

use a0 = b0 = c0 = d0 = 1 as hyper-parameters for the Gamma priors.

F.2 Hierarchical Logistic Regression

Hierarchical logistic regression is an intuitive way to model structured classification problems. We

study a model of voting preferences, republican or democrat, from the 1988 United States presidential

election. Chapter 14.1 of (Gelman and Hill, 2006) motivates the model and explains the dataset in
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detail. We also briefly describe the model below. The Stan program is in Figure 18, based on (Stan

Development Team, 2016).

Pr(yn = 1) = sigmoid

(

β0 + βfemale · femalen + βblack · blackn + βfemale.black · female.blackn

+ α
age

k[n] + αedu
l[n] + α

age.edu

k[n],l[n] + αstate
j[n]

)

αstate
j ∼ Normal

(

α
region

m[j] + βv.prev · v.prevj , σstate

)

.

The hierarchical variables are

α
age
k ∼ Normal

(

0 , σage

)

for k = 1, . . . ,K

αedu
l ∼ Normal (0 , σedu) for l = 1, . . . , L

α
age.edu
k,l ∼ Normal

(

0 , σage.edu

)

for k = 1, . . . ,K, l = 1, . . . , L

αregion
m ∼ Normal

(

0 , σregion

)

for m = 1, . . . ,M.

The regression coefficient β has a Normal(0, 10) prior and all standard deviation latent variables

have half Normal(0, 10) priors.

F.3 Non-negative Matrix Factorization: Constrained Gamma Poisson Model

The Gamma Poisson factorization model describes discrete data matrices (Canny, 2004; Cemgil,

2009).

Consider a U × I matrix of observations. We find it helpful to think of u = {1, · · · , U} as users

and i = {1, · · · , I} as items, as in a recommendation system setting. The generative process for a

Gamma Poisson model with K factors is

1. For each user u in {1, · · · , U}:

• For each component k, draw θuk ∼ Gamma(a0, b0).

2. For each item i in {1, · · · , I}:

• For each component k, draw βik ∼ Gamma(c0, d0).

3. For each user and item:

• Draw the observation yui ∼ Poisson(θ⊤
u βi).

A potential downfall of this model is that it is not uniquely identifiable: swapping rows and

columns of θ and β give the same inner product. One way to contend with this is to constrain either

vector to be an ordered vector during inference. We constrain each θu vector in our model in this

fashion. The Stan program is in Figure 19. We set K = 10 and all the Gamma hyper-parameters to 1

in our experiments.
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F.4 Non-negative Matrix Factorization: Dirichlet Exponential Poisson Model

Another model for discrete data is a Dirichlet Exponential model. The Dirichlet enforces uniqueness

while the exponential promotes sparsity. This is a non-conjugate model that does not appear to have

been studied before.

The generative process for a Dirichlet Exponential model with K factors is

1. For each user u in {1, · · · , U}:

• Draw the K-vector θu ∼ Dirichlet(α0).

2. For each item i in {1, · · · , I}:

• For each component k, draw βik ∼ Exponential(λ0).

3. For each user and item:

• Draw the observation yui ∼ Poisson(θ⊤
u βi).

The Stan program is in Figure 20. We set K = 10, α0 = 1000 for each component, and λ0 = 0.1.

With this configuration of hyper-parameters, the factors βi appear sparse.

F.5 Gaussian Mixture Model

The Gaussian mixture model (gmm) is a versatile probability model (Bishop, 2006), often used for

density estimation and clustering. Here we use it to group a dataset of natural images based on their

color histograms. We build a high-dimensional gmm with a Gaussian prior for the mixture means, a

lognormal prior for the mixture standard deviations, and a Dirichlet prior for the mixture components.

Represent the images as y = y1:N where each yn is D-dimensional and there are N observations.

The likelihood for the images is

p(y | θ,µ,σ) =

N
∏

n=1

K
∑

k=1

θk

D
∏

d=1

Normal(ynd | µkd, σkd)

with a Dirichlet prior for the mixture proportions

p(θ) = Dirichlet(θ ; α0),

a Gaussian prior for the mixture means

p(µ) =
D
∏

k=1

D
∏

d=1

Normal(µkd ; 0, 1)

and a lognormal prior for the mixture standard deviations

p(σ) =

D
∏

k=1

D
∏

d=1

Lognormal(σkd ; 0, 1).
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The dimension of the color histograms in the imageclef dataset is D = 576. This is a con-

catenation of three 192-length histograms, one for each color channel (red, green, blue) of the

images.

We scale the image histograms to have zero mean and unit variance. Setting α0 to a small value

encourages the model to use fewer components to explain the data. Larger values of α0 encourage

the model to use all K components. We set α0 = 1000 in our experiments.

The Stan program is in Figure 21. The stochastic data subsampling version of the code is in

Figure 22.

F.6 Probabilistic Principal Component Analysis with Automatic Relevance Determination

Probabilistic principal component analysis (ppca) is a Bayesian extension of classical principal

component analysis (Bishop, 2006). Consider a dataset of x = x1:N where each xn is D-dimensional.

Let M < D be the dimension of the subspace we will use for analysis.

First define a set of latent variables z = z1:N where each zn is M -dimensional. Draw each zn
from a standard normal

p(z) =
N
∏

n=1

Normal(zn ; 0, I).

Then define a set of principal components w = w1:D where each wd is M -dimensional. Similarly,

draw the principal components from a standard normal

p(w) =
D
∏

d=1

Normal(wd ; 0, I).

Finally define the likelihood through an inner product as

p(x | w, z, σ) =
N
∏

n=1

Normal(xn ; w⊤zn, σI).

The standard deviation σ is also a latent variable. Place a lognormal prior on it as

p(σ) = Lognormal(σ ; 0, 1).

We extend ppca by adding an ard hierarchical prior. The extended model introduces a M -

dimensional vector α which chooses which principal components to retain. (M < D now represents

the maximum number of principal components to consider.) This extends the above by

p(α) =

M
∏

m=1

InvGamma(αm ; 1, 1)

p(w | α) =

D
∏

d=1

Normal(wd ; 0, σdiag(α))

p(x | w, z, σ) =
N
∏

n=1

Normal(xn ; wzn, σI).

The Stan program that implements ppca is in Figure 23.
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F.7 Supervised Probabilistic Principal Component Analysis with Automatic Relevance

Determination

Supervised probabilistic principal component analysis (sup-ppca) augments ppca by regressing a

vector of observed random variables y onto the principal component subspace. The idea is to not

only find a set of principal components that describe variation in the dataset x, but to also predict y.

The complete model is

p(z) =

N
∏

n=1

Normal(zn ; 0, I)

p(σ) = Lognormal(σ ; 0, 1)

p(α) =
M
∏

m=1

InvGamma(αm ; 1, 1)

p(wx | α) =
D
∏

d=1

Normal(wd ; 0, σdiag(α))

p(wy | α) = Normal(wy ; 0, σdiag(α))

p(x | wx, z, σ) =

N
∏

n=1

Normal(xn ; wxzn, σI)

p(y | wy, z, σ) =
N
∏

n=1

Normal(yn ; wyzn, σ).

The Stan program that implements sup-ppca is in Figure 24.
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data {

int<lower=0> N; // number of data items

int<lower=0> D; // dimension of input features

matrix[N, D] x; // input matrix

vector[N] y; // output vector

// hyperparameters for Gamma priors

real<lower=0> a0;

real<lower=0> b0;

real<lower=0> c0;

real<lower=0> d0;

}

parameters {

vector[D] w; // weights (coefficients) vector

real<lower=0> sigma; // standard deviation

vector<lower=0>[D] alpha; // hierarchical latent variables

}

transformed parameters {

vector[D] one_over_sqrt_alpha;

for (d in 1:D)

one_over_sqrt_alpha[d] = 1 / sqrt(alpha[d]);

}

model {

// alpha: hyper-prior on weights

alpha ~ gamma(c0, d0);

// sigma: prior on standard deviation

sigma ~ inv_gamma(a0, b0);

// w: prior on weights

w ~ normal(0, sigma * one_over_sqrt_alpha);

// y: likelihood

y ~ normal(x * w, sigma);

}

Figure 17: Stan program for Linear Regression with Automatic Relevance Determination.
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data {

int<lower=0> N;

int<lower=0> n_age;

int<lower=0> n_age_edu;

int<lower=0> n_edu;

int<lower=0> n_region_full;

int<lower=0> n_state;

int<lower=0, upper=n_age> age[N];

int<lower=0, upper=n_age_edu> age_edu[N];

vector<lower=0, upper=1>[N] black;

int<lower=0, upper=n_edu> edu[N];

vector<lower=0, upper=1>[N] female;

int<lower=0, upper=n_region_full> region_full[N];

int<lower=0, upper=n_state> state[N];

vector[N] v_prev_full;

int<lower=0, upper=1> y[N];

}

parameters {

vector[n_age] a;

vector[n_edu] b;

vector[n_age_edu] c;

vector[n_state] d;

vector[n_region_full] e;

vector[5] beta;

real<lower=0> sigma_a;

real<lower=0> sigma_b;

real<lower=0> sigma_c;

real<lower=0> sigma_d;

real<lower=0> sigma_e;

}

transformed parameters {

vector[N] y_hat;

for (i in 1:N)

y_hat[i] = beta[1]

+ beta[2] * black[i]

+ beta[3] * female[i]

+ beta[5] * female[i] * black[i]

+ beta[4] * v_prev_full[i]

+ a[age[i]]

+ b[edu[i]]

+ c[age_edu[i]]

+ d[state[i]]

+ e[region_full[i]];

}

model {

a ~ normal (0, sigma_a);

b ~ normal (0, sigma_b);

c ~ normal (0, sigma_c);

d ~ normal (0, sigma_d);

e ~ normal (0, sigma_e);

beta ~ normal(0, 10);

sigma_a ~ normal(0, 10);

sigma_b ~ normal(0, 10);

sigma_c ~ normal(0, 10);

sigma_d ~ normal(0, 10);

sigma_e ~ normal(0, 10);

y ~ bernoulli_logit(y_hat);

}

Figure 18: Stan program for Hierarchical Logistic Regression, adapted from (Stan Development

Team, 2016).
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data {

int<lower=0> U;

int<lower=0> I;

int<lower=0> K;

int<lower=0> y[U, I];

real<lower=0> a;

real<lower=0> b;

real<lower=0> c;

real<lower=0> d;

}

parameters {

positive_ordered[K] theta[U]; // user preference

vector<lower=0>[K] beta[I]; // item attributes

}

model {

for (u in 1:U)

theta[u] ~ gamma(a, b); // componentwise gamma

for (i in 1:I)

beta[i] ~ gamma(c, d); // componentwise gamma

for (u in 1:U) {

for (i in 1:I) {

y[u, i] ~ poisson(theta[u]’ * beta[i]);

}

}

}

Figure 19: Stan program for the Gamma Poisson non-negative matrix factorization model.
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data {

int<lower=0> U;

int<lower=0> I;

int<lower=0> K;

int<lower=0> y[U, I];

real<lower=0> lambda0;

real<lower=0> alpha0;

}

transformed data {

vector<lower=0>[K] alpha0_vec;

for (k in 1:K)

alpha0_vec[k] = alpha0;

}

parameters {

simplex[K] theta[U]; // user preference

vector<lower=0>[K] beta[I]; // item attributes

}

model {

for (u in 1:U)

theta[u] ~ dirichlet(alpha0_vec); // componentwise dirichlet

for (i in 1:I)

beta[i] ~ exponential(lambda0); // componentwise exponential

for (u in 1:U) {

for (i in 1:I) {

y[u, i] ~ poisson(theta[u]’ * beta[i]);

}

}

}

Figure 20: Stan program for the Dirichlet Exponential non-negative matrix factorization model.
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data {

int<lower=0> N; // number of data points in entire dataset

int<lower=0> K; // number of mixture components

int<lower=0> D; // dimension

vector[D] y[N]; // observations

real<lower=0> alpha0; // dirichlet prior

}

transformed data {

vector<lower=0>[K] alpha0_vec;

for (k in 1:K)

alpha0_vec[k] = alpha0;

}

parameters {

simplex[K] theta; // mixing proportions

vector[D] mu[K]; // locations of mixture components

vector<lower=0>[D] sigma[K]; // standard deviations of mixture components

}

model {

// priors

theta ~ dirichlet(alpha0_vec);

for (k in 1:K) {

mu[k] ~ normal(0, 1);

sigma[k] ~ lognormal(0, 1);

}

// likelihood

for (n in 1:N) {

real ps[K];

for (k in 1:K) {

ps[k] = log(theta[k]) + normal_lpdf(y[n] | mu[k], sigma[k]);

}

target += log_sum_exp(ps);

}

}

Figure 21: Stan program for the gmm example.
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functions {

real divide_promote_real(int x, int y) {

real x_real;

x_real = x;

return x_real / y;

}

}

data {

int<lower=0> NFULL; // total number of datapoints in dataset

int<lower=0> N; // number of data points in minibatch

int<lower=0> K; // number of mixture components

int<lower=0> D; // dimension

vector[D] yFULL[NFULL]; // dataset

vector[D] y[N]; // minibatch

real<lower=0> alpha0; // dirichlet hyper-prior parameter

}

transformed data {

real minibatch_factor;

vector<lower=0>[K] alpha0_vec;

for (k in 1:K)

alpha0_vec[k] = alpha0 / K;

minibatch_factor = divide_promote_real(N, NFULL);

}

parameters {

simplex[K] theta; // mixing proportions

vector[D] mu[K]; // locations of mixture components

vector<lower=0>[D] sigma[K]; // standard deviations of mixture components

}

model {

// priors

theta ~ dirichlet(alpha0_vec);

for (k in 1:K) {

mu[k] ~ normal(0, 1);

sigma[k] ~ lognormal(0, 1);

}

// likelihood

for (n in 1:N) {

real ps[K];

for (k in 1:K) {

ps[k] = log(theta[k]) + normal_lpdf(y[n] | mu[k], sigma[k]);

}

target += minibatch_factor * log_sum_exp(ps);

}

}

Figure 22: Stan program for the gmm example, with stochastic subsampling of the dataset.
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data {

int<lower=0> N; // number of data points in dataset

int<lower=0> D; // dimension

int<lower=0> M; // maximum dimension of latent space to consider

vector[D] x[N]; // data

}

parameters {

matrix[M, N] z; // latent variable

matrix[D, M] w; // weights parameters

real<lower=0> sigma; // standard deviation parameter

vector<lower=0>[M] alpha; // hyper-parameters on weights

}

model {

// priors

to_vector(z) ~ normal(0, 1);

for (d in 1:D)

w[d] ~ normal(0, sigma * alpha);

sigma ~ lognormal(0, 1);

alpha ~ inv_gamma(1, 1);

// likelihood

for (n in 1:N)

x[n] ~ normal(w * col(z, n), sigma);

}

Figure 23: Stan program for ppca with ard.
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data {

int<lower=0> N; // number of data points in dataset

int<lower=0> D; // dimension

int<lower=0> M; // maximum dimension of latent space to consider

vector[D] x[N]; // data

vector[N] y; // data

}

parameters {

matrix[M, N] z; // latent variable

matrix[D, M] w_x; // weight parameters for x

vector[M] w_y; // weight parameters for y

real<lower=0> sigma; // standard deviation parameter

vector<lower=0>[M] alpha; // hyper-parameters on weights

}

model {

// priors

to_vector(z) ~ normal(0, 1);

for (d in 1:D)

w_x[d] ~ normal(0, sigma * alpha);

w_y ~ normal(0, sigma * alpha);

sigma ~ lognormal(0, 1);

alpha ~ inv_gamma(1, 1);

// likelihood

for (n in 1:N) {

x[n] ~ normal(w_x * col(z, n), sigma);

y[n] ~ normal(w_y’ * col(z, n), sigma);

}

}

Figure 24: Stan program for sup-ppca with ard.
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