AUTOMATIC DISCOVERY OF LOGICAL DOCUMENT STRUCTURE

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Kristen Maria Summers

August 1998

(©1998 Kristen Maria Summers

AUTOMATIC DISCOVERY OF LOGICAL DOCUMENT STRUCTURE
Kristen Maria Summers, Ph.D.
Cornell University 1998

The availability of large, heterogeneous repositories of electronic documents is increasing
rapidly, and the need for flexible, sophisticated document manipulation tools is growing
correspondingly. These tools can benefit greatly by exploiting logical structure, a hierarchy
of visually observable organizational components of a document, such as paragraphs, lists,
sections, etc. Knowledge of this structure can enable a multiplicity of applications, including
hierarchical browsing, structural hyperlinking, logical component-based retrieval, and style
translation.

Most work on the problem of deriving logical structure from document layout either relies
on knowledge of the particular document style or finds a single flat set of text blocks. This
thesis describes an implemented approach to discovering a full logical hierarchy in generic
text documents, based primarily on layout information. Since the styles of the documents
are not known a prior:, the precise layout effects of the logical structure are unknown.
Nonetheless, typographical capabilities and conventions provide cues that can be used to
deduce a logical structure for a generic document. In particular, the key idea is that analyses
of the text contours at appropriate levels of granularity offer a rich source of information
about document structure.

The problem of logical structure discovery is divided into problems of segmentation, which
separates the text into logical pieces, and classification, which labels the pieces with structure
types. The segmentation algorithm relies entirely on layout-based cues, and the classification
algorithm uses word-based information only when this is demonstrably unavoidable. Thus,
this approach is particularly appropriate for scanned-in documents, since it is more robust
with respect to OCR errors than a content-oriented approach would be. It is applicable,
however, to the problem of analyzing any electronic document whose original formatting
style rules remain unknown; thus, it can provide the basis for flexible document manipulation
tools in heterogeneous collections.

BIOGRAPHICAL SKETCH

Kristen Summers attended Amherst College, where she majored in computer science and
English. She recieved a B.A., magna cum laude in computer science and magna cum laude in
English, in May of 1991. She received an M.S. in computer science from Cornell University
in May of 1994.

il

For Mark

v

ACKNOWLEDGMENTS

I am very grateful to John Hopcroft for his invaluable guidance and support over the
years during which this thesis took shape and also to Daniela Rus and Jim Davis for theirs.
Many thanks are due Dan Huttenlocher, Lillian Lee, and Tim Murray for careful readings
of early drafts and greatly beneficial insights and advice. This research was facilitated by a

National Physical Science Consortium Fellowship, with stipend support from the National
Security Agency.

TABLE OF CONTENTS

Biographical Sketch
Dedication
Acknowledgments

1 Introduction

1.1 Logical Structure o000
1.2 Logical Structure Uses
1.3 Generic Structure Representation
1.4 LABLER’s Approach
1.5 Outline.

2 Background and Related Work

2.1 Flat Segmentation Lo Lo
2.2 Document Layout Parsing
2.3 Comparisonso u e e e e
2.4 Logical Structure Representation
2.5 Structured Document Manipulation

3 Logical Structure Types

3.1 Fundamental Distinctions
3.1.1 Primary vs. Secondary
3.1.2 Content- vs. Layout-Orientation

3.2 Discovery Distinctions Lo Lo
3.2.1 Geometric Observables
3.2.2 Marking Observables
3.2.3 Linguistic Observables
3.2.4 Contextual Observables

3.3 Usage Distinctions L.
3.3.1 Classifier Implications
3.3.2 Expected User References
3.3.3 Hierarchy Role,

vi

iii

iv

3.4

3.34 Generality
Effects of the Types

System Overview

Segmentation

5.1 The Segmentation Algorithm o000

5.2 Indentation Alphabets
5.2.1 Formal Definition of an Indentation Alphabet
5.2.2 Useful Subsumption Relation Types

5.3
5.4

5.2.3 LABLER’s Indentation Alphabet
5.2.4 The Indentation Pattern Language
A Segmentation Example
Classification Effects

Structure Classification

6.1

6.2
6.3

Logical Structure Prototypes
6.1.1 Prototype Attributes
6.1.2 Distance Measures
The Classification Algorithm

Machine Learning for Attribute Weights

Specific Knowledge

7.1 Types of Knowledge
72 Parsing.
7.3 Classification Procedure Adjustment . .
7.3.1 Coordination Conditions
7.3.2 Relationship Conditions
7.3.3 Location Conditions
7.4 LABLER’s Knowledge
Evaluation
8.1 Evaluation Methodology
8.1.1 Segmentation Evaluation
8.1.2 C(lassification Evaluation
8.2 Performance
8.2.1 Segmentation Performance
8.2.2 C(lassification Performance
8.2.3 Performance Conclusions

Logical Browsing

9.1
9.2

Node Representation
HTML Page Sections

vii

30

33
35
37
37
39
41
43
46
47

49
50
50
57
59
60

64
64
65
66
67
67
67
68

69
69
69
73
75
75
83
88

9.3 Representative Components e
9.4 A Browsing Example o oLl o o

10 Conclusions

10.1 Contributions
10.2 Future Work

Appendices

A Prototypes and Attributes

A.1 Prototypes
A.2 Attributes

B Style Knowledge for Cornell Computer Science Technical Reports

Bibliography

viii

100
100
101

103
103
107

109

111

LIST OF FIGURES

1.1 A logical structure treeo
1.2 Zoomed-out document view
1.3 Document analysis steps Lo

3.1 Primary vs. secondary structures
3.2 A partial hierarchy of logical structures
3.3 Symbol and number observableso Lo oL

4.1 The logical structure discovery system overview

5.1 A miniature documento
5.2 Indentation tree for the miniature document in Figure 5.1
5.3 Goal tree for the miniature document in Figure 5.1
5.4 Representation of the initial blocks of Figure 5.1
5.5 Representation of the blocks of Figure 5.1 after combining pattern elements .
5.6 Representation of the blocks of Figure 5.1 after merging

6.1 Attributes and their observable types
6.2 Sample prototypes
6.3 A coordination example L L

7.1 Atitlepage CFG L

8.1 Two trees and their optimal alignment.
8.2 Alignment of hierarchies of the form generated by document structure
8.3 Precision and recall achieved on various technical reports
8.4 Precision and recall on various technical reports, without title parts
8.5 Correct decisions on various technical reports
8.6 Correct decisions on various technical reports without title parts
8.7 Alignment results on various technical reports
8.8 Alignment results on various technical reports without title parts
8.9 C(lassification results on various technical reports
8.10 Classification results without title parts
8.11 Classification results on correct hierarchies

~J

19
21
23

86

8.12 Classification results on correct hierarchies with correct contextual classification 87

X

9.1
9.2
9.3
9.4
9.5

B.1
B.2

A representation of the first section of a technical report 95
The structure in context from Figure 9.1, in its own window 96
Part of the relevant gif images for Figure 9.1 97

Non-frames version of Figure 9.1, start 98

Non-frames version of Figure 9.1, more 99
Grammar for Cornell CS Technical Report Title Pages 109
Grammar for Cornell CS Technical Report Text Following Title Page 110

2.1

3.1
3.2

8.1
8.2

9.1
9.2

LIST OF TABLES

Summary of approaches to logical hierarchy derivation 14
Some primary structures and their discovery cues 25
Some Structures and Usage Characteristics 27
Classification error matrix, on correct segments from full results 89
Classification error matrix, on correct hierarchies 89
Predefined representative components of structures in LABLER 93
“First child” representative components 93

xi

Chapter 1

Introduction

The availability of large, heterogeneous repositories of electronic documents is increasing
rapidly. As good internet navigation and resource discovery tools are developed, the text files
accessible to a user through the internet will come to form an implicit distributed collection
of documents in much the same way as other files form an implicit database collection [90].
Documents designed specifically for such use are likely to be provided in a structured form;
older documents and those written primarily for paper are not.

As the quantity of available information grows, however, so too does the probability of
overwhelming a user; in order to use the internet document collection effectively, users will
require sophisticated tools for manipulating its elements. Users will require search tools for
filtering information and navigation tools for exploring heterogeneous data, both within and
among documents.

Many such useful document manipulation tools can be enabled by a knowledge of the
logical structure of a document (defined in Section 1.1); the popularity of markup systems,
such as SGML [37] and its application HTML, and structured documents reflects a recognition
of this power. (The use of HTML is a bit problematic; although its official intent is to describe
structure [93], many document providers misuse its structures in order to achieve a layout
formatting on the browsers they expect their readers to use [31, 72]. This creates a special
interpretation problem.) Unlike layout structure, which is intrinsically present in that it
can be meaningfully described automatically, logical structure must either be imposed by
markup or similar means or discovered by document analysis.

This thesis explores the problem of discovering logical structure in text documents in the
presence of little or no style information, based primarily on the shapes of blocks of text.
It describes and evaluates an approach that proceeds from a few key observations about
the significance of shape and spacing, which are discussed in Section 1.3. This approach is
implemented in the LABLER (LAyout-Based Logical Entity Recognizer) system. It is differs
from previous approaches to logical structure discovery (as discussed in Chapter 2) in that
its goal is to find detailed logical structure hierarchies for documents of unknown and possi-
bly varying styles. This goal leads to several differences in approach from previous systems,
including the reliance on the aforementioned observations, feedback between separate pro-

cesses for segmentation and classification, and the incorporation of available style knowledge
without requiring it.

Section 1.1 defines logical structure as the term is used in this thesis and the related
literature. Section 1.2 details some of the applications enabled by the knowledge of logical
document structure. Section 1.3 presents the observations about general structure represen-
tation on which LABLER is based. Section 1.4 summarizes the approach of LABLER.

1.1 Logical Structure

Electronic document manipulation tools can benefit greatly from exploiting an understand-
ing of multiple views of document structure, especially the relationship between layout and
logical structures. This section discusses some general uses of such information; Section 2.5
discusses several examples of specific research in this area. For example, consider a scanned-in
document stored as a set of files, each representing a page, on each of which optical char-
acter recognition (OCR) has been performed.! Here, physical layout structure is represented
directly, at the character and page level. To represent logical structure, the document might
be divided into sections, rather than pages; such an indexing scheme allows, for example,
retrieval of sections relevant to a query, with relevance determined by traditional techniques
of Information Retrieval.

The full logical structure forms a hierarchy of visually observably separate semantic
components of the document. An example of the logical structure for a technical paper
is given in Figure 1.1. This structure lies at the intersection of content and layout. More
precisely, it can be defined as follows.

Definition 1.1 The logical structure of a document consists of a hierarchy of segments of
the document, each of which corresponds to a visually distinguished semantic component
of the document. Ancestry in the hierarchy corresponds to containment among document
components.

The layout requirement that a segment must be visually distinguished requires some
non-content-based indication that this piece of text belongs together, separate from its
surroundings;? thus, it should be possible to identify the segment as a potential compo-
nent without an understanding of the words of the document. The content requirement
that a segment be a semantic component requires that it have meaning as a separate piece
within the content of the document; thus if the document were translated into an utterly
different style, the piece of text would still be identifiable as a segment separable from its
surroundings. This structure is identified as the functional level of a document in [24].

!This is a current form of representation of Cornell’s computer science technical reports, using output
from Xerox’s ScanWorX optical character recognition software.

2This is a requirement of the definition used throughout this thesis, and it functions as an implicit
requirement of the logical structure discovery systems discussed in Chapter 2, as well. It does not mean
that all items that might correspond to an intuitive notion of a logical component will necessarily have this
attribute.

Document

7 T

Title Part Abstract Doc. Body

N N T

[Author] [Date] [Heading] [Abs. Body] [Section] ee

_—7 N

[Heading] [Sec. Body] [Heading] [Sec. Body]

"\ |

TN N

[Paragraph] [Paragraph] [Ref‘ Ilem] . [Ref. Item]

N

[Drawing] [Caption]

Figure 1.1: A logical structure tree

Logical components generally correspond to organizational pieces of a document, as or-
ganization will typically be driven by content considerations and also reflected in layout
design. For instance, a section should be both topically cohesive and visually identifiable by
its heading. LABLER finds logical hierarchies that are also complete in the sense that, with
the exception of floats, the concatenation of the document components corresponding to the
children of a node forms the document component corresponding to that node.

In an instance of term overloading, the document components that correspond to the
nodes of the hierarchy are also called logical structures. For example, any particular para-
graph of the document whose full logical structure is given in Figure 1.1 is itself a logical
structure of the document.3

Other interesting text segments can be found, such as topically cohesive passages or itali-
cized portions, but these do not form logical components; the former is content only, and the
latter is layout only. In most cases, the layout of a document is interesting primarily because
it represents organizational structure. (An exception arises if the style of the document is
under consideration, rather than its message.) Disregarding pure layout thus restricts our
attention to structures whose significance is fairly clear. Purely content-based components

3These meanings of logical structure are distinguished by the article; “the logical structure” of a document
is its hierarchy, and “a logical structure” of the same document refers to some particular component. The
term “logical structure” remains overloaded.

are often interesting in their own right. Identifying them requires significant linguistic anal-
ysis and subjective judgement about subject matter,* and there is no reason to believe they
will consistently form a hierarchy in any given document. Finding and managing such com-
ponents is an important and interesting task, elements of which are addressed, for example,
in [40], [54], and [82]; it is also a very different kind of task from finding and managing logical
components, and this thesis addresses the latter.

Non-hierarchical relationships do exist between logical components of a document, such
as the relationship formed by references within the text, but these are not part of the logical
structure in the sense used here.

1.2 Logical Structure Uses

The popularity of markup systems like SGML reflects the usefulness of this kind of infor-
mation [94]. In addition to the direct use of sGML (advocated for many purposes in [28],
[62], and [94], for instance) and structured documents in other forms (as discussed in, for
example, [41], [63], and [80]), this popularity is exemplified by some of the suggestions for
the direction of HTML and the World Wide Web. HTMmL 4.0 emphasizes logical structure;
visual formatting is meant to be handled by style sheets and browsers, and the visual com-
mands of earlier versions are deprecated [73]. There is also an interest in subsuming HTML
by XML [32], which makes far more use of the power of SGML, as discussed in [31]. Taking
this line of thought to its logical conclusion, van Ossenbruggen et al. argue for using SGML
itself, with stylesheets, on the Web [84].

If an instantiation of a document is available with markup in a known language, then
the logical hierarchy is directly available, and it can be used to manipulate the document
as described below and in Section 2.5. (The logical structure may not be distinguished
from other structures by the markup, but this should not interfere with the usability of the
included logical structure information.) Alternatively, if the document is only available in
a layout-based format, such as the results of scanning and Optical Character Recognition
(oCR) or a Page Definition Language (PDL) such as PostScript, the problem of discovering
the logical structure arises.

The automatic discovery of logical document structure can enable a multiplicity of elec-
tronic document tools, including (1) automated markup, (2) structural hyperlinking as dis-
cussed in [2], (3) hierarchical browsing as discussed in [2] and [14], and (4) logical component-
based retrieval as discussed in [77]. The browsing and retrieval thus enabled are relevant to
two of Croft’s top ten research issues for Information Retrieval: interfaces and browsing, and
efficient, flexible indexing and retrieval [20]. (In the latter issue, logical structure knowledge
increases flexibility, not efficiency.)

Logical markup, in sGML or another format, can proceed based on logical structure
directly. For example, to generate a document instantiation with sGML tags, perform a

*An interesting exception to the rule that identifying content-based elements requires content-based in-
formation is found in [15], which applies Information Retrieval techniques to word shapes.

depth-first traversal of the tree. On entering a node, generate a start tag for its structure; on
exiting, generate an end tag. At a leaf, generate the appropriate text between these tags. Of
course, if some logical structures are not currently of interest, their nodes need not generate
tags.®

Hyperlinking can be automated by defining links to exist between certain kinds of struc-
tures under given sets of conditions. For instance, within a set of documents, links can be
provided between bibliography entries and the documents to which they refer in the follow-
ing manner. If a list item occurs within a section whose heading matches “References” or
“Bibliography” or “Works Cited,” then consider this item to be a bibliography entry. If this
entry has a substring that matches the title of another document, create a link between the
list item and that document.

Browsing of a document can proceed by exploring the logical structure tree; this can be
enabled by representing a document as appropriate hypertext nodes and links for currently
available browsers, or a browser could provide this approach directly. As this kind of browsing
is really only appropriate for a fairly large document, the former approach seems preferable;
the responsibility of deciding how much structural navigation is reasonable lies with the
document provider. If a summarized form is defined for each type of logical structure, a user
may browse the tree by starting at the root and repeatedly deciding which, if any, nodes to
expand. The initial view would be of a summary of the root document node, perhaps its
title. This would expand to show summaries of its children, which might be a title part, an
abstract, and a body. The user might then read the abstract or perhaps expand the body to
reveal summaries of its sections. Each step reveals a bit more about the document and would
help both a user who must decide whether to read the document and one who is seeking a
particuar part of it. An example of this kind of browsing is given in Chapter 9. Note also
that the common HTML device of providing a table of contents, each entry of which links to
the corresponding document part, is a version of this approach, based on a tree of two levels.

Alternatively, browsing could be enabled by defining a series of document views of in-
creasingly fine granularity, rather than allowing the user to explore the hierarchy at will. One
such series might consist of the title only, then the information in the title part (including
author, etc.), then this information and the abstract, then the section headings, then the
entire document. Navigating a document via structural views is discussed in [5].

Retrieval can be based in whole or in part on the existence of and relationships between
logical structures. For instance, a user might wish to retrieve all the theorems from a paper
or all the sections containing theorems. This can, of course, be combined with classical
Information Retrieval techniques such as those in [33, 40, 78] to yield results that are based
on both content and logical structure, such as all the theorems in sections relevant to a given
topic.

As an example of logical structure use, LABLER generates a document instantiation in
HTML. This result can be browsed by any World Wide Web navigator, such as Mosaic or

5Also, any needed non-logical structures will, of course, have to be identified and tagged in some other
way.

Netscape.® Each logical structure has its own page, together with a summary of its position
in the hierarchy and descriptive links to its parent, children, and siblings. In this way, the
document can be explored via its logical structure tree; at any point it may simply be read,
as well.

1.3 Generic Structure Representation

The particular mapping of logical structure to layout presentation varies with document
style. If the precise style of a document is known, the logical structure may be inferred from
the layout representation of the expected forms. Without such information, more general
observations are required. The approach to generic structure discovery explored in this thesis
relies on a few observations about the usual manners of representing logical structure.

Since the vast majority of documents must be represented comprehensibly in markings of
a single color laid out on a two-dimensional space (i.e., pages), vertical and horizontal spacing
play a great role in the representation of logical structure. Moreover, most documents are
designed to make the structure easily apparent to human readers, and they use visual cues in
fairly consistent ways. This leads to the following observations, on which LABLER is based.
Other document structure discovery systems, as discussed in Chapter 2, make use of the
general observation 1 but not the particulars of 1a and 1c; some of them implicitly rely on 2,
but they do not state it explicitly.

1. The shape and spacing of regions of text provide significant structure cues.

(a) Structures typically appear multiple times, yielding repeated shapes.

(b) Structures are typically separated by white space, vertical (blank lines) and/or
horizontal (indentation).

(c) A structure that splits another into unusual parts typically occurs horizontally
within the larger structure.

2. Common structures typically have similar representations across document styles. The
different representations can be seen as variations on a theme.

The list above forms an example of the phenomenon described in 1c. It separates this
paragraph into parts, and its left and right margins fall within those of the surrounding
paragraph.”

6The output uses the frames structure of HTML but it also provides a <noframes> alternative.
"For these purposes, block of text z with the same right margin as another block y, but with a left margin
that falls within that of y, falls horizontally within y.

Figure 1.2: A zoomed-out view of a document. The paragraphs, lists, title area, and figures
are all identifiable, although the text is not legible.

1.4 LABLER’s Approach

In its search for logical structure, LABLER privileges geometry, based on the above observation
that shape is an important indicator of logical relationships, through indentation, proximity,
and repetition. As a result, the logical structure of a document can be determined, to a
large extent, without reference to the text itself. That is, consider a zoomed-out view of
a document, in which the layout shapes are still visible but the text is not, as shown in
Figure 1.2. The portions of the document that belong together can be determined, and in
many cases the type of structure can also be identified.

The input to the system is a document view with lines of text and their positions and
heights identified. If font information is available, the system uses that as well. No descrip-
tion of the document style is required, but any such available knowledge is incorporated into
the process of finding logical structure. For a scanned-in document, the processing has the
form shown in Figure 1.3; the heavy boxes are steps taken by this system.

The problem of deriving the logical structure of a document from its inherent layout
structure can be divided into two stages: (1) segmentation of the document into a hierarchy
of logical elements and (2) classification of the nodes of the hierarchy according to the type of
logical structures they represent. These processes affect each other, but they occur separately.
LABLER is unique in that it both keeps the processes separate and allows feedback between
them.

The approach described here uses contour- and font-based information only for segmen-
tation, based on the expectation that structures will be repeated and/or will be indicated
by vertical proximity or horizontal containment. LABLER alternates searches for repetitions
of shape with searches for relevant horizontal containment; vertical proximity is considered
when these do not produce readily classifiable segments. Other cues are introduced for
classifying the segments as needed, and the classifier results provide feedback for the seg-
menter. This distinguishes LABLER both from systems that consider only layout, in that
it can identify structures that they cannot, and from systems that rely on domain-specific
interpretations of text words or characters (such as that in [53]), in that its approach is

Paper Document

i

Scanner

—
!

OCR Software

{ OCR Output Representation }

|

OCR Output Parser |—= [Lines in Text & Graphic Zones}

Layout and Symbol Analysis

Structure Marker

|

{ Logically marked up files }

Figure 1.3: Document analysis steps, with those of the logical structure discovery system in

heavy boxes.

more generally applicable. If some constraints on the layout representation of the logical
structure are known, these are incorporated as well. This distinguishes LABLER both from
systems that consider no style knowledge and those that are based entirely or primarily on
such information.

1.5 OQOutline

This thesis is organized as follows. Chapter 2 discusses previous work on related problems.
Chapter 3 describes a taxonomy of logical document structures and the implications of the
characteristics of different types for their discovery and use. Chapter 4 provides an overview
of the logical structure discovery system. Chapter 5 describes the process of segmentation
in detail, Chapter 6 describes classification, and Chapter 7 describes the incorporation of
specific knowledge. Chapter 8 discusses the evaluation and performance of this approach.
Chapter 9 presents an application of the results for browsing (mentioned in Section 1.2), and
Chapter 10 offers conclusions and discussion.

Chapter 2

Background and Related Work

The need for logical structure information is implicit in the history of hypertext. Many
standard types of hyperlinks require this information, such as links from a table of contents
to sections of text, or links from references to the texts to which they refer. The specific
problem of automatically discovering this structure from documents designed only for layout-
based presentation, however, began to acquire attention relatively recently, as the quantity of
available online documents became vast enough to require sophisticated tools for searching,
browsing, and filtering.

2.1 Flat Segmentation

Many researchers have concerned themselves with the problem of determining a flat set
of document divisions, rather than a hierarchy. This decomposes the document into text
blocks, which may then be assembled into a reading order or analyzed to determine their
content. For instance, this is the role of logical structure in [65], an outline of a text reading
system. Logical structure also plays this role in [66], a system that derives reading orders
for newspaper pages.

One form of this task is to separate the text from the graphics in a document. Other
forms of analysis can then be applied to the resulting blocks, as appropriate. Wong, et al.
present a method of making this separation in [92]; Fletcher and Kasturi present another
in [30]. Both of these approaches are based on analysis of pixel density. Antonacopoulos and
Ritchings present a method based on an analysis of connected white rectangles in [3]. Jain
and Yu describe a method in [49] based on grouping aligned runs of black or white pixels and
then performing an analysis of height, density, etc. Witten et al. provide a general overview
of this particular problem in [91].

Within the text domain, a document can be divided into blocks at the paragraph level
and/or blocks that are specific to a particular document type. Several approaches exist
to finding such particular block types. For instance, Jain and Bhattacharjee find address
blocks on envelopes [48]; Rahgozar et al. find the grid structure in tables [74]; Belaid et al.
decompose card catalog entries [10]; Watanabe and Huang decompose business cards [88];

10

11

Hao et al. find standard parts of office memos [39], and Bayer and Walischewski find similar
elements of business letters [9]. Watanabe et al. describe several often useful techniques for
this kind of task in [89], and Frankhauser and Xu present a general methodology for finding
many such specific blocks in [27].

Walischewski presents an approach that learns a document block model, represented as
an attributed DAG consisting of a tree with the addition of sibling edges, by including in
the model anything seen in the sample set; conflicting possibilities are given probabilities
based on their observed frequencies [86]. The node attributes are the vertical and horizontal
projections of bounding boxes, and the edge attributes are the spatial relationships between
the connected nodes, selected from a complete set of qualitative descriptions. A new image
is analyzed by matching it to the tree so as to minimize its overall deviation from the
model. This approach can be extended and applied to full document hierarchies, but the
implementation described only divides business letters and addressed envelopes into flat sets
of blocks.

Baird and Ittner have developed a general approach to segmenting documents into blocks
of text that can be read together and are delimited by white space (i.e., each block has the
same orientation and has appropriate spacing for reading as a sequence of lines, and blocks are
separated by extra white space) [7, 47]. This system uses an analysis of the shape and density
of page markings to generate a set of candidate segmentations, with components of varying
sizes. White rectangles that fall between text blocks of mid-range sizes are enumerated,
sorted, and unified, generating a partial order of sets of white covers. In [7], these are
compared, and the chosen segmentation separates components at approximately the level
of paragraphs or paragraph groups (although a paragraph interrupter, such as a list or
equation, is likely to form its own block). In [47], the first result found that satisfies a given
stopping rule is chosen, and the results are similar. Lovegrove and Brailsford address this
problem for PDF files in [61]; blocks are identified based on matching font size and margins
and considering vertical white space.

Ha et al. propose a method for finding text lines and the blocks they form in [38],
by identifying bounding boxes, then considering the vertical and horizontal projections of
pixel density. These identify lines. Differences in within-line projections identify block
breakpoints. Déforges and Dominique address the same problem differently in [21]. They
identify lines by connection and blocks by uniformity of line height and slope. Ishitani
presents an approach based on emergent computation; each current piece follows rules for
merging with its neighbors based on proximity and similarity and rules for splitting itself
based on perceived errors [46]. Poirier and Dagenais address the special case of finding lines
and blocks for converting PostScript files to HTML in [70]. They separate the text into lines,
then group these into blocks with similar font and spacing characteristics; these are assigned
to HTML structures according to a set of predefined rules.!

!Note that this could involve building a full hierarchy, but the approach the authors chose was simply to
identify block types; presumably, they include the higher-level structures, such as lists, that are entailed by
their block classifications.

12

2.2 Document Layout Parsing

Several researchers have proposed approaches to document structure recognition based on a
form of parsing. This method applies if the style of a document is known, i.e., the logical
structure follows a known format, and it has been mapped to the layout structure according
to a known set of rules. Typically, the rules to generate such a document can be represented
as a Context-Free Grammar (CFG), and the document layout can then be parsed accordingly.

Fujisawa et al. describe precisely the above approach in [34, 35, 36, 95|; the logical
structure is defined at the section and subsection levels and at the paragraph level, and
the relationships among these structures and their layout representations are described by
a CFG. The rules used are common to a large group of technical journals, so the results are
applicable to articles from any of them. Porter and Rainero advocate a similar approach
that uses tree manipulation rather than explicit parsing [71]. In this case, a more complete
hierarchy is built for a narrower set of documents; the recovered structure includes such
elements as theorem and list, and it is based on a knowledge of the precise style rules, such
as those available if the document is known to have been formatted with the BTEX article
style.

Viswanathan et al. propose a top-down approach in [85], in which a particular set of
attribute grammars is defined for each structure; applying such a set in sequence starts with
input of the pixel projections (horizontal or vertical) for this structure and produces output of
a representation of the substructures. Repeated application parses the document; the depth
of the hierarchy depends on the choices in defining the block grammars for the identified
structures, and the style must be known precisely enough to unambiguously identify all
desired structures. Liu-Gong et al. use a similar approach, without explicit grammars and
parsing. They model documents of a given style as a physical hierarchy, in which each node
contains instructions for separating its contents into its children; the behavior is equivalent
to parsing [60]. Finally, Azokly and Ingold in [6] define a language for describing how a
document is separated at various levels; this provides appropriate information for deriving a
hierarchy by repeated divisions.

The above type of approach is ideal if a precise, unambiguous style is known for the logical
structures of interest. A few researchers modify this by using error-tolerant parsing; they are
thus able to handle documents that do not conform precisely to the given specifications. This
yields an approach appropriate if a style is known but some documents may not conform
precisely, whether due to idiosyncratic authoring or to OCR errors.

Hu and Ingold use fuzzy parsing [43]; when a precise parse is impossible, the system
chooses one or more near-matches, so as to minimize the total deviation from a correct parse
tree, based on a predefined cost function. Thus a document that deviates slightly from the
given style can be adequately analyzed. Klein and Fankhauser present a system of character-
based parsing in which the user can specify fallback rules, geared to handling the types of
errors expected for a given document type [53]. This approach is very sensible for contexts
in which deviations from the usual style can be expected to take a small number of known
forms. Chou and Kopec use an information-theoretic approach to find the logical parse tree

13

most likely to be associated with the observed layout, given known probabilities of flipping
black pixels to white and of flipping white pixels to black [16]. This approach rigorously
handles the type of deviations expected from the OCR process; the effects of non-conformity
at a higher level of the hierarchy are unclear.

Other researchers take the approach of building a system that will learn the necessary
grammar from sample documents, thus allowing a precise parse while relieving the user from
the necessity of forseeing all allowable layout forms. This is appropriate for analyzing a set
of documents of a single style, which is either incompletely specified or simply unknown.

Akindele and Belaid present a system that builds a tree grammar, based on two sets of
samples [1]. It uses the first set to validate an initial grammar provided by the user and those
documents of the second set that conform to the initial grammar are used to extend it to the
full grammar used for parsing. Takasu, et al. infer a matriz grammar, in which concatenation
may be either vertical or horizontal, by generalizing from a set of examples; any observed
form is acceptable, and any adjacent structure repetition is generalized to accept the Kleene
closure [42] of its form of concatenation [83].

Dengel and Dubiel describe a system that learns decision-trees for identifying the style of
a business letter, which enables a parse [22]; this approach is based on considering the areas
of the page covered with text, at three levels of granularity. Brugger et al. take the concept
of n-grams from natural language processing and apply them to tree structures, based on 5
kinds of sequences: left sibling, right sibling, ancestor, first child, and last child [12]; their
system learns from a training set the probability of encountering a structure based on its
preceders in these sequences. (They use trigrams and thus sequences of length 3.) It starts
from tree leaves that are based on the physical structure; in the given example, these are
text lines.

Derrien and Habib and Esposito et al. provide exceptions to this general approach of
parsing and its variations. Derrien and Habib build blocks from lines and classify them [23].
They use the interline distance as a guide for segmentation (i.e., lines with less distance
between them should be grouped together at a lower level of the hierarchy than lines with
greater distance) and then apply known rules for classification. Esposito et al. segment doc-
uments into lines and two levels of text blocks [26]. Lines are formed from basic blocks based
on proximity, overlapping, and similarity of type and height. Then, the first set of blocks is
formed by first grouping together lines with sufficiently similar horizontal pixel projections,
then grouping together line sets that are sufficiently nearly aligned and sufficiently verti-
cally close, based on preset thresholds. The second group of blocks is formed by combining
first-level blocks with overlapping horizontal pixel projections, left or right alignment, and a
vertical distance less than the mean plus standard deviation for the first-level blocks. The
levels appear to correspond to paragraph groups for level 1 and running text that belongs
to the same article for level 2, but the authors do not specify the intended correct answer.?

2Tn particular, their blocks at level 1 group together multiple paragraphs but keep these separate from
any centered lines surrounded by space, as such a line may be a new section heading; it may also be an
equation that belong to the paragraph around it, however, in which case this result does not correspond to
the usual understanding of logical structure.

14

Table 2.1: Summary of approaches to logical hierarchy derivation

| Approach | Segment & Classify | Observables
Fujisawa et al. Together Many
Porter & Rainero Together Many
Viswanathan et al. Together Pixel Projections,
Run Lengths
Liu-Gong et al. Together Variable
Hu & Ingold Together Many
Chou & Kopec Together Pixels
Klein & Fankhauser Together Characters
Dengel & Dubiel Together Bounding Boxes
(Three Levels)
Brugger et al. Together Surrounding Structures
Derrien & Habib Separate Segment: Vertical White Space
Classify: Many
Esposito et al. Segment only Pixel Projections,
Line Edges,
Vertical White Space
LABLER Separate Segment: Line Contours
Classify: Many

2.3 Comparisons

This thesis addresses the problem of generic logical structure discovery; the goal is to build
a full hierarchy for a document whose style remains unknown. The correctness of the result
cannot be guaranteed, since indistinguishable layout formats may in some cases represent
different logical structures. Some conventions of spacing and repetition are consistent enough
to enable a reasonable approach, but this should only be used when necessary. That is, the
extant algorithms for block segmentation and layout parsing described above clearly should
be chosen if only a single set of divisions is required or if the document style is known a
priori or can be reasonably expected to match precisely the styles in an available sample
set. (The differences among the various approaches that build hierarchies are summarized in
Table 2.1.3) To build a full hierarchy without knowledge of a fixed style, however, requires
a more general and flexible approach, such as that described in this thesis. Derrien & Habib
take an approach that can also be so used, but it seems unlikely to fare well on complex
documents; straightforward use of vertical white space provides a baseline for comparison to
LABLER’S results in Chapter 8.

3An entry of “variable” indicates that the approach does not specify this, and it appears to depend
entirely on the desired application.

15

Table 2.1 (Continued)

| Approach | Matching | Levels |
Fujisawa et al. Precise Sections & Paragraphs
Porter & Rainero Precise Many
Viswanathan et al Precise Variable
Liu-Gong et al. Precise Variable
Hu & Ingold Approximate Many
Chou & Kopec Approximate Variable
Klein & Fankhauser Precise Variable
(With Alternatives)
Dengel & Dubiel Precise Few
Brugger et al. Probablistic Variable
Derrien & Habib Precise Many
Esposito et al. Within Thresholds Two Levels
LABLER Cues Many
(Very Approximate)

The research discussed below on structured document representation and manipulation
provides a context for this logical discovery work; although these issues are not the current
focus, the representation of results does maintain both logical structure and some layout
structure, and a browsable document instantiation is created.

2.4 Logical Structure Representation

Some researchers in this area have turned their attention to the question of appropriate
representation formats for the structure of a document.

Murata proposes a document model designed to provide easy access by both logical
and layout structure [64]. The representation is based primarily on intermediate nodes
that represent logical (layout) structures that have precisely corresponding layout (logical)
structures. The necessary basic logical and layout nodes are included, and containment
relationships among all the nodes are specified; together, this information provides an easily
traversable description of a document in both logical and layout terms.

Clarke et al. discuss a representation that makes no distinction between various types of
structure [17, 18]. Logical, layout, and content structures are all represented equivalently.
With this model, a hierarchy is an inadequate representation, since two structures (e.g.,
a page and a paragraph) may overlap without sharing a containment relationship. They
recommend instead a marked-up version of the document, in which tags mark the beginning
and end of each structure. The relationships the structures may have with each other are
unconstrained. This freedom somewhat complicates document manipulation tasks, and the

16

authors discuss in detail a model for retrieving specified structures.

Davis proposes an approach that circumvents some of the difficulty introduced by Clarke’s
approach; he recommends maintaining multiple, separate structure hierarchies.* Each leaf
node in each hierarchy contains pointers to its beginning and ending positions in a single
instantiation of the document itself. This model allows for well-defined hierarchies of an
arbitrary number of kinds of structure, each of which may be manipulated independently
without risking any unexpected side effects on other structural hierarchies. The trade-off
is that it is not optimized for the combined use of multiple structure types, although such
combinations can certainly be used.

2.5 Structured Document Manipulation

A good deal has been written about the kinds of document manipulation tools that are
enabled by the knowledge of logical document structure. These include tools for browsing,
hyperlinking, style translation, and retrieval.

Burrill’s VORTEXT system provides a framework for document creation and browsing
based on logical structure [14]. The user must specify logical structure upon creation of
the text, so the problem of structure discovery is obviated. In browsing, a user can follow
links to sections or subsections (like turning directly to a page from the table of contents in
a book) and to references. Wang describes a system with a similar capacity, based on an
object-oriented database [87]; Ayres and Wesley [5] and Bauwens et al. [8] describe similar ap-
proaches, particularly designed to increase document accessibility for the visually disabled.®
This kind of browsing is based on a form of hypertext; logical structure information can
provide a basis for creating multiple kinds of hyperlinks within and between documents.
Allan et al. discuss in [2] some of these link types, based both on structure alone and on a
combination of structure with Information Retrieval definitions of relevance.

Translation of document style from one layout format to another can be performed in a
general way, based on knowledge of logical structure. An example of such style translation is
to convert a document formatted for a given technical journal into a format appropriate for a
Ph.D. thesis while maintaining an accurate depiction of the logical structure. This problem
forms part of the motivation for Arnon’s Scrimshaw language for document description [4],
and Feng and Wakayama discuss the task in detail in [29], as do Kuikka and Penttonen in [56].
Raman’s AsTeR system performs a particularly interesting form of document translation: it
renders BWTEX documents in an aural style [75].

Logical structure can also provide a basis for retrieval, either of specified logical document
portions or of entire documents, based on the structures they contain. Kay’s Textmaster sys-
tem, for example, uses this advantage to base retrieval on a combination of logical structure
and the presence of keywords [52]. Scrimshaw, in addition to style translation, provides a

“James R. Davis, personal communication, 1994.
5In fact, in [97], a conference on computers for the disabled, all papers on documents focused either on
the process of reading text aloud or on document structure.

17

framework for document queries based on logical structure. Pfeifer et al. have extended wAIs
to index structures separately and allow structure specification in queries [69]. Kuikka and
Salminen present a system that bases queries on specifications of structures and keywords
they contain, presuming prior knowledge of a logical structure grammar, much like an SGML
Document Type Definition (DTD) [57]. Kaneko and Makinouchi discuss the processing of
structure-based document queries in an object-oriented database [51].

Some researchers have presented query mechanisms tailored specifically to structured
documents. Lalmas, for instance, proposes a fetch-and-browse strategy for identifying the
best document structure with which to satisfy a conventional IR query in [58]; if a document
is deemed relevant, its structure is browsed, top-down, to find the most specific element of
high relevance. Yeh et al. present a query language called sSQL for structured documents and
an approach to use with it in [96]. The language looks like SQL but also allows specifications
of document structure elements. The approach iterates over three steps. It starts with an
SSQL query; the user may optionally peruse the results and prune them by hand to identify
the elements of interest; then, the user may follow hypertext links, either following the
hierarchy or using cross-links. Niyogi and Srihari describe a three-part query for a collection
of documents of different (parseable) types in [67]. The first part specifies the document
type, narrowing the range for the rest to documents of that type; the second specifies the
structure type to consider, and the third specifies the characteristics it must have and which
part of it to return. Finally, Buford discusses the usefulness of a particular query mechanism
based in part on logical structure in [13].

Chapter 3

Logical Structure Types

The problem of discovering logical document structures raises questions about the nature of
the structures themselves. The structures of interest can be categorized according to several
criteria, including: fundamental distinctions, based on properties intrinsic to structure def-
initions; discovery distinctions, based on the observables involved in finding the structures,
both those which are demonstrably necessary and those which are simply useful; and usage
distinctions, based on expectations about the effects and use of the structures once they are
found.

The categories are formed in a general way, but the position of a particular structure
in the taxonomy is task-specific. For instance, different cues may be used to indicate a
theorem in one document style than in another, leading to different discovery characteristics
for the same structure. Similarly, usage characteristics may vary from one application to
another. All specific examples in this chapter assume documents of the approximate style of
this thesis; most are generally applicable to technical documents and many standard English
documents.

3.1 Fundamental Distinctions

The most basic divisions of logical structures rest on the definitions of the structures them-
selves. These distinctions have obvious, direct implications for the structure discovery; what
is included in the definition of a structure affects the preferred method of identifying this
structure.! They also affect the other categorizations. These divisions include distinctions
between primary and secondary structures and between content-oriented and layout-oriented
structures.

!The structure definition does not completely determine how to discover it, however; extra-definitional
cues may be quite useful, and at times it may be appropriate to categorize a document piece as a structure
whose definition it does not match precisely.

18

19

Document

I\Title Part:‘ . Abstract . Doc. Body !

[Author] [Date] [Heading] f;k;si 173(7)diy<] frée;tioin\/‘ .o l'ée;t;(;n]

TN
. Floats 1 . Text) {Ref. List)

TN N

[Paragraph] [Paragraph] [Ref‘ Ilem] . [Ref. Item]

N

[Drawing] [Caption]

Figure 3.1: The tree in Figure 1.1 (page 3), with primary and secondary structures distin-
guished. Primary structures are in solid boxes; secondary structures are in dashed boxes.

3.1.1 Primary vs. Secondary

Primary structures are defined, at least in part, by their own attributes; secondary structures
can be completely defined by their positions in the hierarchy and hierarchy relationships to
other structures. For example, a section heading is a primary structure; it is identifiable by
its appearance and separation from the surrounding text. This primary structure provides
the basis for finding the secondary structures section body and section. A section body is
a right sibling of a section heading with, in turn, no right sibling of its own;? a section is
a node whose children are exactly a section heading and a section body. Figure 3.1 shows
Figure 1.1, with primary structures in solid boxes and secondary structures in dashed boxes.

3.1.2 Content- vs. Layout-Orientation

Another fundamental distinction can be made based on the roles of content and layout in the
definition of a logical structure. Although both must be included, some logical structures can

2This definition refers to an ideal tree, in which the sections have been correctly identified. In the process
of forming a tree with an imperfect method, a more useful definition might be: a section body is a right
sibling of a section heading whose own right sibling, if it exists, is also a section heading.

20

be considered content-oriented, and some can be considered layout-oriented. For example, a
definition is a logical structure when it is distinguished by its presentation, as in Chapter 1
of this thesis; it remains, however, a content-oriented structure. On the other hand, a special
paragraph (a paragraph presented in other than the usual format for a given document?) is a
layout-oriented structure. These descriptions are relative; a logical structure is more content-
oriented than another if its definition relies more heavily on internal meaning; similarly, a
more layout-oriented structure has a definition that relies more heavily on visual presentation.

To make this precise, consider the hierarchy that can be formed among logical structures
themselves, in which the children of a node are subtypes of that node’s structure.* A portion
of this hierarchy is given in Figure 3.2. If a structure is distinguished from its siblings entirely
by content, it is content-oriented; if it is distinguished from its siblings entirely by layout, it
is layout-oriented; otherwise, it is neither.

Degrees of this kind of orientation are distinguished by the degree to which this definition
can be extended. That is, a structure that is distinguished from its siblings and its parent’s
siblings by content alone is more content-oriented than one that is distinguished from its
own siblings by content alone but from one or more of its parent’s siblings in part by layout.
(Note that if a node is distinguished from its parent’s siblings by content alone, it is therefore
also distinguished from its first cousins, i.e., its parent’s siblings’ children, by content alone.)
A structure that is also distinguished from its grandparent’s siblings by content alone is more
content-oriented still, etc. This is equivalent to the idea that the degree of content-orientation
corresponds to the number of immediate ancestors of a content-oriented structure that are
also content-oriented. This definition of degrees of orientation also applies analogously to
layout-orientation.

3.2 Discovery Distinctions

Primary logical structures can be characterized by the cues that are necessary and/or useful
in their discovery. Ideally, the combination of necessary and useful characteristics would
provide a sufficient criterion for structure identification. Unfortunately, we have no guarantee
of this; some structures may not be reliably distinguishable without full natural language
understanding, and some may not be reliably distinguishable at all. Consider, for example, a
paper in which all paragraphs are left-justified and the font is never changed; to distinguish
between a theorem in such a paper and a paragraph about theorems may require in-depth
understanding of content. Similarly, consider a page break, preceded by a complete sentence
that reaches to the right edge of the page. Whether the next block of text is a continuation of
the same paragraph or the start of a new one may be ambiguous even to a human reader [68].
Hence, we cannot make general claims about sufficiency, but we can discuss the cues that
are typically necessary and those which are typically useful additions in recognizing primary

3In this thesis, definition is a subtype of special paragraph.
“Typically, the logical structure of a document will be given in terms of the structures at the leaves of
this hierarchy.

21

Logical Structure

/\

% /’\

[Paragraphj [List Itemj [Headingj [Sectionj [Section Bodyj

T

(Special Pa.ragraphj [Regular Paragraphj

[T

Starting Paragraph

T

[Theorem type] [Definition]

TN

[Theoremj [Lemma) [Corollaryj

Figure 3.2: A partial hierarchy of logical structures. Each node represents a structure type
that is a subtype of its parent node’s structure.

22

structures. (Secondary structures can, of course, be discovered by applying their definitions
after primary structures have been found; thus, no additional cues are needed.)

The types of cues can be derived by considering the observables of a set of marks on a
background. The most basic facts are where the marks are located and what the marks are;
the latter can be divided into purely visual descriptions and meanings. Additionally, any of
these descriptions may be considered with respect to the surroundings. This leads to four
basic categories of cues: geometric, marking, linguistic, and contextual.

Table 3.1 at the end of this section provides several examples of necessary and useful
discovery cues for primary logical structures, in terms of these categories. Necessary cues
are marked with an “N”, and useful cues are marked with a “U.” Note that a structure
must require at least the observables required by its ancestors in the structure hierarchy of
Figure 3.2.

3.2.1 Geometric Observables

Geometric observables include the (external) contours and the internal shape of a piece of
text. (Height is a special case of contours.) Both of these kinds of cues may be necessary;
for instance, the contours of an indented list provide its identifying shape of a hanging
indent, but a table is characterized by the internal shape of its columnization [59].° Since
geometry involves the shapes formed by the marks on the paper or screen, its contribution
can (inversely) be found by an analysis of the white space in a document.

3.2.2 Marking Observables

Marking observables consist of non-linguistic marks on the paper or screen; this includes
attributes like font type and weight, as well as non-alphanumeric symbols, such as bullet
points and rule lines. Bullet points and dashes, for instance, can aid in the identification of
indented list items; symbols can be necessary to find left-justified list items.

For example, consider Figure 3.3, in which a portion of an actual e-mail message is
represented with different sets of observables. In all cases, alphabetic characters have been
replaced with the letter “x.” In the upper left version, all symbols and characters have been
so replaced; in this representation, no difference in the format of the text blocks is visible.
In the upper right version, the observables include symbols; the lower two text blocks can
be observed to begin with a parenthesized character, suggesting that they are items in a
left-justified list. In fact, this is so, as is quite clear in the lower right version, in which both
symbols and numbers (which belong to the linguistic category) are included. In this case,
either symbols or numbers are sufficient to suggest the presence of a list without the other,
but either may be required, depending on the form of marking the list items.

SIdentifying tables is a substantial problem in its own right, and it does not form a part of this thesis.
Some of the literature on this issue is [68], [25], and [74].

23

XX XXXXXXX XXXXXX XXX XX XXXXXXXXXXX XXX XXXX XXXX XXX XX XXXXX XX XXXXXX
XXX XX XXXXX XXXXXXXX XX XXX XXXXX XXXXXXX XXXXXXXXXX XX XXXXXXXXX XXX
XXXXXXXX XXXXX XXXXXX XXXXXXX XX XXXXXXX XXXXXXXXX
XXX XXXXX XXX X XXX XX X XXXXX XX XXX XXX XXXX
XXXXXX XXX XXXX XX XX XXXX XXXX XXX XXXXXX XX XXXX XXXXXXXXXX XXX XX XX
XXXXXXXXX XX XXXXXXX XXX XXXX XXX XXXX XXXX XX XX XXX XXX XXXXX XXX XX XXX
XXXXXX XX X XXXXX XXXX XXXXXXXXXX XXX XX X XXXXXXXX XX XXXXXX XXX XXXX XX XX
XX XXXXXXXX XXXXXXXXX XXXX XXX XXX XXXX XXXXXXXX XXX XXXXXX XXXXEXXX XXXXXXXX
XXXX XXX XXXXXX XXXXXXX XXXX XXXXXXXXXXXX XXXX XXXXXXX XXXXXXXX XXXXX X XXX

XXX XXXX XX XXX

XXXXX XXXXX XXX XXXX XX XXX XXXXXXXXXXXX XX XXXXXXXXXXX XXXX XXXX XXXXX
XXXXXXXXXXX XXXXXX XX XXXX XX XXXX XXXX XX XXX XXXXX XX XXX XXX XXXXXXXXXXX
XX XXXX XXXXXX XXX XX XXXXXX XXXXXXXX XXXX XXXX XXXX XXX XXXXXXX XXXXXX XX
XXXX XXXXXXXXXXXX

XXX XXX XXXX XXXXXX XXXXCKX XXXXXXX XXXXX XXXXXXX XX XXXXXKXXXXX XX
XXXXXXX XXXXXXX XXXX XXXX XXXX
XXXXXXXXXX XXXXXXX XXXXX XXXXX XXXX XXXX XXX XXXXXXXX XXXXXX XX XXXX
XXXXXXXX XXX XXXX XXXXXXXXXXXX XXXXXXXXXX XX XXXXXXX XXXXXXXX XXXXX XXXX XX
XXXXXXX XXXXXXX XXX XXXXXXX XXXX XXXX XX XXXXXXXXXXXX XXXXXXXXXXXXX XXXXXX
XX XXXXXXX XXXX XXXXXXXX XXXXXXXXXXXXX XXXXXXXXX XXXX XXXXXX XXXXX XXXXX

XXXXXXXXX XXXXX XX XXXXXXX XX XXXXXX XXX XXXXXXXX XXXX XXXXX XXXX XX XXX
XXXXXXXX

XXX XXXXXXXX XXXX XXXXXXXX XXXXXXX XXXXX XX XX XXXXX XXXXXX XXXXXXXXXXX
XXXX XX XXXXXXXX XX XXXXXXXXXX XXXXXX XXXXX XXX XXXX XXXXXXXXXX XXXXXXXXXXXX
XXXXX XXXXXXXXX XXXX XXXX XX XXX XXXX X XXXXXX XXXXXXXX XX XXXXXX XXXXXXXX
XX XXX XXXXX XX XXXXXXXXX XXXXXX XXXXXXXX XX XXXXXX XXXXXX XXXXXXX XXXXXXX
XXX XXXXXXX XX XXXX XXXXXXXXX XXX XXXX XX XXXXXXX XXXXXX XXXXX XXXXXXXX XXXXX
XXXX XXXXXXXXX XXXXXXXXLXXX XX XXXLXX XXXX XX XXX XAXX X XXXX XXXXXX XXXXX
XXX XX XXX XXXXXXXX XXXXX XXXXXXX XXXX XX XXX XXXXXXX XXX XXXXXX XXXXXXXX
XXXXXX XXXXXX XXXX XXXX XXXXXXXXX XXXXXX XXXXXXXX XX XXXXXX XX XXXXXXXXXXXXX
xxx XXXXXXXX xxx

XXX XXXX XX XXXXX XXXXXXX XXXXXXXXX XXXXXX XXX XXXXXXX XXXXXXXX XXXXXXXX

XX XXXXXX. XXXXXX XXX XX XXXXXXXXXXX XXX XXXX XXXX XXX XX XXXXX XX XXXXXX
XXX XX XXXX. XXXXXXXX XX XXX XXXXX XXXXXXX XXXXXXXXXX XX XXXXXXXXX XXX
XXXXXXXX XXXXX XXXXXX XXXXXXX XX XXXXXXX XXXXXXXX.
XXX XXX’X XXX X XXX XX X XXXXX XX XXX XXX XXXX
XXXXXX XXX XXXX XX XX XXXX XXXX XXX XXXXXX XX XXXX XXXXXXXXX. XXX XX XX
XXXXXXXXX XX XXXXXXX XXX XXX, XXX XXXX XXXX XX XX XXX XXX XXXXX XXX == XXX
XXXXXX XX X XXXX. XXXX "XXXXXXXX" XXX XX X XXXXXXXX XX XXXXX, XXX XXXX XX XX
XX XXXXXXXX XXXXXXXXX XXXX XXX XXX XXXX XXXXXXXX XXX XXXXXX XXXXXXXX XXXXXXXX
XXXX XXX XXXXXX XXXXXXX XXXX XXXXXXXXXXXX XXXX XXXXXXX XXXXXXXX XXXXX X XXX
XXX XXXX XX XX.

XXXX, XXXX, XXX XXXX XX XXX XXXXXXXXXXXX XX XXXXXXXXXX. XXXX XXXX XXXXX
XXXXXXXXXX. XXX’XX XX XXXX XX XXXX XXXX XX XXX XXXXX XX XXX XXX XXXXXXXXXXX
XX XXXX XXXXX, XXX XX XXX’XX XXXXXXXX XXXX XXXX XXXX XXX XXXXXXX XXXXXX XX
XXXX XXXXXXXXXXXZ

(%) xOKx FOC XXX, OCOOCE XX00? T XXTXXXT XX XXTXXXTALL XX
XXXXXX? XXXXXXX XXXX XXXX XXXX ?
XXXXXXXXXX XXXXXX? XXXXX XXXXX XXXX XXXX XXX XXXXXXXX XXXXX. XX XXX,
XXXXXXX, XXX XXXX XXXXXXKXXXXX XXXXKXXEXX XX XXXXXXX XXXXEXXX XXXXX XXXX XX
XXXXXXX XXXXXXX XXX XXXXXX. XX’X XXXX XX XXXXXXXXXXXX XXXXXXXXXXXXX XXXXXX
XX XXXXXXX XXXE XXKXXEXX XXXXKKXXTEXXX (XXXXTEXX XXXK XEKK’XE XXKXX XXXXX
XXX XXXXXXXXL XX XCXXXXXCK XXX XXXCOXEXCKX XAXXX XXXXKXXEXLX XXX XXKXK)
XXX XXXXXX XXX XX XXXX XXXX xxx xxx
XXXXXXXXX XXXXX XX XXXXXX, XX XXXXXX XXX XXXXXXXX XXXX XXXXX XXXX XX XXX

XXXXXXX.

(X) XXXXXXXX XXXX XXXXXXXX XXXXXX. XXXXX XX XX XXXXX XXXXX, "XXXXXXXXX
XXX XX XXXXXXXX XX XXXXXXAXXX XXXXX: XXXXX XXX XXXX XXXXXXXXXX XXXXXXXXXXXX
XXXXX XXXXXXXX, XXXX XXXX XX XXX XXXX X XXXXXX XXXXXXXX XX XXXXXX XXXXXXX?

XX XXX XXXXX XX XXXXXXXX, XXXXXX XXXXXXXX XX XXXXXX XXXXXX XXXXXXX XXXXXXX
XXX XXXXXXX XX XXXX XXXXXXXXI XXX XXXX XX XXXXXXX XXXXXX XXXXX XXXXXXXX XXXXX
FAAX XAXXXXXXX XXXXXXXXLXLL XX LXK XAXX XX XXX XXAX X XXXX XXXXXX XXXX.
XXX XX XXX XXXXXXXX XXXXX XXXAXX? XAXX XX XXX XXXXAAX XXX XXXXXX XXXXXXX
XXXXXX XXXXXX XXXX XXXX XXXXXAAX, XXXXXX XXXXXXXX XX XAXXXX XX XXXXXXXXXXXX,
xxX XXXXXXXX xxx

XXX XXXX XX XXXXX XXXXXXX XXXXXXXXX XXXXXX XXX XXXXXXX XXXXXXXX XXXXXXX.

XX XXXXXXX XXXXXX XXX XX XXXXXXXXXXX XXX XXXX XXXX XXX XX XXXXX XX XXXXXX
XXX XX XXXXX XXXXXXXX XX XXX XXXXX XXXXXXX XXXXXXXXXX XX XXXXXXXXX XXX
XXXXXXXX XXXXX XXXXXX XXXXXXX XX XXXXXXX XXXXXXXXX
XXX XXXXX XXX X XXX XX X XXXXX XX XXX XXX XXXX
XXXXXX XXX XXXX XX XX XXXX XXXX XXX XXXXXX XX XXXX XXXXXXXXXX XXX XX XX
XXXXXLXXX XX XXXXLXX XXX XXXX XXX XAXX XXXX XX XX XXX XXX XXXXX XXX XX XXX
XXXXXX XX X XXXXX XXXX XXXXXXXXXX XXX XX X XXXXXXXX XX XXXXXX XXX XXXX XX XX
XX XXXXXXXX XXXXXXXXX XXXX XXX XXX XXXX XXXXXXXX XXX XXXXXX XXXXXXXX XXXXXXXX
XXX XX XXXXXX FOOXXX XXX XOOCOOOHX XXX XXXXXXX XXXOOXKX XXXXX X XXX

XXX XXXX XX XXX

XXXXX XXXXX XXX XXXX XX XXX XXXXXXXXXXXX XX XXXXXXXXXXX XXXX XXXX XXXXX
XXXXXXXXXXX XXXXXX XX XXXX XX XXXX XXXX XX XXX XXXXX XX XXX XXX XXXXXXXXXXX
XX XXXX XXXXXX XXX XX XXXXXX XXXXXXXX XXXX XXXX XXXX XXX XXXXXXX XXXXXX XX
XXX XLXXXXXXXXXX

X1X XXXX XXXX XXXXXX XXXXXXX XXXXXXX XXXXX XXXXXXX XX XXXXXXXXXXX XX
XXXXXXX XXXXXXX XXXX XXXX XXXX
XXXXXXXXXX XXXXXXX XXXXX XXXXX XXXX XXXX XXX XXXXXXXX XXXXXX XX XXXX
XXXXXXXX XXX XXXX XXXXXXXXXXXX XXXXXXXXXX XX XXXXXXX XXXXXXXX XXXXX XXXX XX
XWX XXXXXXX XXX XXXXXXX XXOC OO0 XX XXXXXXXXXXXA XXOOOXXXXXXX XXXXXX
XX XXXXXXX XXXX XXXXXXXX XXXXXXXXXXXXX XXXXXXXXX XXXX XXXXXX XXXXX XXXXX
XXX XXXXXXXXX XX XXXXXXXX XXXX XXXXXXXXXXXX XXXXX XXXXXXXXXXX XXX XXXXXXX
XXX XXXXXX XXXX XX XXXX XXXX xxx xxx
XXXXXXXXX XXXXX XX XXXXXXX XX XXXXXX XXX XXXXXXXX XXXX XXXXX XXXX XX XXX
AXXXXXXX

X2X XXXXXXXX XXXX XXXXXXXX XXXXXXX XXXXX XX XX XXXXX XXXXXX XXXXXXXXXXX
XXXX XX XXXXXXXX XX XXXXXXXXXX XXXXXX XXXXX XXX XXXX XXXXXXXXXX XXXXXXXXXXXX
XXXXX XXXXXXXXX XXXX XXXX XX XXX XXXX X XXXXXX XXXXXXXX XX XXXXXX XXXXXXXX
XX XXX XXXXX XX XXXXXXXXX XXXXXX XXXXXXXX XX XXXXXX XXXXXX XXXXXXX XXXXXXX
XXX XXXXXXX XX XXXX XXXXXXXXX XXX XXXX XX XXXXXXX XXXXXX XXXXX XXXXXXXX XXXXX
XXXX XXXXXXXXX XXXXXXXXXXXX XX XXXXXX XXXX XX XXX XXXX X XXXX XXXXXX XXXXX
XXX XX XXX XXXXXXXX XXXXX XXXXXXX XXXX XX XXX XXXXXXX XXX XXXXXX XXXXXXXX
XXXXXX XXXXXX XXXX XXXX XXXXXXXXX XXXXXX XXXXXXXX XX XXXXXX XX XXXXXXXXXXXXX

xxx XXXXXXXX xxX

XXX XXXX XX XXXXX XXXXXXX XXXXXXXXX XXXXXX XXX XXXXXXX XXXXXXXX XXXXXXXX

XX XXXXXX. XXXXXX XXX XX XXXXXXXXXXX XXX XXXX XXXX XXX XX XXXXX XX XXXXXX
XXX XX XXXX. XXXXXXXX XX XXX XXXXX XXXXXXX XXXXXXXXXX XX XXXXXXXXX XXX
XXXXXXXX XXXXX XXXXXX XXXXXXX XX XXXXXXX XXXXXXXX.
XXX XXX'X XXX X XXX XX X XXXXX XX XXX XXX XXXX
XXXXXX XXX XXXX XX XX XXXX XXXX XXX XXXXXX XX XXXX XXXXXXXXX. XXX XX XX
XXXXXXXXX XX XXXXXXX XXX XXX, XXX XXXX XXXX XX XX XXX XXX XXXXX XXX == XXX
XXXXXX XX X XXXX. XXXX "XXXXXXXX" XXX XX X XXXXXXXX XX XXXXX, XXX XXXX XX XX
XX XXXXXXXX XXXXXXXXX XXXX XXX XXX XXXX XXXXXXXX XXX XXXXXX XXXXXXXX XXXXXXXX
XXX XXX XXXXXX XXXXXXX X000 XXXXXXXXXXXX XXXX XXXOOXX XOXXXXX XXXXX X XXX
XXX XXXX XX XX.

XXXX, XXXX, XXX XXXX XX XXX XXXXXXXXXXXX XX XXXXXXXXXX. XXXX XXXX XXXXX
XXXXXXXXXX. XXX’XX XX XXXX XX XXXX XXXX XX XXX XXXXX XX XXX XXX XXXXXXXXXXX
XX XXXX XXXXX, XXX XX XXX’XX XXXXXXXX XXXX XXXX XXXX XXX XXXXXXX XXXXXX XX
XXX XXXXXXXXXXX D

(1) xXXX XXXX XXXXX. XXXXXXX XXEXXX? XXKXXX XXXKXXX XX XXXKXXXEKXXX XX
XXXXXX? XXXXXXX XXXX XXXX XXXX
XXXXXXXXXX XXXXXX? XXXXX XXXXX XXXX XXXX XXX XXXXXXXX XXXXX. XX XXX,
XXXXXXX, XXX XXXX XXXXXXXXXXXX XXXXKXXEXX XX XXXXXXX XXXXEXXX XXXXX XXXX XX
AXAAAXX XAAAAAA XXX XAAAAX. XXA XAAX XA XAXXXAAXAAXK XXAXXXXXAXXAK XXXXAX
XX XXXUKXX XXXE XXKXXEKX KXXXKKXXUKXXE (XXXXTEXX XXXK XEK'XE XXEKX XXXXX
XXX XXXXXXEXX XX XEXXXXXX XXXX XXXCOOUKXXCKX XXXXX XXXXKXXEXXX XXX XXXXX)
XXX XXXXXX XXXX XX XXXX XXXX xxx xxx
XXXXXXXXX XXXXX XX XXXXXX, XX XXXXXX XXX XXXXXXXX XXXX XXXXX XXXX XX XXX
xxxoex.

(2) XXXXXXXX XXXX XXXXXXXX XXXAXX. XXXXX XX XX XXXXX XXXXX, "XXXXXXRXX"
XXXX XX XXXXXXXX XX XXXXXXXXXX XXXXX: XXXXX XXX XXXX XXXXXXXXXX XXXXXXXXXXXX
XXXXX XXXXXXXX, XXXX XXXX XX XXX XXXX X XXXXXX XXXXXXXX XX XXXXXX XXXXXXX?

XX XXX XXXXX XX XXXXXXXX, XXXXXX XXXXXXXX XX XXXXXX XXXXXX XXXXXXX XXXXXXX
XXX XXXXXXX XX XXXX XXXXXXXX! XXX XXXX XX XXXXXXX XXXXXX XXXXX XXXXXXXX XXXXX
XXXX XXXXXXXXX XXXXXXXXXXXX XX XXXXX. XXXX XX XXX XXXX X XXXX XXXXXX XXXX.
XXX XX XXX XXXXXXXX XXXXX XXXXXX? XXXX XX XXX XXXXXXX XXX XXXXXX XXXXXXX:
XXXXXX XXXXXX XXXX XXXX XXXXXXXX, XXXXXX XXXXXXXX XX XXXXXX XX XXXXXXXXXXXX,
xxX XXXXXXXX xxx

XXX XXXX XX XXXXX XXXXXXX XXXXXXXXX XXXXXX XXX XXXXXXX XXXXXXXX XXXXXXX.

Figure 3.3: Paragraphs and a justified list, with and without observable symbols and numbers

24

3.2.3 Linguistic Observables

Linguistic observables include combinations of numeric and alphabetic symbols. (These cues
enter a gray area between symbolic and linguistic when they are character-based rather than
word-based.) The observation of words is necessary for structures such as theorem to be
recognized and distinguished from similar structures (e.g., definitions, in many cases). The
identification of indented list items is aided by numeric cues just as by symbolic ones; again,
these cues can be necessary to identify justified list items. For example, if the item numbers
in Figure 3.3 were not enclosed in parentheses, symbols would not identify the list, and
numeric cues would be necessary to find it. In its current form, numeric cues are enough to
suggest that it is a list, as can be observed from the lower left representation.

Typically, content-oriented structures will require linguistic cues, since content is usually
contained in the language of a document. This linguistic analysis can remain quite shallow or
become very complex; naturally, the subtlety of the content aspects of discoverable structures
depends in part on the depth of the analysis. For example, consider an attempt to distinguish
an author’s institutional affiliation (one structure) from address (another structure), without
making use of further analysis than checking for the presence of keywords. In order to
find most institutions, the relevant keywords would probably include “University, College,
Corporation, Company,” to name but a few; the effect would be that streets like “University
Avenue” and towns like “College Park” would be incorrectly identified as affiliations.® The
goal is probably not reasonable for the amount of included analysis.

3.2.4 Contextual Observables

Contextual observables can be divided into /ocal and global context-based cues. Local con-
texts use information about some limited number of surrounding nodes: siblings, parents,
children, or neighbors within a level (which may or may not be siblings). For instance, con-
sider a typical business letter; the return address and the closing (including the signature,
etc.) are both internally left-justified blocks indented approximately halfway across the page;
in this setting, they can be distinguished easily by local context, since the return address is
not preceded by any text, but the closing is.

Global contexts use information about the document as a whole. For example, a special
paragraph is a paragraph that differs in its presentation from the typical paragraphs within
the document.”

Contextual information may, of course, include information of any of the preceding vari-
eties; moreover, it may make use of available structure type information.

6Some cases could be filtered out by requiring that affiliations not contain numeric values, but this would
not cover every case.

"Identifying the typical is a significant problem, as the standard may not always occur more frequently
than the non-standard.

25

Table 3.1: Some primary structures and their discovery cues. Necessary cues are marked
“N,” and useful cues are marked “U.”

Cue Paragraph Special Theorem Indented List
Paragraph Item
Geometry
Contours N N N N
Internal U U U -
Marking
Font - U U U
Symbols U U U U
Linguistic
Words - - N -
Numbers - - - U
Context
Global - U U -
Local - U U U

3.3 Usage Distinctions

The logical structures of a document may also be characterized according to their use. This
kind of categorization attempts to capture information about the relative significance of
different logical structures; it has implications for performance evaluation of logical structure
discovery.

The relative importance of logical structures is, of course, application-specific. As an
extreme example, consider the application of a theorem extractor. For this tool, theorem
is the only structure of direct significance. Its ancestors in the structure hierarchy are also
important, to the extent that errors in their identification may lead to errors in identifying
theorems; no other structures matter, so errors in their identification are insignificant. Find-
ing the full logical structure would be unnecessary for this application, but the point stands
that if a structure discovery mechanism is designed for a particular application, its output
should be evaluated with respect to structure importance within that application.

In the more general case, however, the logical structure is derived for possible use with
many applications, and the kind of information described above is therefore unavailable. A
more general (and necessarily less precise) concept of structure significance is required. This
raises a variety of different issues, including: classifier implications, expected user references,
hierarchy role, and generality. These are described below.

Table 3.2 at the end of this section (on page 27) provides several examples of the usage
characteristics of logical structures, in terms of these categories.

26

3.3.1 Classifier Implications

This attribute refers to the relevance of a structure to the identification of other structures.
To some extent, this is dependent upon the classifier itself, but it also depends on the intrinsic
definitions of the structures; the definitions of secondary structures highlight the importance
of certain other structures, as do the definitions of primary structures that depend in part
on their contexts (e.g., special paragraph relies on other paragraphs). For example, section
headings are quite significant in this respect, as two secondary structures (section bodies
and sections) rely on them for correct identification.®

3.3.2 Expected User References

Structures that users refer to more frequently than others are, in an important sense, par-
ticularly significant. For example, if users write queries that ask for full sections more often
than groups of paragraphs, then sections are more significant for retrieval than are para-
graphs (unless, of course, these sections are frequently identified by particular paragraphs
they contain).

This attribute is task-dependent; different structures may be commonly used in retrieval
from those commonly used in browsing, for example. Furthermore, it depends on the user
population, because of differences in both cognitive models and underlying goals. That is,
users who think about information in different ways may tend to access document structures
differently; also, users who want information in order to complete one goal might be likely
to access this information differently from users attempting to complete a different goal with
it.

Determining precise expectations for this would require tracking the behavior of differing
groups of actual users with a fully general system, including different kinds of documents.
Such a study would provide a solid basis for according relative weights to different logical
structures, with respect to this attribute.

In the absence of strong empirical evidence, however, certain general observations can be
made, based on the natures of commonly suggested applications.

e In hierarchical browsing as described in [14, 77|, structures at higher levels of the
tree are more significant than those at lower levels. Since this browsing is based on
tree navigation, starting from the root, higher-level structures will be used for earlier
decisions, on which later decisions will in part rely. Furthermore, for any node that is
accessed, all of its ancestors must have been accessed as well, but its descendents need
not be. So for this application significance corresponds (to a large degree) to height.

e For hyperlinking, bibliographic structures have a special significance. Links will often
be desirable based on bibliographic matches (such as articles that share authors, or a
match between a reference in one article and the title of another), so the structures

8Here, as elsewhere in this chapter, the word “section” may be replaced by “subsection” or “sub™section”
where n > 0.

27

Table 3.2: Some Structures and Usage Characteristics

| Attribute | Paragraph | Heading | Section |
Implications Paragraph Group | Section Body, Section
Task Importance Browsing Browsing
Hierarchy Role Useful Useful Useful
Generality High High High
| Attribute || Section Body | Theorem | Definition |
Implications Proof
Task Importance Browsing Retrieval Retrieval
Hierarchy Role Filler Useful Useful
Generality High Low Low

that provide this information are particularly important. Floats (figures, tables, etc.)
have a similar importance for linking, as they are typically referenced in the text.

Other kinds of hyperlinks are often desirable as well, of course, including links that
reflect relationships based more on content than structure and links that reflect indirect
relationships. It is not obvious how these will relate to logical structure, however, as
the criteria for their inclusion are still emerging.

e In the retrieval of previously-seen documents or document portions, highly significant
structures are likely to be those which differ greatly from their surroundings. Since,
according to Cowan, this kind of difference demands attention and people are likely
to remember what has attracted their attention [19], such salient structures are likely
to be of particular use in characterizing a remembered document. (Determining which
structures differ greatly from their surroundings in this sense, however, is far from
trivial.)

The above is not meant to be exhaustive; it simply provides an example of the kinds of issues
that can provide insight into the significance of different logical structures from the direct
perspective of a user.

3.3.3 Hierarchy Role

A significant distinction can be drawn between those structures that exist in order to express
a useful piece of the document and those that exist in order to complete the hierarchy. For
example, the structure paragraph part is not, in itself, useful; it exists in order to complete
the children of a paragraph that contains an equation or an indented list or some other
interruption. Filler structures that exist only to complete the hierarchy are a proper subset
of secondary structures. Useful structures are, of course, more significant than are fillers
(although distinguishing the two may be extremely significant!)

28

3.3.4 Generality

Consider the structure hierarchy, partially shown in Figure 3.2. Distinguishing among struc-
tures that appear at lower levels of the tree changes the meaning of the result less than
distinguishing between structures at higher levels; thus those at higher levels are more sig-
nificant, in that their correct identification provides more new content. If a system attempts
to distinguish structures at a low level of the tree, it is unlikely to return an answer of a
structure at a high level, but classifying a block as a structure implicitly places it in the cat-
egory of each ancestor of the structure, as well. So in this sense, an error that misidentifies
a block as a close relative of its structure is less significant than an error that identifies the
same block as a more distant relative of the structure.

3.4 Effects of the Types

The distinctions among logical structure types provided in this chapter have implications
for the work presented in the rest of this thesis, especially the process of classifying text
segments.

The distinction between primary and secondary types has an obvious implication for
structure classification; primary types are found first, and secondary types are found later,
based on their definitions and the primary structures that have been discovered. The effects
of content- vs. layout-orientation are less direct; these influence the discovery distinctions,
which do have direct implications.

The discovery distinctions influence the cues used for the classification of text segments.
Necessary observables must be included, and useful kinds of observables are usually included
as well. The particular cues that are considered are discussed in Chapter 6. The distinctions
based on usage are more difficult to apply to the problem; they can influence performance
evaluation, which is discussed in Chapter 8, but this would require a quantification of their
effects. Since the distinctions made here are qualitative and relatively

29

rough, for lack of concrete, user-based evidence, they do not currently form a part of the
evaluation mechanism.

Chapter 4

System Overview

The problem of document structure discovery is divided into two main subproblems: seg-
mentation and classification. The hierarchy is formed from the bottom up, with both seg-
mentation and classification applied as each level is formed. Segmentation is performed on
the basis of shape only, including white space and font information; classification considers
the non-geometric information discussed in Chapter 3 as well, when this is appropriate. (Ta-
ble 3.1, in Section 3.2, provides some examples of the cue types on which certain structures
rely.)

LABLER builds a level of the hierarchy in the following manner. First, the segmenter
identifies the text blocks to be grouped together, based on contour relationships for lower
levels and proximity for higher ones. The details of this procedure are discussed in Chapter 5.
Next, the classifier assigns a structure to each text block, based on a set of generic, idealized
prototypes. A block is assigned the structure to whose prototype it is most similar; this
similarity measure is preserved as a degree of certainty. The classifier then provides feedback
to the segmenter in the following manner. A text block assigned a structure with a low
degree of certainty causes an attempt at resegmentation of a small surrounding area; if
a segmentation is found that improves the classification results for that area, this is used
instead of the original result. After each ordinary level is formed and its nodes are classified,
it is searched for components of secondary structures (i.e., those structures defined entirely
by their relationships to other structures), and these are added.

LABLER incorporates available knowledge of the style of a document into the above ap-
proach. If a CFG is provided for some identifiable document portion, this part of the document
is parsed first, providing a subhierarchy that is later linked to the hierarchy found by the
above method. Partial parses are also performed, after the initial parsing attempt, in case
the document contains components of the specified structure but not all of it. (For example,
in a collection for which a title part is specified that includes a title page and a subordinate
title part on a subsequent page that also contains text, a document may have lost its title
page; a partial parse will find the remaining subordinate title part.)

If the available knowledge for all or a part of the document does not form a grammar,
less detailed knowledge can also be used. If the form of certain structures that may appear is

30

31

known, the classification procedure is modified accordingly; a new description in terms of the
available observables may be identified as necessary, sufficient, or typical. If it is necessary,
a mismatch leads to a similarity measure of 0; if sufficient, a match leads to a similarity
measure of 1; if typical, the generic prototype is replaced by the new description.

Once the entire hierarchy is built, a final postprocessing stage adjusts the hierarchy. It
applies a few linguistic heuristics to identify, e.g., various elements of the title part, checks
for nodes near each other with ascending numeric values (usually list items) and ensures that
they are grouped appropriately, checks that other groupings of nodes of the same general
classification are separated only when there are appropriate reasons,! and manipulates the
tree to eliminate useless structures (such as a division of a paragraph into paragraph parts
without any non-filler structure).

The system is sketched in Figure 4.1. The details are given in Chapters 5 (segmentation),
6 (classification), and 7 (knowledge incorporation).

LGroups of nodes of the same general classification may be separated from each other based on the
existence of greater vertical white space between the groups than within them or in order to form groups of
the same specific classification.

32

White Space Analysis

(Contours and Proximity)

|

Shape and Symbol Analysis
[Speciﬁc knowledge] / \L

{ Classified Text Segments }

- [Generic prototypesj

(with certainties)

Parser \L
I Hierarchy Level Addition

!

[Logical Hierarchy }

v

Postprocessing = [Final Logical Hierarchy}

Figure 4.1: The logical structure discovery system overview

Chapter 5

Segmentation

This chapter presents an algorithm that takes an electronic document and generates a hi-
erarchy of logical divisions. The observation of geometric relationships, including contour
similarity, vertical distance, and horizontal containment, is used to partition the document
into a hierarchy of divisions, including arbitrary degrees of nesting. The resulting tree is
suitable for indexing, browsing, and searching: its divisions may be indexed according to in-
formation retrieval techniques, a document may be browsed by navigating through the tree,
and a set of trees may be searched for documents that include components with required
properties.

1. Assumptions and Definitions 1
2

In all characterizations of WDGs, we make the following 3
assumptions. They enable us to characterize the WDGs of 4
any polygon precisely. 5
6

e The block of text for which the WDG is given 7
contains exactly one figure. 8

9

e The block and the figure are of the same height 10

n + 1, with rows numbered from 0 to m. 11

12

The above assumptions refer to the choice of text block. 13
There are also assumptions about the granularity of the view of the 14
figure to be considered. 15
16

® There is at least one column of white space to the 17

left and one column of white space to the right of 18

the figure. 19

20

® All lines have width 1. Thus, points have height 21

and length 1. This affects the precise value of 22

the WDG. 23

24

This concludes our listing of assumptions. We now 25
move on to definitions. 26
Portions of WDGs are characterized by their heighs and slopes. A 27
special case occurs when the height remains constant. A plateau 28
in a WDG is a segment of length at least 1 with slope 0. 29
A transition in a WDG is a segment of length at most 2 that 30
lies between two plateaus. 31
This concludes our section of definitions. We now move on to 32

use them. 33

Figure 5.1: A miniature document with its lines numbered

33

34

Lines 1 - 33
Line 1 Lines 3 - 33
Lmes 3-13 Lines 14 - 26 Lines 27 -31 Lines 32 - 33

Lines3 -5 Lmes 7 11 Line 13 Lines 14 - 15 Lines 17 -23 Lines 25 - 26

/\ Lines 7 - 8 Lines 10 - 11 Lines 17 - 19 Lines 21 - 23

Line 3 Lines 4 -5 Line 14 Line 15

Figure 5.2: Indentation tree for the miniature document in Figure 5.1

Section
/\
Heading Section Body
Paragraph Paragraph Paragraph Paragraph
|
Para. Part List Para. Part Para. Part List Para. Part

/N

ltem ltem Item Item

Figure 5.3: Goal tree for the miniature document in Figure 5.1

This layout segmentation captures the divisions of the document’s logical structure. In
order to generate a tree that describes the logical structure the remaining task is to classify
its nodes. For example, Figure 5.1 contains a miniature document of one section. At the
coarsest level, it consists of the heading (the first line) and the body (the rest). The section
body contains four paragraphs, two of which contain lists, each of which in turn contains
two list items. The segmentation algorithm generates the tree in Figure 5.2. This tree
constitutes the topology of the tree in Figure 5.3, with a few superfluous leaves added. The
node classification task needed for the construction of Figure 5.3, including both the labelling
of the nodes and the identification of those to delete, is addressed in Chapter 6. In fact, as
discussed in Chapter 4, classification is performed on each level of nodes immediately after
its creation.

Section 5.1 presents the algorithm that generates the segmentation. This algorithm
requires an indentation alphabet; this construct is defined and discussed in Section 5.2.
Section 5.3 provides an example of the behavior of the algorithm. Section 5.4 discusses the

35

incorporation of feedback from the classification algorithm into the tree creation described
in Chapter 4.

5.1 The Segmentation Algorithm

The segmentation algorithm is derived from a more specific version of the elements of Obser-
vation 1 in Chapter 1. The key idea is that structures at a basic level are typically repeated,
usually adjacent to each other, using the same shapes. Some of these structures will be split
by others, such as a paragraph that is split into two parts by a list or block quote inside it.
Such splits form lower levels. Groups of identically shaped structures generally form relevant
structures at a higher level, and at a higher level still, divisions of a document are indicated
by vertical distance.

The algorithm works in a bottom up manner, building a tree of indentation structures
from a given set of leaves. At the lowest level, the nodes are characterized according to an
indentation alphabet.! The level is then searched for repeated indentation patterns. The
elements of these patterns are taken to be structures at the basic level described above, or
parts of them. Sets of leaves that form pattern elements are combined into new nodes at the
tree’s next level; also, runs of ¢solated nodes that do not participate in patterns are searched
for sequences that conform to shapes of previously established patterns, and these too are
combined into new nodes. This reflects Observation la. The next step uses Observation 1c.
It repeatedly looks for structures that fall horizontally within those structures that surround
them vertically, such that the second surrounding structure is a continuation of the contour
of the first. These are deemed to be structures that split a surrounding structure, and the
whole group is merged together. When no more such patterns can be found, this step stops.
The resulting top level is represented in the indentation language, and this is again searched
for patterns. This time, each pattern is combined into a new node at the next level up.
Finally, the top of the hierarchy is formed based on vertical distance; repeatedly, the current
closest structures are combined into new nodes, until no further combination is possible.

When a new node is created from a combination of old nodes, each of the old nodes
becomes a sub-block of the block described by the new node. (A node that does not partic-
ipate in a repeated pattern is considered to form a pattern of length one. Thus, at the next
two levels it remains a node, and each block it describes has a single sub-block: itself.) The
algorithm is given in outline form below.

Algorithm 5.1

1. Divide the document into blocks at the lowest level by an external algorithm.
2. Represent each block by an appropriate string of indentation alphabet characters.

3. (a) Find sets of blocks that form repeating patterns.

!Indentation alphabets provide symbols to express the indentation of blocks of text and rules for matching
sequences for these symbols. They are defined formally in Subsection 5.2.1.

36

(b) Find runs of isolated blocks that conform to patterns found elsewhere.

(c) Group together the blocks in each element of each pattern, and group the isolated
block runs, forming the next level of the tree.

surrounding blocks. If this generates changes, it creates a level.
4. Repeat until no changes are generated

(a) Search for adjacent strings of blocks that either:

e Fall horizontally within their surrounders, such that either:

— The following surrounder has all its sub-blocks’ left edges at the same
place as the final left edge of the preceding surrounder

or

— The preceding surrounder has a height of 1 line, and the following sur-
rounder has all its sub-blocks’ left edges at the left margin

or

e Have all their sub-blocks’ left edges at the same place as the final left edge of
the preceding block, and this position is not the left margin

(b) Merge the preceding blocks with their continuations, to form blocks at the next
level, and represent these new blocks in the indentation alphabet.

5. (a) Search the current top nodes for repeating patterns in the indentation alphabet.

(b) Group together the elements of each pattern, forming another tree level.

6. Repeat until no new changes are generated:
Combine the currently closest nodes, in terms of vertical white space between them,
to form a new node.

Step 1 currently divides the document into text blocks all of whose edge shifts are in
the same direction, inward or outward. (Since each text block’s first shift is with respect
to the margins, a block with three or more shifts, of which all but the first are outward,
is considered to be a block of outward shifts.) Each blank vertical space is its own block.
Each document line in such a block constitutes a sub-block. Other initial segmentations are
possible, such as the one proposed in [76]. Step 4 reflects both the observation that basic
structures may be interrupted by structures that fall horizontally within them and the fact
that a basic structure may contain blank vertical space if the margin of the later part is
readily identifiable as a continuation of the earlier part.

The hierarchical document divisions allow an arbitrary degree of nesting in the struc-
ture of the document. For example, in Algorithm 5.1, the enumerated list in step 4 forms an
identifiable indentation structure, which is a part of the observable (higher-level) indentation
structure consisting of the whole algorithm. With a carefully defined indentation alphabet
(such as that described in Subsection 5.2.3), the structure formed by the subsections and

37

sections is also identifiable.? The degree of such nesting in a given paper is arbitrary. Cor-
respondingly, this bottom-up algorithm builds trees of arbitrary depth.

5.2 Indentation Alphabets

Subsection 5.2.1 provides a formal specification of indentation alphabets; Subsection 5.2.3
presents the particular alphabet that LABLER uses. Finally, Subsection 5.2.4 offers a formal
specification and analysis of the language defined by patterns in any indentation alphabet
that shares certain basic properties.

5.2.1 Formal Definition of an Indentation Alphabet

An indentation alphabet, formally defined below, consists of a set of symbols, their defini-
tions, and a lattice over symbol sequences. A string of the symbols is used to describe the
contours of a text block in terms of its component sub-blocks. Each symbol represents a
non-empty sequence of sub-blocks. The definition associated with a symbol specifies the sub-
blocks that are representable by the symbol. For example, LABLER’s indentation alphabet
includes the symbol Left-Justified and the definition “one or more consecutive sub-blocks,
not all of which are blank, in which the text sub-blocks are all left-justified with respect to
the preceding text sub-block.” Consider a block formed by the paragraphs of a section, with
each paragraph forming a sub-block; in many layout formats, a string of this symbol alone
will suffice to express the contours of the given block.

Definition 5.1 An indentation alphabet is a triple (¥, D, R), where X is a set of symbols;
D s a set of definitions for the symbols in X, such that, given a block of text made up
of one or more sub-blocks, exactly one sequence of definitions describes the sub-blocks that
make up the block; and R is a subsumption relation among the symbols in X, in the sense of
Definition 5.2.

Definition 5.2 A subsumption relation R in an indentation alphabet (¥, D, R) is a lattice
over ¥* U{T, L}.

The subsumption lattice defines a relationship of “more general than” among symbol
sequences. That is, the definitions of the symbols of an indentation alphabet may overlap in
the following sense: more than one symbol sequence may accurately describe the contours
of a given sub-block sequence. In this case, one symbol sequence will be a more general
representation of the other; the lattice specifies this relationship. For instance, suppose
an indentation alphabet also includes the symbol Both-Justified, defined like Left-Justified
(above) with the added constraint that the sub-blocks must be both left- and right- justified

2This requires distinguishing vertical spaces of different heights from each other. An alphabet that
considered all vertical blank space to be equivalent might, for instance, match a heading and the text that
follows it to a theorem and the text that follows it.

38

with respect to their common predecessor. A set of sub-blocks that satisfies this definition
also satisfies the definition of Left-Justified. The reverse is not necessarily true; thus, Left-
Justified is more general than Both-Justified. This information is captured in the subsumption
relation, with Left-Justified > zrBoth-Justified.

The lattice has two uses. The first use is in the selection of a representation for a sequence
of sub-blocks; if two symbol sequences o and f may describe the sub-blocks and a > (3, then
the sub-blocks are described with the sequence 8. (To form a useful indentation alphabet,
in such cases the lattice must specify either o =g 5 or § =r a.)

The other use of the lattice is to enable matching. If a > [, this is interpreted to mean
that o represents an indentation form that subsumes the form represented by 3. Thus, in the
process of comparing sequences of indentation alphabet symbols, an instance of § may be
matched against an instance of o, yielding a pattern of a. Moreover, if a > v as well, then
both # and v may be matched as instances of the pattern a (without an explicit appearance
of a)). More precisely, the interpretation of the subsumption relation is: if the least upper
bound of two sequences a and (3 is not T, then the two sequences match, yielding a pattern
of their least upper bound.

For example, consider again the symbols Left-Justified and Both-Justified. Left-Justified
» rBoth-Justified indicates that the form Left-Justified subsumes the form Both-Justified.
Hence, in comparing two sequences a and (3, if an instance of Left-Justified is encountered
in position ¢ of a and an instance of Both-Justified is encountered in position ¢ of 3, with all
previous symbols in the sequences matching, then these symbols are considered to match;
the examined prefixes of o and (3 are instances of a pattern v with Left-Justified in position
0.

The effects of the least upper bound can be seen by considering an indentation alphabet
with the symbols already described and additional symbols Centered and (Centered-In, n).
Let Centered describe a sequence of sub-blocks, all of which are centered with respect to
their predecessor; let (Centered-In, n) represent a sequence of n sub-blocks, all of which are
centered with respect to their common predecessor and each of which has a left edge that lies
farther in than (i.e., to the right of) the left edge of its particular predecessor. (Note that the
individual predecessor of the first block is the same as the predecessor of the whole group;
the individual predecessors of the other blocks lie within the group.) These definitions imply
that Centered > gr(Centered-In, n), and Centered > Both-Justified. Consider comparing Both-
Justified to (Centered-In, 2); neither subsumes the other, but both are subsumed by Centered.
That is, lub(Both-Justified, (Centered-In, 2)) = Centered. Consequently, the symbols match,
yielding a pattern of Centered.

Indentation alphabets can also include the special symbols start-block and end-block.
These symbols begin and end each block description, and they simplify the characterization
of the type of patterns appropriate for this task (i.e., those which include only complete
blocks). Different choices of indentation alphabets yield different results; the alphabet may
be adjusted for different goals without affecting the algorithm. Similarly, the method of
deriving blocks and sub-blocks may be altered without affecting the indentation alphabet.
This modularity increases the power and ease of use of both elements of the document

39

segmenter.

5.2.2 Useful Subsumption Relation Types

Some subsumption relations have special properties that aid their computational use. In
particular, this subsection describes a set of such properties that ensures the possibility of
finding the least upper bound of two strings by comparing one symbol at a time, without
backtracking.

First, the least upper bound of two strings must be derivable from the least upper bounds
of their substrings.

Definition 5.3 The subsumption relation of an indentation alphabet (¥, D, R), is normal
if
(a =r BNy =g 0) = (a7 =g B0).

That is, in a normal subsumption relation, concatenation does not invalidate subsump-
tion. In order for substring subsumption to fully control string subsumption, the following
stronger condition is required.

Definition 5.4 A normal subsumption relation R of an indentation alphabet (¥, D, R) is
divisible if
(lub(e, B) = 7) = (Vé,n € I* : lub(6,n) # T = lub(aé, Bn) = ylub(4, 7).

This indicates that a pattern found by looking at the beginning of a sequence will not
be invalidated by symbols later in the sequence. In pattern matching based on a divisible
subsumption relation, substrings may be considered from left to right, without requiring
backtracking. A new lattice can now be defined, made up of the substrings that will need to
be considered.

Definition 5.5 The minimal subsumption relation Ry, of an indentation alphabet (X, D, R)with
a divisible R is the lattice over ¥ U {T, L}, where ¥ C % such that (a = g_.) <
((a=r B) A
Vo, (' € T*:
FrneXt:(y#evn#e)Ala=adyAB=["7)= (= F))).

Thus, a subsumes 3 in Ry;, if in R, a subsumes , but no proper prefixes of o and
bear this relationship. The rules of R;, may be used for pattern matching according to a
divisible R. For matching to proceed based on individual symbols, the form of R;, must
be constrained.

Definition 5.6 A divisible subsumption relation R of an indentation alphabet (X, D, R)is
symbol-oriented if
Va,B € X" : ((a =R, B) = [B] = 1)

40

With a symbol-oriented subsumption relation, matches of indentation alphabet strings
can be performed on one character at a time, in a manner based on the following definitions.

Definition 5.7 The symbol lattice, R', of an indentation alphabet (¥, D, R)with a symbol-
oriented R is given by:
Ve,y eX: ((z =p y) =
(Fz1,. .- Tq € X, 0, ..., 0y € X*:
(.TO&Q tRmin .Tl) N (mlal tRmin 1'2) A (332052 tRmm 1133) VANPAN (CIZnOén tRmin ’y))
The sequence agay - .. oy, 15 called the y-x addition.

Note that, if aq...aq, is the y-z addition, then zaqg...a, >r y. So, matching z to y
requires accounting for ayq ..., in y’s sequence; it is added to y’s sequence if y is matched
with z and is hence the y-z addition.

Then, a pair of sequences to be matched according to a symbol-oriented subsumption
relation can be thought of as a pair of stacks of symbols. At each step in the match, a symbol
is popped off of each stack. Suppose these symbols are 2 and y. If the least upper bound z
of z and y in the symbol lattice is not T, then the match (so far) succeeds; z is appended to
the subsuming pattern formed so far, the z-z addition is pushed onto z’s stack, and the y-z
addition is pushed onto y’s stack.

The least upper bounds and additions can be calculated in advance, leading to an alter-
native representation of these subsumption relations as pairs of the form ((z,y, 2), («, 3)),
where a is the z-z addition, and (3 is the y-z addition. This representation provides matching
rules directly.

For instance, consider the sequences @ = (Centered-In, 2) and § = Left-In, Centered.
Let (Centered-In, n) and Centered be defined as above; let Left-In represent a single sub-
block whose left edge is inward (i.e., to the right) of its predecessor. We have Left-In
> Rr.... (Centered-In, n > 1) with an addition of (Centered-In, n — 1), as well as Centered
> r.... (Centered-In, n), with no addition. That is, we have the matching rules ((Left-In,
(Centered-In, n), Left-In), (&, (Centered-In, n — 1))) and ((Centered, (Centered-In, n), Cen-
tered), (¢, €)).

Thus, the comparison of the above @ and (§ proceeds as follows. Pop (Centered-In, 2)
off a and Left-In of # and compare. These may match; the pattern so far is Left-In, and we
push (Centered-In, 1) onto a. Now, we have a = (Centered-In, 1) and § = Centered. Pop
the first (and only) symbol off of each. These match, according to the second rule above,
with nothing to push. The achieved pattern so far is Left-In, Centered; both stacks have
been emptied, so the match is successful. In this case, the general pattern, of which both
sequences are instantiations, is the same as the second sequence; in some cases it will not be
precisely the same as either sequence.

3In the case that n = 1, we have Left-In =g _, (Centered-In, 1), with no addition.

41

5.2.3 LABLER’s Indentation Alphabet

LABLER uses the following indentation alphabet. When characterizing the first sub-block in
a block, the current left and right margins serve as the left and right edges of the “preceding
sub-block.”*

e Y = { Start-Block, End-Block, Both-Justified, Left-Justified, (Centered-In, m}, (Centered-
Out, n), Centered, (Left-In, p), (Left-Out, q), (Blank, h)}, where m,n and h range over
the positive integers.

o D=
Start-Block Represents the beginning of a new block; does not correspond to a sub-
block.
End-Block Represents the end of the current block; does not correspond to a sub-
block.

Both-Justified A set of one or more consecutive sub-blocks, not all of which are blank,
in which the text sub-blocks are both left-justified and right-justified with respect
to the preceding sub-block.

Left-Justified A set of one or more consecutive sub-blocks, not all of which are blank,
in which the text sub-blocks are left-justified with respect to the preceding sub-
block.

(Centered-In, m) A set of sub-blocks containing m text sub-blocks, all of which are
centered with respect to the preceding sub-block. The left edge of each of the m
sub-blocks lies to the right of the left edge of its predecessor.

(Centered-Out, n) A set of sub-blocks containing n text sub-blocks, all of which are
centered with respect to the preceding text sub-block. The left edge of each of
the n sub-blocks lies to the left of the left edge of its predecessor.

Centered A set of one or more consecutive sub-blocks, not all of which are blank, in
which the text sub-blocks are centered with respect to the preceding sub-block.

(Left-In, p) A text sub-block whose left edge lies to the right of the left edge of the
preceding sub-block, by a difference of p.

(Left-Out, ¢) A text sub-block whose left edge lies to the left of the left edge of the
preceding sub-block, by a difference of g.

(Blank, h) A set of one or more completely blank sub-blocks, of total height A.

e R, is given by:
Left-Justified =g, Both-Justified,

“Usually the current margins are the left and right margin of the entire document, but there may be local
deviations, introduced by unusual pages, skew, or figures around which the text flows.

42

Centered > g_. Both-Justified,

Centered =g . (Centered-In, m),

Centered =g _. (Centered-Out, n),

indcharLeft-In >g_. (Centered-In, 1),

Left-Out > g_, (Centered-Out, 1),

(Centered-In, 1)(Centered-In, m) =g_._(Centered-In, m + 1)
(Centered-Out, 1)(Centered-Out, n) =g . (Centered-Out, n + 1)

All matches with Left-In and Left-Out must also match the left edge distance p or g, so
this information is maintained for Centered-In and Centered-Out blocks.
R may also be expressed in the alternative form for symbol-oriented divisible subsump-
tion relations as:
{((Left-Justified, Both-Justified, Left-Justified), (¢, <)),
((Centered, Both-Justified, Centered), (¢, ¢)),
(({Centered-In, m), (Centered-Out, n), Centered), (¢, ¢)),
((Centered, (Centered-In, m), Centered), (¢, ¢)),
((Centered, (Centered-Out, n), Centered) (e,¢)),
(({Centered-In, 1),Left-In, Left-In), (¢, ¢)),
(({Centered-Out, 1),Left-Out, Left-Out), (¢, ¢)),
(({Centered-In, m > 1), Left-In, Left-In), ((Centered-In, m — 1),¢)),
(({Centered-Out, n > 1), Left-Out, Left-Out) ({Centered-Out, n — 1),¢))}

In this alphabet, no sub-block is ever initially identified as Centered; this symbol exists for
its role in the subsumption relation. Sub-blocks may be determined to follow a pattern that
includes the symbol Centered, at which point, an instance of (Centered-In, m) or (Centered-
Out, m), or Both-Justified becomes subsumed by the symbol Centered. Note also that there is
no Right-Justified symbol; right-justification happens often as a side effect of the combination
of indentation and both-justification, but it rarely has significance of its own.

Additionally, the distances of the moves in and out at the left edge are maintained. T'wo
Left-Ins or Left-Outs only match if their distances are considered equal. (Since OCR does
not reliably yield precisely the same distance for all equal indentations, two distances are
considered equal if their values are very close.) Similarly, Center-Ins can only be subsumed
by Left-Ins and Center-Outs by Left-Outs if their distances match.

The height of blank sub-blocks provides a distinction between sections and subsections,
as well as other nested structures in which the divisions are indicated in part by vertical white
space. Since section headings and subsection headings are typically represented in different
font sizes, the space surrounding these types of headings differs. Thus, a section heading and
its surrounding blank lines will not match the pattern formed by a set of subsections; the
subsections will be recognized as a structure at one level, and the section containing them
will form part of a section structure at a higher level. Without considering font information
directly, this approach takes advantage of its effects to enable the building of complete logical
structure trees.

43

5.2.4 The Indentation Pattern Language

This subsection provides a formal specification for the language of the indentation patterns
found by the algorithm, called the block indentation patterns, using a symbol-oriented inden-
tation alphabet that includes the special symbols Start-Block and End-Block. The preparation
for this definition and its analysis includes a notion of fully distinguishable symbols in an
indentation alphabet and a useful relation Er over the symbols of an indentation alphabet.

Definition 5.8 Given an indentation alphabet (¥, D, R), with R symbol oriented, and
z,y € X, x and y are said to be fully distinguishable if, in the symbol lattice lub(z,y) = T.

Intuitively, and y are fully distinguishable if they can never be considered a match,
regardless of what follows them.

Definition 5.9 Given descriptions of text at a sufficiently fine-grained level that each has
an indentation alphabet description of only one symbol in addition to an optional Start-
Block and/or End-Block, two text descriptions t; and t; are fully distinct if the symbols
other than Start-Block and End-Block in their indentation alphabet representations are fully
distinguishable and all their other observables have different values.

Definition 5.10 Given an indentation alphabet (¥, D, R), with R symbol-oriented, and
a € ¥*, the R-Extension of a, written Egr(a), is given by {B|la =g B}.

The R-Extension of a thus consists of everything a subsumes, i.e., the set of sequences
that may match a pattern of a.

Definition 5.11 An indentation alphabet (¥, D, R)is said to be block-oriented if the fol-
lowing are true:

o R is symbol-oriented.

o Y contains the symbols Start-Block and End-Block, which are fully distinguishable from
all other symbols in X.

e Y — {Start-Block, End-Block} contains at least one pair of fully distinguishable symbols.

This describes the kind of indentation alphabets appropriate for this kind of segmentation.
To seek patterns that include only whole blocks, each pattern is required to begin with Start-
Block and end with End-Block. This leads to the following definition of the patterns to be
found.

Definition 5.12 Given a block-oriented indentation alphabet I = (X, D, R), the language
of its block indentation patterns P; is given by:
P]:{Oélag...an | (n>].) A
(36 € Start-Block ¥* End-Block:
(Vi,1<i<n: (o € Egr(0)))}

44

Definition 5.13 For any block-oriented indentation alphabet I = (X, D, R)with block in-
dentation pattern language Pr and sequence of text blocks B = {by,...b,}, where the rep-
resentation in I of the contours of a text block b; is given by rr(b;), the language of text
indentation patterns Pj, is given by

P, = {bj bjyr ... basslr(bs) rr(bj + 1) 71(bx) € Pr}

At first glance, parsing might seem like a natural method of finding patterns in this
language. Unfortunately, the following result leads us to reject this approach.

Theorem 5.1 For any block-oriented indentation alphabet I = (¥, D, R), Pr is not a
context-free language.

Proof: Application of the pumping lemma for context-free languages to the string Start-
Block (zy)™ End-Block Start-Block (zy)™ End-Block Start-Block (zy)™ End-Block in which z,y
are fully distinguishable elements of ¥ — {Start-Block, End-Block}. Consider pumping down
once. O

This language is, however, context-sensitive. This result has computational implications
for the recognition of the indentation structures described here. Since context-sensitive
parsing is not sufficiently efficient for use in the domain of large documents, the documents
are not parsed. Instead, an obvious quadratic algorithm is used that is guaranteed to find
some repeated pattern if any exist. Specifically, the algorithm moves through the list of
symbols in the following manner. The current first symbol is identified; the list is scanned
for the next object that may match it. (Since all matches must use whole blocks, the first
current first symbol is considered to be the first symbol of the current block, and the next
object that may match it must be the first symbol of its own block, as well as belonging to a
type that may match.) The sequence of objects up to the match is compared to the objects
following the match; if these lists match successfully, a pattern has been found. In this case,
the following part of the list is checked for any repetitions of this pattern. Otherwise, this
pattern is rejected and the list is scanned for the next possible match of the first symbol, and
the process is repeated until a match succeeds or the list is exhausted. After a successful
match, all identified patterns are dropped from the current list, and the process repeats.
If no pattern is found, the first symbol is popped from the list (considered a pattern of
length one), and the process repeats with the new first symbol. This algorithm is described
below, in terms of a sequence s with symbols s[1] through s[n], placing information about
the patterns in a structure called results.

Algorithm 5.2

initialize ¢ =1, results is empty

WHILE (i <n) {
find first j > ¢ such that si],s[j] may match
WHILE j exists {

45

compare s[i...j — 1] with s[j...]
IF sf[i...j — 1] matches s[j...k] with least upper bound a {
add sf[i...j —1], s[j...k] to results as instantiations of «
DO { /* Find any more matches to this */
find instantiation of a starting at s[k + 1]
generalize o if necessary for the match
add instantiation to results
k = final position of instantiation
} UNTIL no more instantiations can be found

i=k+1 /* Start over looking for matches */
j = first j > i such that s[i], s[j|] may match
} ELSE /* This match didn’t work. */

j = next j such that s[i], s[j] may match
}
t=1+1

}

Lemma 5.2 The above algorithm is O(n?), when applied with an indentation alphabet in
which whether a pair of symbols matches may be decided tmmediately on comparing them.

Proof: In the worst case, the outer while loop will occur n — 1 times, once for each
possible value of ¢. Now, consider the worst case at each iteration. If the first symbol is z,
represent all symbols that match it as z. The second symbol must not match z in the worst
case, so call it y. The worst case is a level of z, y, followed by n — 2 symbols z. In this case,
every symbol after the second will match, causing an attempted sequence match, each of
which will fail. Each sequence match will fail after a single comparison, so the total number
of comparisons is n — 1 initial comparisons + n — 2 next comparisons in attempted sequence
matches, which yields 2n — 3 comparisons. This is the worst case, because any change that
adds a symbol comparison to a sequence comparison also removes a sequence comparison,
thus leaving the total number of comparisons equal. So the worst case for an iteration is
O(n), which means that the worst case for the whole algorithm is O(n?). O

Theorem 5.3 With LABLER s indentation alphabet, the above algorithm is O(n?).

Proof: The only matches that cannot be decided immediately in LABLER’s indentation
alphabet are of symbols of the form (c, m) with symbols of the form x, where the former
may be matched by a sequence of m instances of x or £ < m instances of x together with an
instance of (c, m’). This will add comparisons to an iteration in the case that the first symbol
is of the form (c, m) and it is followed by k < m symbols x, not followed by (c, m’). In this
case, O(k?) comparisons will be added, since k times, a sequence match will be attempted
and not abandoned until all x’s following the current one have been used. However, at
the next iteration, a match of the £ x’s will be found, removing & iterations, each with a

46

Start-Block Left-Justified End-Block

Start-Block (Blank, 2) End-Block

Start-Block (Left-In, p;) End-Block

Start-Block (Left-Out, p;) End-Block

Start-Block (Blank, 1) End-Block

Start-Block (Left-In, po) (Left-In, p3) End-Block
Start-Block (Blank, 1) End-Block

Start-Block (Left-In, po) (Left-In, ps) End-Block
Start-Block (Blank, 1) End-Block

Start-Block Left-Justified End-Block

Start-Block (Left-In, p;) End-Block

Start-Block (Left-Out, p1) End-Block

Start-Block (Blank, 1) End-Block

Start-Block (Left-In, po) (Left-In, p3) End-Block
Start-Block (Blank, 1) End-Block

Start-Block (Left-In, ps) (Left-In, p3) End-Block
Start-Block (Blank, 1) End-Block

Start-Block Left-Justified End-Block

Start-Block (Left-In, p;) End-Block

Start-Block (Left-Out, p;) End-Block

Start-Block (Left-In, p;) End-Block

Start-Block (Left-Out, p1) End-Block

Figure 5.4: Representation of the initial blocks of Figure 5.1

worst case of >= k comparisons. Thus, O(k?) comparisons are removed from the worst case
possibility by this sequence, so the worst case remains the same as if all matches can be
decided immediately. By Lemma 5.2, this is O(n?). O

5.3 A Segmentation Example

This section presents an example application of the logical hierarchy generation algorithm.
The algorithm is applied to the first section of the miniature document in Figure 5.1.

The initial blocks of the document correspond to the leaves of the tree in Figure 5.2; their
indentation alphabet representation is given in Figure 5.4. This representation contains two
repeated patterns: a block of (Left-In, p;) followed by a block of (Left-Out, p1) and a single
block of (Left-In, po), (Left-In, po). These patterns correspond to the shapes of the paragraphs
and list items, respectively. The third and fourth paragraphs offer the repetition of their
pattern; the initial parts of the first and second paragraphs also match it, including the
distances of the Left-In and Left-Out, so they are isolated elements of the pattern. Both

47

Start-Block Left-Justified End-Block

Start-Block (Blank, 2) End-Block

Start-Block (Left-In, p;) (Left-Out, p;) End-Block
Start-Block (Left-In, p3) (Blank, 1) (Left-In, p2) End-Block
Start-Block Left-Justified End-Block

Start-Block (Left-In, p;) (Left-Out, p;) End-Block
Start-Block (Left-In, p3) (Blank, 1) (Left-In, p2) End-Block
Start-Block Left-Justified End-Block

Start-Block (Left-In, p;) (Left-Out, p;) End-Block
Start-Block (Left-In, p1) (Left-Out, p;) End-Block

Figure 5.5: Representation of the blocks of Figure 5.1 after combining pattern elements

Start-Block Left-Justified End-Block
Start-Block (Blank, 2) End-Block
Start-Block Left-In Left-Out End-Block
Start-Block Left-In Left-Out End-Block
Start-Block Left-In Left-Out End-Block
Start-Block Left-In Left-Out End-Block

Figure 5.6: Representation of the blocks of Figure 5.1 after merging

lists form repetitions of the list item pattern. Grouping according to Step 3 yields a level
made up of the following: the heading, the start of the first paragraph, the first list, the
end of the first paragraph, the start of the second paragraph, the second list, the end of the
second paragraph, the third paragraph, and the fourth paragraph. The blocks of this level
are represented in the indentation alphabet as shown in Figure 5.5.

The merging step finds that the lists interrupt their surrounding paragraphs, yielding a
level consisting of the heading and the four paragraphs. Since merging combinations of nodes
retains the current level of granularity and does not introduce the effects of the interrupters,
this yields the representation in Figure 5.6.

The next step finds a pattern of four repeated elements, each consisting of a single block
of the form Left-In, Left-Out. These are combined, yielding a level that consists of the heading
and the section body. Finally, these two blocks are the vertically closest to each other, since
they are the only blocks, so they are combined to form the root level of the whole section.

5.4 Classification Effects

The preceding sections describe the segmentation algorithm as it is used to build a hierarchy
without intervening classification steps. In the actual system, not only are the nodes of each

48

level classified immediately upon formation of that level, but the results of this classification
also provide feedback for the segmenter; some areas of the level may be resegmented as a
result. Moreover, the algorithm itself is adjusted slightly to make use of the classification
results.

Step bb is adjusted to exploit classification information. When sequences of nodes that
form patterns are grouped together to form new nodes, so are sequences of isolated nodes that
share a classification. Thus, for example, several theorems in a row will be grouped together
into their own structure. Additionally, classifications may be specified as ungroupable; blocks
with these classifications will not be combined with any other blocks until a specified step
has been reached. LABLER saves blocks of the title part until the vertical spacing step, and
it saves headings for special processing into sections at the end, in order to form the sections
according to the numbering scheme of the headings.

Finally, the classifier provides feedback, once the segmentation algorithm has been per-
formed. If one or more adjacent segments cannot be convincingly classified, an attempt is
made at resegmentation. When the classifier has been trained, as will be described in Sec-
tion 6.3, convincing classification means that the text block has a similarity to the chosen
structure of at least .5.5 Resegmentation may alter up to one structure at each end of the
run of badly classified segments. The first attempt is to group sub-blocks by vertical prox-
imity, rather than repeated shapes. That is, all text sub-blocks in the considered area that
are separated by blank space of the minimum height found within the area are joined to
form new blocks. If this does not improve the classification overall, then resegmentation is
attempted first by extending the original blocks, and then by regrouping the sub-blocks from
scratch. If these desperate measures are called for, then all possible groupings are considered;
this is theoretically a costly process (exponential time), but in practice the sequences of bad
classifications are quite short, so this does not pose a large problem.® Also, hierarchy leaves
(blocks formed to start with by the external algorithm) that yield no useful classification are
removed from the final tree; these blocks are presumed to be parts of basic structures, and
they may be needed to find the patterns of which the basic structures form elements, but
once this purpose has been served, they are superfluous.

SWithout such a basis, a cutoff similarity must be chosen based on some kind of heuristic.
6 Also, in practice, this kind of wholesale resegmentation is rarely necessary.

Chapter 6

Structure Classification

Classification of primary logical structures proceeds based on comparison of the text blocks
to predefined structure prototypes. The prototype of a structure describes the cues that
would typically identify this structure. This does not imply that all indicated cues would
typically be present, but rather that any of them might commonly contribute to recognition
of the structure.

The prototypes rely heavily on geometric cues. The use of geometry in the segmenter
makes this emphasis natural; heavier use of shape information than characters and words also
suits a system designed to use the results of OCR, since OCR cannot yet provide assurance
of every character. All the cue types (except internal shape) discussed in Chapter 3 are
included, however, since they can be necessary in some cases and highly useful in others.

A prototype consists of a set of attribute/value pairs. Each attribute describes some facet
of a text block that falls into the domain of the observables discussed in Chapter 3. (These
do not, however, have a one-to-one relationship; their correspondences are illustrated in
Figure 6.1.) Some attributes have sub-attributes, and some values may remain unspecified.
Section 6.1 describes the attributes and their possible values.

A text block is compared to a prototype by finding the distance between the two with
respect to each attribute, according to the measurement discussed in Subsection 6.1.2. These
distances are combined to yield the total distance. Each segment of text is classified by
assigning it the structure of the prototype to which it is nearest (i.e., most similar). Thus,
primary classification can be described as follows. Given a set of prototypes P = {p1,...,p.},
corresponding to classes C' = {cy, ..., ¢, } respectively, and given a distance function D, the
classification function C! (applied to a text block b) can be defined:

Cl(b) = ¢; s.t. (D(b,p;) = min D(b, pj))

This process is discussed in detail in Section 6.2, along with the process of classifying sec-
ondary structures based on these primary results. Section 6.3 presents a method of reflecting
the various degrees of importance of the attributes in a prototype.

49

50

6.1 Logical Structure Prototypes

The prototypes proposed here for logical structures comprise the following attributes: shape,
context, height, symbols, fonts, and children. Any attribute may remain unspecified in
a prototype; all segments are considered to match an unspecified attribute. Each attribute
is described in detail, together with any subattributes, in Subsection 6.1.1. Figure 6.1 sum-
marizes the attributes and subattributes, together with their relationships to the observable
categories defined in Chapter 3. The complete lists of resulting observables and prototypes
for primary structures are given in Appendix A.

The distance measurement is described in Subsection 6.1.2. The details of the resulting
algorithm are supplied in Section 6.2. Sample existing prototypes are shown in Figure 6.2

6.1.1 Prototype Attributes
The Shape Attribute

The shape of a document segment is a representation of its text contours in the indentation
alphabet described in Chapter 5. This belongs to the contours subcategory of geometric
observables in Chapter 3.

The Context Attribute

The context attribute enables a small degree of context-dependence in the classification
algorithm; it provides a description of a prototypical predecessor and successor,' as well as a
special typicality attribute if appropriate. The predecessor and successor subattributes
belong to the local context category of observables; typicality belongs to the global context
category.

The predecessor and successor subattributes consist of the following descriptive sub-
attributes.

e Shape Again, this is the representation of a text block in the indentation alphabet
described in Chapter 5.

¢ Sameness This indicates whether the geometry of the predecessor/successor is pro-
totypically the same as that of the segment in question. For example, a list item is
typically geometrically similar to both its predecessor and successor; a special para-
graph is not. (These expectations are violated in the case of the first and last items
in a list, as well as by a run of adjacent special paragraphs; this fact highlights the
differences in meaning and basis for inclusion between the cues indicated by prototypes
and the requirements imposed by parsing-based systems.) Font is also considered in
this comparison, when the information is available.

IThis refers to the actual predecessor and successor of a node within its level; if the node has a left
(right) sibling, it will be the predecessor (successor), but the sibling relationship or its lack does not affect
the analysis described here.

51

Shape ----_-____
-~~~;;;“\‘_; Internal
_ T Geometry
Height == -----------ooo o TIIIio-_
— T External
Start Font——— Face, Size
Font < Tl
Main Font — Face, Size el
""" Font
Marking
Expected e Symbols
Symbols < =l
Unexpected \\‘\\\\
Typical ~= === mm e 7| Words
\ Linguistic
Context Predecessor Shape, Blank, Same, Category|
' | Numbers
~Successor ——— Shape, Blank, Same | \\
E , " Global
xpected Categories | Context

Children< |
Unexpected Categories

Figure 6.1: Attributes and their observable types. Attributes that belong to the same
observable have been grouped together in boxes. Multiple observables required to cover the
same attribute have also been grouped in boxes. Attributes are connected to their observables

by dashed lines.

52

e Blank This indicates whether a blank space (greater than the interline spacing of the
page) should exist between the text under consideration and its predecessor/successor.

e Category This applies only to the predecessor of a segment, and it describes the
classification that would prototypically be assigned to it. For example, the category
of the predecessor of a prototype proof is theorem, where theorem includes theorems
and lemmas.

The typicality attribute specifies whether the structure is expected to have the shape
typical of a relevant (specified) ancestor in the structure tree (Figure 3.2). For instance, a
theorem is a special paragraph and is therefore expected to differ in shape from the typi-
cal paragraph within the document. The method of determining typicality is described in
Subsection 6.1.2.

The Height Attribute

The height specifies the typical length of the structure, measured in lines. For instance,
a heading has a typical height of 1. (Any value may be specified for the height, but in
practice this is only used for structures expected to consist of a single line.) As mentioned
in Chapter 3, this attribute is a special case of the contours subcategory of the geometry
category of observables.

The Symbols Attribute

The symbols attribute consists of a description of typically appearing or non-appearing sym-
bols. It includes both non-linguistic symbols and the small amount of word-based processing
included in the classification step. It thus combines the symbols subcategory of the marking
category and the linguistic category of observables of Chapter 3. This attribute consists
of a list of positive and/or negative expectations. (Positive expectations typically appear;
negative expectations typically do not.) Each of these specifications includes a list of sym-
bols (or words) and a position indicator, which may be one of: start, end, any, all. A
positive (negative) expectation with a position of start indicates that one of its symbols
should (should not) start the structure; end refers to ending the structure; any indicates an
expectation about whether the symbol(s) will appear anywhere in the text segment.

A11 functions a bit differently; it indicates an expectation that each word, defined as a
space-delimited string of characters, in the text segment will (or will not) contain one of the
specified symbol strings. Naturally, the symbol strings specified for all may not contain the
space character, . (In all discussions below, a space-delimited word must never contain ;; a
space-delimited word within a given string is a substring that falls between two ., characters
or is bounded at one end by an end of the string and at the other by).

For example, headings typically do not end with a punctuation mark that may end a
sentence;? hence, the heading prototype includes a negative expectation of { {., !, 7}, end).

2Sometimes they do; this indicates the value of using prototypes, rather than strict definitions.

53

The string list in an expectation must not be @) or a superset of X, as these choices always
lead either to an expectation that is impossible to meet or to an expectation that is always
met. Moreover, none of the strings may consist only of .

For start and end, including positive and negative expectations is a notational conve-
nience; given a finite alphabet of recognizable symbols, the negative expectations can be
expressed in terms of positive expectations. Let expectations be expressed as above, with an
additional tuple element of P or N, to indicate positive or negative expectations, respectively.
Let s be a string of length k, s = sq, ..., Sk, and let the alphabet of symbols be . Using the
notation a as a shorthand for the set of strings formed by concatenating the symbol a with
each individual symbol in ¥, we have the following.

(N, {s}start) = (P, (2 —{s1})U (s1(X —{s2})) U (s152(% — {s3}))

U ... U (81,...8-1(2 — {sx})), start)

(N,{s},end) = (P, (¥ —{sx})U ((Z — {se-1})se)
U ((E — {sk,g})sk,lsk) U ...
U ((E — {Sl})Sg e Sk), end >
Now, let S represent a group of strings, in which the maximum length is m, and let P;(s)

represent the symbol in position ¢ of string s. Let Pi(S) = UsesPi(s). Let X1, represent
all strings formed by selecting one symbol from ¥; and following it with a symbol from 3.

(N,S,start) = (P, (X — Pi(9)) U (Pi(S) (¥ — P(S))) U

U (Py(S) Pa(S) ... Pu1S (3 — Pu(S))), start)
(N,S,end) = (P, (B~ Pu(S)) U (T~ Pm 1(5)) Pu(S)) U
U ((Z = Pu(S5)) Pa(S) .. Pn-s(S) Pu(S)), end)

That is, negative expectations may be expressed by enumerating in positive expectations
the choices they do not exclude.

For any and all, however, the negative expectations are more than a notational conve-
nience; they add value.

Proposition 6.1 VS # 0 (AS', position € { start, end, any, all}
(1, 5, any) = B, 5" position))).

Proof: Suppose such an S’ and position exist. Consider each possible value of
position.

Case 1 Position is start.
Consider s € S, s’ € S'. Consider the string s's. This meets the expectation (P, S’ start),
but it violates the expectation (N, S,any).

54

Case 2 Position is end.
Consider s € S, s’ € S'. Consider the string ss’. This meets the expectation (P, S’ end),
but it violates the expectation (N, S, any).

Case 3 Position is any.
Consider s € S, s’ € S'. Consider the string ss’. This meets the expectation (P, ', any),
but it violates the expectation (N, S, any).

Case 4 Position is all.
Consider cases of the contents of S’ and S.

Case 4a 3s € SN (X —)
Consider s above and s’ € S’. Consider the string ss’. This meets the expectation
(P, S’ all), but it violates the expectation (N, S, any).

Case 4b ds € S s.t.
Vsw (8w a space-delimited word within s = s, € 5')
Consider the string s from above. This meets the expectation (P, S’, all), but
it violates the expectation (N, S, any).

Case 4c Vs € S
(s contains ; A ds,, a space-delimited word within s s.t. s, & S")
Consider some string s € S, and consider the string consisting only of its space-
delimited substring s, ¢ S’. This violates the expectation (P, S’, all), but it
meets the expectation (N, S, any).

Each subcase leads to a contradiction, so this case leads to a contradiction.

Each case leads to a contradiction. Thus, the supposition leads to a contradiction, so the
S’ and position do not exist. O

Proposition 6.2 VS # ()
(AS’, position € { start, end, any, all}
((N, S,all)=(P, S’ position))).

Proof: Suppose such an S’ and position exist. Consider each possible value of
position.

Case 1 Position is start.
Consider s € S, s’ € S'. Consider the string s's. This meets the expectation (P, S’ start),
but it violates the expectation (N, S, all). Thus, the assumption that the two ex-
pectations are equal leads to a contradiction.

Case 2 Position is end.
Consider s € S, s’ € S'. Consider the string ss’. This meets the expectation (P, S, end),
but it violates the expectation (N, S, all). Thus, the assumption that the two ex-
pectations are equal leads to a contradiction.

55

Case 3 Position is any.
Consider s € S, s’ € S'. Consider the string ss’. This meets the expectation (P, S, any),
but it violates the expectation (N, S, all). Thus, the assumption that the two ex-
pectations are equal leads to a contradiction.

Case 4 Position is all.
Consider s € S, s’ € S'. Consider the string ss’. This meets the expectation (P, 5", all),
but it violates the expectation (N, S, all). Thus, the assumption that the two ex-
pectations are equal leads to a contradiction.

Each case leads to a contradiction. Thus, the supposition leads to a contradiction, so the
S" and position do not exist. O

The Fonts Attribute

The fonts attribute consists of expectations about the fonts in a particular structure, de-
scribed in terms of the predominant font in the document. This belongs to the font subcat-
egory of the marking category of observables in Chapter 3.

This attribute has two subattributes: start and main. The start font attribute de-
scribes the expected font to begin the structure; the main font describes the font expected
to predominate within the structure. The descriptions are not absolute, but rather given by
comparison to the main font of the document, and they specify characteristics of the font
face and size. The face of a font may be expected to be heavier than the typical or not,
and the size of a font may be expected to be the same as typical (i.e., normal), larger, or
smaller. For example, the theorem prototype includes the specification of start font as
(heavy, normal).

The Children Attribute

The children attribute describes the typical or atypical categories of the hierarchical chil-
dren of a given structure. It thus constitutes a special case of the local context category of
observables of Chapter 3. It consists of a list of positive and negative expectations, each of
which is a list of children. A positive expectation indicates that the structure should have a
child that is a member of its category list; a negative expectation indicates that the structure
should not. (Observe that an empty category list makes a positive expectation impossible
to meet and makes a negative expectation always hold vacuously.)

For instance, a list’s children are typically list items or sub-lists; moreover, any other
categories of children are atypical and contribute to a structure’s distance from the list
prototype.® Hence, the children attribute of the list prototype includes the positive expec-
tation {list item, list} and the negative expectation ¥ — {list item, list}, where ¥ is the set
of all possible structure categories.

3 A list is not, however, considered a secondary structure; a structure with many children, of which one is
a paragraph and the rest list items is probably a list that contains an interruption.

56

Paragraph

Geometry: Left In Left Out
Context: Pred.: Blank: yes
Succ.: Blank: yes
First Paragraph

Geometry: Left In Left Out
Context: Pred.: Blank: yes, Same: no, *Category: heading
Succ.: Blank: yes, Same: no
Heading
Context: Pred.: Same: no, Blank: yes
Succ.: Same: no, Blank: yes*
Height: 1

Symbols: Positive: ({1, ... 9}, start)
Negative: ({.,!, 7}, end)

Font: Main: (heavy, large)

Figure 6.2: Sample prototypes. Attributes with a * immediately preceding their name and
specification are marked as necessary. Note that the paragraph prototype includes both
the shape cue for indented paragraphs and the cue of surrounding white space, often used
without indenting. First paragraph is a type of special paragraph, a paragraph that differs
from its surrounding context.

The inclusion of negative as well as positive expectations adds expressiveness to the
children attribute. Expressing children expectations as pairs of P or N (corresponding to
positive or negative expectations) and a list of structure categories, we have the following
result.

Proposition 6.3 AC:, C5((P,Ch1) = (N, Cy)).

Proof: Suppose such a C; and Cs exist. Consider a structure with no children. It meets
the expectation (N, C5), but it does not meet the expectation (P, Cy). This contradicts the
assumption that the expectations are equal. Thus, such a C; and C; cannot exist. O

57

6.1.2 Distance Measures

The measurement of the distance from a segment to a prototype is given on a scale from 0
to 1 by a combination of the following attribute distances (each of which is normalized to
fall within the interval [0,1].) An unspecified attribute always yields distance 0. Attributes
may also occasionally be marked as necessary; a non-zero distance from a necessary attribute
automatically generates a distance of 1 from the prototype.

The distances with respect to the attributes are combined to form the total distance.

Thus, given an attribute set A = {ay, ..., a,,} with corresponding distance functions {d, ... d,}
and a set of weights {w; ..., w,,}, the distance between a prototype p and a text block b is
given by:
D(p,b) = D> _(wi)(di(ai,b)) -
i=1

The immediately following description discusses attributes and subattributes, with the dis-
tances of subattributes contributing to the distance of their containing attribute. This is
equivalent to combining all lowest-level subattributes directly, with the appropriate set of
weights. That is, if each attribute a; has s; subattributes sa;; ... sa,,,, each of which con-
tributes to d; with a distance function d;; and weight w; ;, 1 < j < s;, then we have the
following.

m

D(p,b) = ;(wi)(di(az’,b))

m 3;

= ;((wi);(wi,j)(di,j(sai,j,b)))

m 8

= > > ((wi)(wig)(dij(sai;,0)))

i=1j=1

We can reparameterize as follows. Let n = >, s;, and let f(k) = (4,
j = k. Then, given k, f(k) = (i,7), let wp, = (w;)(wi;), let d), = d,
This yields:

j) such that 33:7% s; +
i, and let sap = sa; ;.

D(p,b) = Y. (uh)(d(s6}, 1))

k=1
The attribute distances are defined as follows.

Shape The gross geometric distance between a text block and a structure prototype is given
by the Levenshtein distance [79] between the indentation alphabet representations. The
Levenshtein distance is given by a weighted sum of the minimum inserts, deletes, and
(optionally) changes required to convert one string to another (the minimum here is
with respect to the total weighted sum); in this case, inserts and deletes are weighted
equally, and changes are disallowed. This is normalized by dividing by the sum of the
lengths of the two representations.

58

Context The context distance is a combination of its predecessor and successor distances
and its typicality distance. The predecessor and successor distances combine their
sub-attribute distances, which are described below.

Shape This distance is precisely as described above.
Sameness This distance is O if the sameness expectation is satisfied; otherwise it is 1.
Blank This distance is 0 if the expectation is satisfied; otherwise it is 1.

Category This distance is 0 if the expectation is satisfied; otherwise it is 1.

The typicality distance is O if the typicality is as expected and 1 otherwise. It is
determined in the following manner. First, classification is performed without consid-
ering this sub-attribute. Then, for each structure type whose subtypes may consider
typicality (e.g., paragraph, since typicality is relevant to special paragraphs), the typ-
ical shape at this level is found. The most common shape among segments classified
with this structure or its descendents whose identification as typical will allow some
structures to match prototypes expected to be non-typical is chosen as the typical
shape. This allows the distance to be found, and classification is performed again for
all segments that may be affected.

Height The gross height distance is given by the difference in height between the prototype
and the text segment; this is normalized by dividing by the maximum of the two heights.
Thus, a difference of one or two lines, while quite significant in a structure expected
to be short, will be relatively insignificant in a structure expected to be large. (As
mentioned in Subsection 6.1.1, however, the only prototypes that use height expect a
value of 1.)

Symbols The gross symbol distance is given by the number of unmet symbol expectations,
1.e., positive expectations for which none of the symbols is found in the text block
at an appropriate position and negative expectations for which one of the symbols is
found at the specified position. This distance is normalized by dividing by the total
number of expectations.

Fonts The font distance is given by a combination of the start font distance and the
main font distance. Each of these is defined as the number of font characteristics
that violate expectations, divided by the number of characteristics considered. Since
the prototypes only consider 2 font characteristics, this means that the font distance
is 0 if both face and size are as expected, .5 if face or size (but not both) meets the
expectation, and 1 if neither does.

Children The children distance is a combination of the distance due to positive expecta-
tions and that due to negative expectations, which are determined slightly differently.
The gross positive expectation distance is given by the number of unmet positive ex-
pectations, i.e., the number of positive expectations for which none of the children

59

match any of the specified categories. This distance is normalized by dividing by the
number of positive expectations. The gross negative expectation distance is given by
the number of wviolations of the negative expectations, i.e., the number of children
that belong to a category given in a negative expectation. This distance is normalized
by dividing by the total number of children; hence, a single bad child forms a small
deviation in a large group but a large deviation in a small group.*

6.2 The Classification Algorithm

The prototypes are designed with easy application in mind; since the only surrounding
categories that are considered are of the children of a node and of its predecessor on the
same level, classification proceeds as the tree is built from the bottom up, moving through
each tree level sequentially immediately after it is formed. FEach node is examined and
assigned to the category identified with the prototype to which it is nearest, 7.e., that from
which its distance is minimal. This requires a second pass over structures initially identified
to have types for which the typicality subattribute of context may be relevant.

In the absence of further information about how to combine distance measures, the
distance with respect to each attribute is given by the average of its sub-attribute distances;
the total distance is the average of main attribute distances. Section 6.3 discusses a weighted
approach to distance combination, based on machine learning.

In the case of a tie, the more specific category is chosen. (The more specific category
resides at a deeper level in the tree of Figure 3.2.)

Lemma 6.4 Two identically formatted text blocks that appear in sufficiently similar con-
texts, without distinguishing linguistic markers, will receive the same primary classification.

Proof: The classifications are determined by the distances from the prototypes. For
each prototype p, a text block 0’s distance is given by

D(p,b) = é(wk)(dusa’k,b))

where each say, is a prototype attribute. For identically formatted text blocks, the contribu-
tions of all layout attributes, including geometry and marking, will be the same. Thus, the
only attributes that may contribute to a different total distance are contextual and linguistic
attributes; if these are sufficiently similar, the results will be the same. O

The above process assigns primary categories only. When this is complete, a second phase
begins; this phase assigns secondary categories. First, node repetitions are coordinated, in
the following sense. If a sequence of nodes ny,no,...,ng can be found such that £ > 2 and

“For instance, a paragraph child in a group with 10 list item children will not by itself prevent the parent
from matching the list prototype, but a paragraph child with a single list item sibling probably will.

60

n;+1 is the sole descendent of n; for all 1 < i < k, this sequence forms a repetition that may
need to be coordinated. If there is no pair n;, n;.; such that the assigned classifications of
these nodes ¢;, c;+1 bear a special relationship allowing the latter to be a sole descendent
of the former, then the sequence does need to be coordinated. Coordination collapses the
nodes into one (with parent the parent of n; and children the children of ny); if the nodes in
the repetition belonged to different categories, the replacement node is assigned the category
from which the distance was least.

For example, if primary classification generates a hierarchy partially shown in Figure 6.3,
then nodes 2, 3, and 4 form a sequence to be coordinated. Node 5 is part of the chain of
single descendents, but items are allowed to be sole descendents of lists, so it does not need
to be coordinated. Node 4 has the minimal distance of the group, so it replaces the entire
chain, with the parent of node 2 as its parent and node 5 as its child. (Note that if node 2
or 3 had replaced the chain, the process would have to repeat, since node 5 would no longer
be exempt from coordination.)

The newly resulting tree is searched for nodes that meet the descriptions of the defined
secondary categories, and these nodes are assigned the corresponding categories.

This process will treat identically formatted text blocks identically, unless their contexts
or relevant linguistic markers are substantially different. The linguistic caveat is desireable,
since the same formatting rule may occasionally be used for different (content-oriented)
structures, e.g., theorem and definition. That treatment may vary with context is unavoid-
able in a system that seeks to make use of the cues context provides, to help distinguish truly
similarly formatted structures from structures that have coincidentally similar appearances.

Theorem 6.5 Two identically formatted text blocks that appear in sufficiently similar con-
texts, without distinguishing linguistic markers, will receive the same classification.

Proof: The original primary classifications will be the same, by Lemma 6.4. Coordina-
tion and secondary classification are controlled by context, so if the contexts are sufficiently
similar, these will affect the final result the same way. Thus, under these conditions, the
classifications will be the same. O

6.3 Machine Learning for Attribute Weights

Some attributes contribute more strongly to the intuitive recognition of a particular struc-
ture than others; correspondingly, some attributes should be considered more important
components of a particular prototype than others. Similarly, strong indications that a text
block belongs to a given structure should sometimes inhibit the match between the block and
the prototype of another structure. That is, the partition of n-space formed by classification
should consist of regions of differing shapes.

In general, we have no a prior: reason to assign any particular attribute weights; thus,
without additional information, the distances are simply combined in averages reflecting

61

Paragraph Paragraph Paragraph vee
oo (d=.15) (d=.75) (d=.20)

node 1 node 2 node 6

Paragraph
(d=.75)
node 3

List
(d=.25)

Item
(d=.25)

S
2
[
BN

node 5

Figure 6.3: A coordination example. Nodes 2, 3, 4, and 5 form a chain of single descendents,
the top 3 of which need to be coordinated by collapsing them into node 4.

62

their hierarchy, as described in Section 6.2. Given access to a set of documents that provide
an adequate sampling of the types and styles likely to be processed, however, we can use
these as a training set for a machine learning approach to this problem.

The distance function D(p;,b) applied to a particular prototype and a text block then
becomes:

D(ps,b) = i(wi,»(dj(aj, b))

with a set of weights {w11,... Wi m,. ., Wn1,...,Wnn} corresponding to pairs of prototypes
and attributes.

We have a set of values, the distances with respect to each most basic attribute, and we
wish to find weights to assign to them, in order to achieve the correct answer with a weighted
average. This is precisely the problem that perceptrons (i.e., connectionist networks without
hidden nodes) are designed to solve. Perceptrons function by performing a gradient descent
on the error space defined by the activations of the output nodes, over each epoch of training,
in which all training inputs are activated and their results compared to the desired outputs.

Thus, we can assign weights to each attribute/value pair (including even those created
for other prototypes) for each prototype by training a single network with an input node
for each expected attribute/value pair and an output node for each structure classification.
For each training instance, the inputs are the distances with respect to the attribute values,
and the correct outputs are 0 for each inappropriate classification and 1 for each appropriate
classification. (Usually, exactly one classification will be appropriate, but not always; in the
case of special paragraphs, both the classification paragraph and that of the particular type,
e.g., theorem are appropriate.)

Since some attributes involve the results of earlier classification, however, the learning
task acquires a bit of subtlety. Simply using the correct values for these attributes can lead
to networks that rely heavily on this correctness; the result is that when the network is
used for classification, any errors are propagated wildly. Furthermore, secondary structure
classifications are unavailable at the time primary structure classifications are made, so using
their values is clearly inappropriate. Instead, the network is trained in two stages, one of
which provides part of the input for the other. The first stage excludes the attributes that
require classification information (children, predecessor category, and typicality) and trains the
rest of the network in the normal fashion. The next stage uses the results of this partially
trained network in order to provide classification values; it changes only the weights from
these attributes.

When we have trained the network to provide weights, we then replace the above classifi-
cation for primary structures with the process of activating the network with the distances of
the text block with respect to the attribute values of the input nodes. The output node with
the highest activation indicates the choice of structure classification, with one exception: if
this choice yields a structure that is a generalization of other structure classifications and one
or more of the more specific structures has an activation greater than .5, then the specific
structure (i.e., descendent of the original choice in the Figure 3.2 tree) of the highest activa-
tion is chosen. (Prototypes with unmet required attributes are eliminated, as before.) This

63

procedure is used in the example of the technical report collection discussed in Chapter 8.

Chapter 7

Specific Knowledge

The preceding chapters discussed the general form of the problem addressed in this thesis,
i.e., discovering logical structure in the absence of style knowledge. If, however, some infor-
mation about the style of a document is available, this knowledge is utilized as described in
this chapter.

7.1 Types of Knowledge

The available knowledge may take any of several forms; it also may include a combination of
them. If a complete style specification convertible to a ¢cFG with fully describable nontermi-
nals is available, however, the document should by analyzed by one of the parsing approaches
discussed in Chapter 2, not the approach in this thesis.

Information about the style of a document falls into three major categories: coordination,
structure relationships, and location. The first category refers to the coordination of logical
structure with its layout effects. For example, a common specification is that a paragraph
consists of an indented line followed by a sequence of zero or more lines flush to the left
margin; another is that a heading consists of one or two lines of heavy, large type. The second
refers to the expected relationships among logical structures. For instance, in some settings
(but not this thesis), a section consists entirely of subsections. Finally, location information
specifies the position in the hierarchy expected of a structure or a set of structures. This
location may be specified horizontally in terms of layout or vertically in terms of logic. For
instance, a title page appears at the far left of the hierarchy (corresponding to the first page
of the document, a layout specification), and it appears at the top (corresponding to the
most general logical divisions).

Any of these types of information may specify conditions that are necessary, sufficient, or
typical for a given structure. This specification and the knowledge type together determine
how the information is used. Observe that a knowledge set including either a necessary
and sufficient coordination specification or a necessary and sufficient structure relationship
specification for each structure, together with necessary location information for leaf nodes,

64

65

provides the kind of complete information used by the parsing approaches discussed in Chap-
ter 2.

7.2 Parsing

If the partial style knowledge provided takes a particular form, parsing can be included and
combined with more general document analysis. In particular, a set of symbols must be
described in terms of the types of conditions described below; they either describe coordina-
tion or provide a description of the children of a given structure, as a regular expression (a
relationship condition). In both cases, the conditions are sufficient to make a decision.

Given a relationship condition, consider two structures z and y to have the relationship z
description-child y if x forms a part of the regular expression describing the children of y and
x # y. Sufficient coordination conditions must be provided for some nonempty subset; the
rest of the set is formed by taking the transitive closure with respect to the description-child
relationship. These specifications and the resulting grammar may introduce new structures.

A grammar or set of grammars is formed, in which terminals correspond to structures for
which sufficient coordination conditions are provided; text matches such a terminal if it meets
the conditions. Nonterminals correspond to structures included through the description-child
relationship. The rules of the grammars are the obvious; the rule A — « is included if A is
a nonterminal whose sufficient children condition is described by the regular expression a.
(The coordination conditions used for matching in the grammar must be based on the same
essential observables used by the rest of the system, but they may involve more processing;
for example, a greater degree of linguistic detail may be appropriate.) Each topmost nonter-
minal (i.e., a nonterminal corresponding to a structure that does not have the relationship
description-child to any included structure) is the start symbol of a grammar. An example
of a grammar for the title page of a CS technical report at Cornell University is given in
Figure 7.1.1 Unless necessary horizontal location information is also included, each grammar
is automatically augmented to include repetitions of this symbol.

At appropriate locations (as specified by any necessary location conditions), parsing is
attempted based on each grammar in turn. As soon as a successful parse is found, the
attempts stop. Partial parses are also attempted, :.e., parses that begin with a nonterminal
other than the start symbol. Each grammar generates these in a partial order. Let str(X)
indicate the structure corresponding to the symbol X, and let S be the original start symbol
(before augmentation). Then, the symbols in the set ¥; = {X | str(X) description-child
str(S)} are used as possible starts after S; next the symbols in ¥y = {Y" | str(Y") description-
child str(X € X;)} are used, and so on.

This procedure can be applied to any level formed in the hierarchy in the usual way, so no
location information is strictly necessary. Without any indication of the correct location at
which to perform this, however, all possible parses must be attempted at each level; this can

!The grammar is shown with regular expression right-hand-sides; these rules are easier to see than the
form without regular expressions, and they are equivalent.

66

Title Page — Title Author number date address
Title — title_start title_continue*
Author — author_line™

Terminal Descriptions:

title_start Centered
title_continue Centered, does not follow extra blank space
author_line Centered, meets linguistic criteria for a name
or list of names
number Centered, does not meet linguistic criteria for a
date expression
date Centered, meets linguistic criteria for a date expression
address Left-In, follows extra blank space, immediately precedes

a blank page

Figure 7.1: A CFG for the title page of a computer science technical report at Cornell. This
is constrained to fall at the start of the document, and its start forms a top-level division.

become very costly. LABLER in its current form considers only cases in which a particular
form of location information is provided: the terminals of the grammar must correspond to
leaves in the full structure tree. (It is easy to see how to extend this to more general vertical
location specifications, however; parsing could be applied at any prespecified level.)

This procedure finds logical subtrees of the full hierarchy. Other subtrees are formed
by applying the more general method to the sequential runs of text blocks not successfully
parsed. These trees are combined with their neighboring parse trees when they reach the
same height, and the ordinary hierarchy building process continues; an exception is formed
if the topmost structure of a parse tree has vertical location information specifying that it
must be a top-level division. In that case, its parse tree is combined with any neighboring
trees as a final step.

7.3 Classification Procedure Adjustment

Many cases of less detailed partial information call for slight changes in the classification
procedure. In this case, the conditions should be limited to precisely the observables that
the prototypes use; this allows for simple and direct alterations to utilize this knowledge.
Both primary and secondary structure classification may be affected.

67

7.3.1 Coordination Conditions

Necessary coordination conditions essentially create new required attributes for the corre-
sponding prototypes. Thus, to incorporate such a condition, the appropriate attribute is
altered in the prototype and marked as necessary. A text block that does not match this
attribute will automatically generate a distance of 1 from the prototype (i.e., similarity of
0) and will therefore be excluded from matching.

Sufficient coordination conditions create a new, complementary situation. The corre-
sponding attributes of the prototype are again altered if necessary, in order to reflect the
specifications. The sets in which they are given are stored, and any text block that matches
an entire set automatically generates a distance of 0 from the corresponding prototype (i.e.,
similarity of 1) and will therefore match this structure. It may still match a more specific
structure as well, in which case that structure will be its classification.

Typical coordination conditions describe precisely what the prototypes are meant to
describe in a general way. Thus, their effect is to alter the prototype attribute values to
correspond to the style-specific knowledge they provide.

7.3.2 Relationship Conditions

Necessary relationship conditions, in terms of the kinds of structure relationships the system
recognizes, provide secondary-style structure specifications. If a necessary relationship is
also sufficient, a structure is redefined as a secondary structure, based on the specified
relationships. Otherwise, a primary structure retains its prototype, with the attributes
corresponding to the relationships in question adjusted and marked as required.

Sufficient relationship conditions, when not also necessary, add a secondary form to an
originally primary structure. (If the structure was originally secondary, they simply change
its definition.) The structure is found as usual during primary classification; it is also found
by matching the sufficient conditions during secondary classification.

Typical relationship conditions are incorporated into the corresponding prototypes, as
described above for typical coordination conditions.

7.3.3 Location Conditions

Most location conditions are not captured by the attributes included in LABLER prototypes.
Thus, they usually contribute to useful knowledge only when combined with the conditions
that can form a grammar. The starts and ends of document portions separated by blank
pages, however, are indicated in the context attributes of the corresponding first and last
structures. (In many cases, these will simply be the start and end of the document.) Thus,
conditions based on whether a structure starts or ends such a document portion, such as a
requirement that a title part begin one, are incorporated identically to coordination condi-
tions.

68

7.4 LABLER’s Knowledge

LABLER uses style knowledge to parse the title parts of technical reports. This is the only
parsing it performs; the hierarchy corresponding to the body of a document is built up ac-
cording to the algorithm described in Chapters 4 through 6. (It does also use two sufficient
coordination conditions; paragraphs and list items are sufficiently, but not necessarily, iden-
tified by their shape.) The grammar LABLER uses for the title parts includes the title page
description given in Figure 7.1. It is described in detail in Appendix B.

Chapter 8

Evaluation

8.1 Evaluation Methodology

Although segmentation and classification interact, they are essentially separate processes,
calling for separate evaluations. Since segmentation consists of identifying certain pieces of
text as units, as opposed to all other possible groupings, a natural analogy is formed with
information retrieval. For classification, a pair of measures are described to capture both
the rate of all errors and the rate of errors of relative significance.

LABLER’s performance on these measures is given, together with some baseline results,
in Section 8.2.

8.1.1 Segmentation Evaluation

The evaluation of the segmentation performance relies on the ideas of precision and recall
from information retrieval. In the realm of IR, these are defined as follows [78]:

Relevant retrieved
Total retrieved

Precision =

Relevant retrieved

Recall = Total relevant

Logical groupings are analogous to relevant documents, and the groups formed are anal-
ogous to retrieved documents. This yields:

Logical groups formed

P 51 segmen =
rectStOM segment Groups formed
B Good groups
~ Good groups + Bad groups
Logical groups formed
Recall segment

Logical groups

69

70

Good groups
Good groups + Missing groups

It is also interesting to consider segments that are almost right, which can be defined as
follows: if a proposed segment that does not precisely match any good segment does share an
edge with a good segment, and they have the same classification, the proposed segment can
be considered to have been found instead of the good segment. For instance, if the last line
of a paragraph has been incorrectly separated from the rest of it, the proposed segment that
includes the first part of the paragraph may have been found instead of the paragraph itself.
(Only one structure is counted as found instead of any good structure that is not found, to
keep the accounting reasonable.) In many imaginable applications, such as browsing and
retrieval, the proposed structure would be likely to occur where the correct structure should,
yielding a result that, from a human perspective, is almost right and thus is of interest but
includes too little or too much.

We can then consider this more forgiving measure:

Logical (or almost) groups formed

PTeCiSionsegmentwitha,lmosis = GTOUpS f'o,,,,med
_ Good groups + Instead groups
B Good groups + Bad groups
Recall Logical (or almost) groups formed
€CAll segmentyithaimosts — .
gmentuithal Logical groups

Good groups + Instead groups
Good groups + Missing groups

Note that if group z is found instead of group y, then z is still counted among the bad
groups, and y is still counted among the missing groups.

Another measure of the performance of the segmenter is the percentage of correct deci-
sions it makes. Each decision either combines a pair of adjacent text blocks or leaves them
separate. Thus, as each level is formed, if there are n text blocks in the preceding level, the
segmenter must make n — 1 decisions. The segmenter stops creating levels when it no longer
chooses to combine any text blocks; thus, considering one additional level identical to the
topmost allows us to evaluate the decisions that led the algorithm to stop generating levels.

This measure can be described as follows, for a performance that generates levels 1
through k, starting with an initial set of text blocks at level 0.

k+1
Decisiongegment = Z Adjacent pairs at level (i — 1) correctly grouped
i=1
at level 1

k
+ (Text blocks at level i) — 1
=0

2

71

This measure can reasonably take into account decisions that include previously formed
incorrect segments, if we define correct decisions in one of the following manners. Let s; and
s;+1 be two segments. For a strict measure, if the next correct structure that includes all
of s; is also the next correct structure that includes all of s;,1, then the correct decision is
to combine the two; otherwise, the correct decision is to leave them separate. For a more
generous measure, also include as acceptable the choice to combine the structures, if the
next structure that contains one of them also contains any part of the other one.

Finally, a more results-oriented measure can be found by aligning the generated structure
hierarchy with the correct one. Alignment of trees is defined in [50], in the following manner.
Consider all information about a node other than its position in the surrounding tree to be
contained in a label for that node. To form an alignment, first add nodes with blank labels
to each tree in such a manner that the resulting trees have identical shape. Then form a tree
by overlaying these on each other, i.e., form a tree with the same shape as the two generated
trees, in which the label of each node is an ordered pair of the label from the corresponding
position in the first tree and the label from the corresponding position in the second tree.
This hierarchy is an alignment. Its wvalue is found by defining a distance measurement on
labels and summing the distances between the elements of the label pairs over the entire
tree. The optimal alignment of two trees is the alignment with minimal value; its value is
the alignment distance between the original two trees. Figure 8.1 shows two trees and their
optimal alignment.

Alignment applies more naturally to the evaluation problem than does the more tradi-
tional tree edit. In the latter, all nodes are presumed to come out of the same pool of possi-
bilities; either two nodes are really the same node, or they are not. This means that a single
insert or delete adds or removes a node and all its descendents (the quantity of which may
affect the cost of the operation) and that no accommodation is made for degrees of similarity
among nodes. Alignment treats each node separately and compares the contents of nodes;
thus, nodes are compared separately from their descendents, and the results may reflect
finer-grained judgements about the degree of similarity among nodes. The alignment dis-
tance between ordered trees 77 and 7, can be found in time O(|T}|-|T%|- (deg(71)+deg(73))),
using the algorithm described in [50].

Complete document structure hierarchies form a special case of ordered trees. In com-
paring segmentations, the relevant attributes of a node are the position at which it begins
and the position at which it ends. Represent these by line numbers, and call them start(n)
and stop(n), where n is a node. The children of a node represent a way of dividing the lines
covered by the node. Thus, start of the leftmost child of n is start of n, and stop of the
rightmost child of n is stop of n. Moreover, start of any n not a root or leftmost child is
the (text) line following stop of its left sibling. Since the root node must begin at line 1 and
end at the end of the document, the start of every node is predetermined (by this fact, its
parent, or its left sibling), and the stop of any node with no right sibling is predetermined.

To reflect the above facts, each node is labeled by its stop value and a tag that indi-
cates whether it is a rightmost child. Rightmost children are always considered to match
each other. This corresponds to allowing changes to a parent to automatically change the

72

@ @ A

[<D, D>) [<E, k>] <F, F> <G, G> <H, H>

Figure 8.1: Two trees and their optimal alignment. If each pair of non-equal labels has a
distance value of 1, the alignment distance is 2.

73

start and stop of its leftmost and rightmost child, respectively, and allowing a change to
the stop of a node to automatically adjust the start of its right sibling. (A node whose
range automatically shrinks to 0 does not disappear, however; it acquires an empty label.)
Represent a label /; of a node n; as a pair (s;, ;), such that s; is stop(n;) and r; is true if n;
is a rightmost child and false otherwise. Represent a blank label as A. Then, interpreting

an alignment distance between tree 7; and 7} as a distance from T; to T}, the distance of a
label pair (I;,1;) is defined to be:

0 if (si = 8;) V ((r; = true) A (r; = true))
insertion cost if =)

a(li, lj) = deletion cost if L =X
shift cost otherwise

For the purposes of comparison in this thesis, all costs are 1 to maintain simplicity, but they
could be adjusted to weight different kinds of changes differently, just as in string comparison
or traditional tree edit. In particular, the shift cost could depend on the difference between
the stop values.

For example, figure 8.2 shows two hierarchies of the form of full document structure trees,
their representations for alignment as performed in this thesis, and their optimal alignment.
With all costs 1, the alignment distance between the trees is 2.

Alignment distances as raw integer figures provide very little information; an alignment
distance is meaningful relative to the size of a hierarchy. Hence the alignment distances
given in this thesis are normalized by the sum of the sizes of the correct hierarchy and the
derived hierarchy.

Note that alignment essentially combines precision and recall in the following way. If a
precision error and a recall error are found involving overlapping sets of lines at the same level
of the tree, these are summarized together as a shift; otherwise, a precision error requires a
delete and a recall error requires an insert.

8.1.2 Classification Evaluation

Each classified node in a document hierarchy is characterized as correct, overgeneralized,
overspecialized, or incorrect. A correct node is one that has been classified as the most
specific logical structure in the system that appropriately describes it. An overgeneralized
node has been classified as an appropriate logical structure, but there exists in the system
a more precise logical structure that is also appropriate. (For example, a theorem may
be classified as a paragraph.) An overspecialized node has been assigned a structure that
is a subtype of its appropriate structure. Finally, an incorrect node has been assigned an
inappropriate structure type.

These characterizations yield two slightly different measures of accuracy. Precise accu-
racy is the percentage of classifications that are characterized as correct; generalized accuracy
is the percentage of classifications that are characterized as correct, overgeneralized, or over-
specialized, combining the overgeneralized and overspecialized into an “almost.”

74

(112

/\ /\
(6] (-2 2

-6
) (o)) @0 G

(a) Two trees of the form of full document structure hierarchies

AN %N

s @0 @0 (oo

(b) Representations of the above trees for alignment

7‘

[< <12, f>, <12, > >j

/\

[<<6, >, <5, f>> j [< <12,t>, <12, t> >j

T N

[<<3,f>,<3,f>>j [<A, <4,f>>] [<<6,t>,<5,t>>j [<<9,f>,<9,f>>j [<<12,t>,<12,t>>j

(c) The optimal alignment of the above trees

Figure 8.2: Alignment of hierarchies of the form generated by document structure

75

Correct

Precise accuracy =
Y Correct + Almost + Incorrect

Correct + Almost
Correct + Almost + Incorrect

Generalized accuracy =

8.2 Performance

This section describes LABLER’s performance on a test set of 13 computer science technical
reports, comprising about 360 pages and over 5000 structures. LABLER’s results were com-
pared to correct hierarchies defined by versions of the documents that were marked up by
hand. (This markup was performed after an initial version of the algorithm was developed
but before the algorithm reached its current form.) Floats are handled by a preprocessor
and not counted in the performance, as they would artificially boost the results; this reduces
the number of structures under consideration to 4780.

The title part is found by parsing according to the style knowledge in Appendix B, and
results are given both with and without considering the title part; without title parts, there
are 4474 structures. The results with the title part demonstrate the practical effects of using
LABLER, as a whole. Since the heart of the approach lies in the non-parsing algorithm, the
results without the title part indicate the performance of LABLER’s real contribution.!

The indentation values generated from OCR were corrected by hand when they were
far from their correct values. (This typically happens when an unrecognized character is
interpreted by the OCR as a figure and is thus skipped in forming the line of text.) LABLER
relies heavily on reasonably accurate indentation values, which interferes with its direct
usefulness on some OCR output; a fruitful area for further research would be the automatic
handling of likely indentation errors, perhaps by identifying which values are likely to be
errors (and then finding better values or presenting them interactively to a user for correction)
or by incorporating an approach such as that in [16] that integrates into the analysis a
consideration of the probability of flipped pixels.

8.2.1 Segmentation Performance

LABLER achieves an overall precision of 0.823, with Precision ecgment,isnaimo. ©f 0-912, and
an overall recall of 0.797, with Recall segment,,,pu1mon. OF 0.899. Figure 8.3 shows the results for
the reports, together with baseline results of forming a hierarchy based entirely on vertical
distance; this baseline yields an overall precision of 0.358 and recall of 0.582. This baseline
corresponds to the segmentation method in [23], as described in Sections 2.2 and 2.3. The

!Since title parts follow somewhat different rules from running text, LABLER’s main algorithm is of limited
application to them; direct use of vertical distance tends to work well for title part segmentation, but the
identification of the separation point at which to stop using this and start using LABLER’s algorithm is
non-trivial.

76

Segmentation Results

T T T T T
Strict results: o
With almosts: x
T Vertical spacing results: +]
X X -
X) 2 X X
e %ixx :
o o Xale) :
o ?
o X
C X
ke :
206 : .
e :
o + + :
+ 4
0.4 : .
+ +y +
+ :
2r : _
0 Lt + :
o | | | | I
0 0.2 0.4 0.6 0.8 1
Recall

Figure 8.3: Precision and recall achieved on various technical reports

idea is that in general coarser-grained document divisions will be separated by larger quan-
tities of vertical spacing, as, for instance, sections are separated by larger spaces than are
subsections, which in turn are separated by larger spaces than are paragraphs. This corre-
spondence does not hold over enough of the kinds of structures found in complex documents,
such as those considered here, for its effects to dominate the layout of the documents.

Figure 8.4 shows the results and baseline without consideration of the title part. In this
case, LABLER achieves an overall precision of 0.822 and recall of 0.803 (with Precisionegment
0f 0.909 and Recallsegment
0.586.

To test the significance of the precision improvement of LABLER over the baseline, let
p = the baseline precision, let good = the number of good structures retrieved by LABLER,
and let n = the number of good structures retrieved by the baseline. (Obviously, we must

withalmosts

of 0.901), and the baseline yields precision 0.356 and recall

withalmosts

Precision

7

Segmentation Results Without Title Parts

T T T T T
Strict results: o
With almosts: x
P Vertical spacing results: +
X xxxx
>@ XXXOX
x* 0
o ©
0.8F o oo ©
o)
o)
0.6
+ +
+
+F
0.4r
+ o4 +
02t *
LT+
0 | | | | I
0 0.2 0.4 0.6 0.8 1
Recall

Figure 8.4: Precision and recall on various technical reports, without title parts

78

use the stricter measure of LABLER’s performance here, to compare it fairly to the baseline.)
Then we have, with one degree of freedom:
% (good —n p)* ((n — good) — (n (1 —p)))* _ (good —n p)

np n (1-p) - np(l-p)

Including the title parts, this yields x? = 4242; without the title parts, it yields x? = 4167.
Both results are well beyond the value of 10.87 needed for significance at the 0.1% level.

To test the significance of the recall improvement of LABLER over the baseline, replace
the precision errors above with the corresponding recall errors. Including the title parts, this
yields x? = 886; without the title parts, it yields x? = 874. Both results are well beyond the
value of 10.87 needed for significance at the 0.1% level.

The overall measures of correct decisions achieved are 0.872 and 0.899. The results are
shown in Figure 8.5, with the strict measure indicated by o’s and the generous measure indi-
cated by x’s. Without considering the title parts, the measures of correct decisions become
0.872 and 0.895; these results are shown in Figure 8.6, according to the same representa-
tion scheme. Note that these results are approximately the same; LABLER’s performance
is not artificially boosted by the title part grammar. In fact, the results suggest that the
observed deviations from the expected title part format (due sometimes to actual deviations
and sometimes to problems such as the creation of original blocks that contain groups of
lines that should belong to different title part blocks) are almost as common as deviations
from conformance to LABLER’S expectations about running text.

Figure 8.7 presents the alignment results; as noted in Subsection 8.1.1, these are given
as alignment distances normalized by the sum of the sizes of the correct hierarchy and the
derived hierarchy. To combine these into a single figure, we divide the sum of the distances
by the sum of the sizes of all the correct hierarchies and derived hierarchies; this can be
thought of as an overall alignment result, in the sense that it corresponds to performing
alignment on a pair of trees with dummy roots whose children correspond to the correct
trees’ roots and the derived trees’ roots, respectively. This result is 0.208. The baseline is
again the result of forming a hierarchy based on vertical distance only; this yields an overall
alignment result of 0.600. Figure 8.8 provides the results without considering the title parts;
in this case, LABLER achieves 0.211, and the baseline yields 0.618.

To test the significance of the alignment improvement of LABLER over the baseline, let
p = the overall normalized baseline alignment result, let d = the total of LABLER’s alignment
distances, and let n = the total by which LABLER’s alignment is normalized, and Then we
have, with one degree of freedom:

o_(d=np? (n=d-(m{1-p))?_ (d=np)
X = + =
np n (1—-p) np(1—p)
Including the title parts, this yields x? = 6224; without the title parts, it yields x? = 6427.
Both results are well beyond the value of 10.87 needed for significance at the 0.1% level.

In general, LABLER performs very well on documents made up primarily of running text,
with few interruptions. When the interruptions start to dominate the shape of the text,

T T T T T T
Strict results: o
With almosts: x
1 Lo -
X
X é B é é O X é
O ©) X %
3 e) o) 0
»n 0.8F i
[
RS
K%
[&]
(]
a
_5 0.6 .
T
c
(0]
&
[@)]
& 0.4 .
0.2} |
0 | | | | | |
0 2 4 6 8 10 12

79

Segmentation Decision Results

Figure 8.5:

Technical Report

Correct decisions on various technical reports

14

T T T T T T
Strict results: o
With almosts: x
1 Lo -
x
., 8 © « & O 5

208 o} 5 0 o]
RS
k%)
[&]
(]
a

_5 0.6 .
IS
C
(0]
&
[@)]

& 0.4 .

0.2} i

0 | | | | | |
0 2 4 6 8 10 12

80

Segmentation Decisions Without Title Parts

Technical Report

Figure 8.6: Correct decisions on various technical reports without title parts

14

81

Alignment Distance Results

1 T T T T T T
LABLER results: o

0.9 Vertical spacing results: + .

0.8 i
3
§ 0.7F . + . + s
3 - -
E 06 B + " -

+
£ * + +
505 i
<
©
é’ 0.4 .
g o
S 0.3 i
< o) © o)
o)
0.2r o O O i
o)
o) O
0.1 |
o)
0 | | | | | |
0 2 4 6 8 10 12

Technical Reports

Figure 8.7: Alignment results on various technical reports

14

Normalized Alignment Distance

82

Alignment Distance Results Without Title Parts

1 T T T T T T
LABLER results: o
0.9 Vertical spacing results: +
0.8F
+
0.7F N . +
+ + +
06 B +
+ + + . +
0.5F
0.4
O
0.3 0] @]
o) o o
L 0] O ©)
0.2 5
© o
0.1F
O
0 | | | | | |
0 2 4 6 8 10 12

Technical Reports

Figure 8.8: Alignment results on various technical reports without title parts

83

this can create spurious patterns and interfere with the matching of genuine patterns, thus
decreasing LABLER’S accuracy.

8.2.2 C(lassification Performance

Considering only the classifications of those structures that were correctly identified seg-
ments, the overall precise accuracy of classification is 0.809, and the generalized accuracy
is 0.837. The results are shown in Figure 8.9, with precise accuracy indicated by o’s and
generalized accuracy indicated by x’s. The results are compared to a baseline achieved by
classifying all nodes as paragraphs, the most common structure; this baseline yields a precise
accuracy of 0.182 and a generalized accuracy of 0.248. Figure 8.10 presents the results and
baseline without considering the title parts. In this case, the results are 0.804 and 0.832,
and the baseline values are 0.189 and 0.260.

To test the significance of the classification improvement of LABLER over the baseline,
let p, = the baseline precise accuracy, let p, = the baseline percentage of overgeneralized
or overspecialized results (é.e., the baseline generalized accuracy minus p,) let good = the
total number of correctly classified structures, let close = the number of overgeneralized or
overspecialized structures, and let n = the total number of classified structures. Then we
have, with two degrees of freedom:

» (good —n pp,)? N (close — n pgy) N ((n — good — close) — (n —n p, — n py))?
n pp n p, n—mnp,—np,

Including the title parts, this yields x? = 9747; without the title parts, it yields x? = 8873.
Both results are well beyond the value of 13.82 needed for significance at the 0.1% level.

Finally, to evaluate the classification process with as little effect as possible from segmen-
tation, Figure 8.12 presents the results of classifying nodes when all their surroundings are
correct. To get this result, a correctly segmented tree is generated, in which nodes without
preceding and/or following siblings receive context from “cousins” at the nearest level to
their own in the tree. Title parts are omitted from consideration here, and all segmenting
information supplied for each node is accurate. Using the results of this process to provide
the contextual classification information for each node, it yields an overall precise accuracy
of 0.764 and a generalized accuracy of 0.799. Using entirely correct contextual information
in each case, the classification process yields a precise accuracy of 0.828 and generalized
accuracy of 0.861. Figures 8.11 and 8.12 present these results, against the same baseline
as above. Note that the former values are lower than those achieved on LABLER’s correctly
segmented structures, and the latter are higher; this reflects the significance of contextual
information and the fact that classification errors can propagate through contexts. (When
such propagation occurs near a segmentation error, the erroneous segment is not counted
among the classification results, so the effect on the numbers is lessened.)

Applying the above significance test to these results yields x? = 9527 and x? = 11778,
both well beyond the value of 13.82 needed for significance at the 0.1% level.

84

Classification Results

T T T T T T
Strict accuracy: o
Generalized accuracy: x
L., Baselne +and* i
° 8
3 x X s X
o © X
0.8_ X o 6 -
o X
c o %
R
© o
206 .
2]
(2]
©
O
0.4‘ ¥ x 1
xOX X X
X +
+ X ¥ +
+ + + x X
0.2 + N . + + |
+
*
0 | | | | | |
0 2 4 6 8 10 12 14

Technical Reports

Figure 8.9: Classification results on various technical reports. The baseline has strict accu-
racy represented by + and generalized accuracy represented by *.

85

Classification Results Without Title Parts

T T T T T T
Strict accuracy: o
Generalized accuracy: x
L. Baselne +and* i
° 8
& é X X & o)
© e}
O
0.8F v o] -
X
c © O X
R
= o
206 .
2]
(2]
©
O
0.4 *x KX .
¥ ¥
% ¥
X + + + X X + X
+ + x o+
0.2_ —+ + + + -
+
*
0 | | | | | |
0 2 4 6 8 10 12 14

Technical Reports

Figure 8.10: Classification results on various technical reports without title parts. The
baseline has strict accuracy represented by + and generalized accuracy represented by *.

86

Classification Results

T T T T T T
Strict accuracy: o
Generalized accuracy: x
... baselne +and* i
1 =
X X X i = X
X X 5
O 0] o) %
0.8} o o i
X
X
S o o
©
2 0.6 i
2]
3 X
O o)
0.4‘ ¥ x 1
xOX X X
X +
+ X X +
+ + + x X
0.2 N . + + |
+
*
0 | | | | | |
0 2 4 6 8 10 12 14

Technical Reports

Figure 8.11: Classification results on correct hierarchies for various technical reports. The
baseline has strict accuracy represented by + and generalized accuracy represented by *.

The above results suggest that the classification routine has the potential to perform
better than it currently does, if given better input, but improved segmentation may also
bring to light propagated classification errors.

Note that in all the versions of classification, the relative results on various documents are
similar. That is, some documents appear simply to be harder than others. This consistency
reflects a more general consistency in the types of classification errors LABLER makes. These
errors fall into two main categories: part/whole distinctions and primarily content-based
structure identification. LABLER’s errors often confuse parts with wholes, by identifying, for
instance, a paragraph as a paragraph group or paragraph part. Another set of errors occurs
in structures for which content is an especially significant cue, such as equations; simply
identifying the presence and frequency of a few unusual characters or strings often does

87

Classification Results

T T T T T T
Strict accuracy: o
Generalized accuracy: x
Baseline: +and *
1 o & ,, -
- =
X X X
o
« © @ © &
X
| O o) ©) X _
0.8 5
c
8 X
©
£ 0.6 o -
7
©
©)
04 B ¥ X]
X X X X
X +
+ * * +
*
0.2 * + + * i'f |
' + N + + +
*
0 | | | | | |
0 2 4 6 8 10 12 14

Technical Reports

Figure 8.12: Classification results on correct hierarchies for various technical reports, with
correct contextual classification. The baseline has strict accuracy represented by + and
generalized accuracy represented by *.

88

not suffice to identify these structures. (The fact that OCR errors may cause an inaccurate
depiction of these characters adds to the problem but is not its primary cause.)

Tables 8.1 and 8.2 show error matrices for LABLER’s classification. Each cell shows the
percentage of misclassifications of a given type, for any type that accounts for at least 1%.
Specializations of a single general type have been combined, and in some cases individual
structures and groups of the same have been combined; an error entry with the same row
and column heading indicates errors in choosing between the classifications covered by the
heading.

Table 8.1 shows these results on the correctly segmented structures LABLER finds, and
table 8.2 shows these results starting from full, correct hierarchies. Part/whole distinctions
account for 51.0% of the errors in the first case and 29.7% of the errors in the second. Note
that in the second case, the correct contextual information may include an earlier, accurate
part/whole distinction, which can aid in making the current decision; these errors tend
to occur in clustered groups, and correcting the earlier decisions can propagate the right
information through the group of related structures. The difference in part/whole errors
between the cases reflects this phenomenon, which suggests that even a small change to
improve the part/whole performance could have a large effect on these results.

Content distinctions, including identifying a paragraph or paragraph group as the wrong
kind of paragraph or group and errors in finding equations, constitute 35.1% of the errors in
the first case and 44.5% in the second. Clearly, these two error types dominate the results;
the more difficult documents demanded more of these distinctions relative to their size than
the others did.?

8.2.3 Performance Conclusions

On a variety of measures, LABLER performs far better than the baselines of simple vertical
distance segmentation and classification according to the most common category. These
baselines use simple, available, and generic information in the most straightforward way;
that LABLER far outperforms them indicates that its additional observables and processing
are in fact productive.3

In particular, the intuition that more vertical space corresponds to a more significant
separation (and thus separation at a higher hierarchy level) only holds very roughly. In
building a detailed hierarchy, many exceptions arise, such as equal vertical space of different
importance and greater vertical space that may actually indicate a less significant separation.
For instance, the vertical space surrounding an equation or list within a paragraph may be
greater than that surrounding a subheading. Consideration of the horizontal relationship

2Note that the presence of equations generally contributes to both types of problems, since an equation
itself must be identified, and it usually splits a paragraph into pieces, generating the need for a part/whole
distinction.

3Tt is difficult to compare a more generic method to one based on parsing, as the results of a parse depend
greatly on the grammar chosen. Moreover, a set of observables and grammar can be constructed for any
particular fixed set of documents; the advantage to a generic approach lies in its greater applicability, not a
higher success rate on the documents to which it is applicable.

89

Table 8.1: Classification error matrix, on correct segments from full results

Correct Classificiation
Found Paragraph Type \ Para. Group Type \ Para. Part
Paragraph Type 13.2 1.2 29.2
Para. Group Type 3.5
Paragraph Part 4.3
Correct Classificiation
Found List Item | List | Equation(s) | Section(s)
Paragraph Type 2.9 10.3
Para. Group Type 1.2
Paragraph Part 1.0 1.2
List Item 1.7 5.5
List 4.5 1.9
Equation(s) 2.2 1.3
Heading 1.2
Section(s) 5.3

Table 8.2: Classification error matrix, on correct hierarchies

Correct Classificiation
Found Paragraph Type ‘ Para. Group Type | Para. Part
Paragraph Type 10.0 1.5 13.6
Para. Group Type 7.1 3.8
Paragraph Part 6.8
Correct Classificiation
Found List Item | List | Equation(s) | Title Type
Paragraph Type 3.5 1.2 10.5 2.0
Paragraph Part 1.1 11.9
Heading 2.3
Section Body 1.0
List Item 6.6
Equation(s) 1.4

90

between vertically separated components enables the necessary distinctions in many cases;
feedback from the classifier helps substantially, as well.

Similarly, the classifier itself makes use of its observables; many standard structures are
highly identifiable by shape and context, and the consideration of simple content and font
characteristics makes a good deal of headway at identifying the others.

There is clearly room for improvement, especially in the areas of reducing the reliance
on OCR indentation accuracy, discriminating between genuine separations and spurious ap-
pearances of separation in the segmentation phase, and addressing part/whole distinctions
and content-based structures in classification. The directions these issues suggest for future
work are discussed in Chapter 10.

Chapter 9

Logical Browsing

Once LABLER has analyzed a document and derived its logical hierarchy, it generates output
in HTML, suitable for browsing with a World Wide Web navigator. This enables a user to
traverse the logical tree, beginning with the root node containing the entire document.

Each node is represented by a separate page, and each page contains three types of infor-
mation about its node: general representational information about the node itself, structural
relationships to other nodes, and the text (or other contents) of the node. The user may
thus choose among the options of reading the current node or moving to another related
node, based on a description of the current node and briefer descriptions of available related
nodes. The accessible related nodes always include the root node, so the option always re-
mains of simply reading the entire document by jumping to the root node and reading its
content. The three types of information are contained in different sections; they are specified
as separate frame subwindows for browsers that support this.

9.1 Node Representation

The usefulness of this kind of browsing depends in large part on the node descriptions
available. They need to provide adequate information with which to decide how to continue
browsing. They must summarize the information in a node, rather than present it all,
however; otherwise, the advantage of browsing over reading is lost.

To this end, LABLER includes a concept of representative components. One of the descen-
dents of each interior logical structure node is deemed to contain information of particular
use in describing that node; this descendent is the representative component of the original
node. (Leaf nodes have no representative components.) The relationship can be defined
by structure classification or by hierarchical relationship. An obvious example is that the
representative component of a section is its heading, i.e., the representative component of a
node with classification section is its child with classification heading; in this case, a large
part of the purpose of the representative component structure is to convey information about
the content of the main structure.

In LABLER, several such relationships are predefined based on structure type. In the

91

92

remaining cases, the leftmost child of a node is considered to be its representative component;
this heuristic reflects the intuition that the content the writer expects to be seen first usually
provides more cues about what follows than vice versa.

The content of a node is described by a presentation of the leaf node that ends a chain
of representational components. That is, consider a sequence of nodes ng ...ny such that
Y0 < ¢ < k, m;11 is the representative component of n;, and ny is a leaf node in the structural
hierarchy. Then, the content of ng is described by a presentation of the content of ny, called
the representative leaf of mg. In fact, the content of each n; such that 0 < i < k is so
described. The presentation may vary, from a display of all the content to the first few
words, depending on the degree of detail required.

9.2 HTML Page Sections

In the main informational section of a node’s HTML page, the node’s representative compo-
nent is given in its entirety, after headings that specify both the structure class of the node
and the structure class of its representative component. Direct links are provided to the
parent, left sibling, right sibling, and leftmost child of the node. (This makes a breadth-first
traversal particularly easy and direct.) In the case that frames are in use, this section also
contains links that control the form of presentation of the information in the others.

The structural relationships are presented both purely locally and in a greater context.
Local structural information consists of the parent, siblings, and children of a node; the
greater context includes the path from the root to the current node, as well as the children
of each node on this path. (The latter is, of course, a superset of the former.) These structures
are presented in an outline format; each entry includes the name of the structure classification
of the node, which also serves as a link to the node itself. The local representation is designed
to be compact, so it includes only this information. The contextual structure representation
also includes a presentation of the representative leaf of each node. If this leaf is reached from
the node entirely by means of predefined structure type relationships, the entire contents of
the leaf are shown; if it is reached in part by using the “first child” heuristic, then only the
first text line of the leaf is shown instead. This precludes the inclusion of very long content
descriptions within the outline. In the contextual outline, fonts distinguish nodes on the
direct path from the root to the current node from the other children of such nodes and also
distinguish the current node from the rest.

The content of a node is presented in two alternative manners, as text or as a set of GIF
images. For the text option, the results of OCR and rebuilding of text lines are presented,
providing a view of precisely the input corresponding to the current node that LABLER
analyzed to find the presented logical structure. The GIF image option presents the scanned
images of the pages that cover the current node. The latter offers a more complete and
accurate view of the relevant portion of the original document than does the former, although
it also includes irrelevant parts of the document.

93

Table 9.1: Predefined representative components of structures in LABLER

‘ Structure Type ‘ Representative Component Type

Section Heading
Document Title Part
Title Part Title
Abstract Abstract Body

Author Information Name or Names

Table 9.2: Some effects of the “first child” representative component rule

‘ Structure Type ‘ Typical Representative Component ‘

List First Item
Paragraph Group First Paragraph
Section Body First Paragraph
Sections First Section

9.3 Representative Components

In the cases in which one kind of descendent of a given type of structure is clearly likely
to be more informative about the structure as a whole than the others, this descendent
type is predefined as a representative component of the main type. The first descendent of
this type, based on a breadth-first ordering, is the representative component of the main
node. (Typically, this node is a child of the original node.) These cases are summarized in
Table 9.1.

Otherwise, as discussed above, the leftmost child is used. Some typical examples of the
effects of this heuristic are summarized in Table 9.2.

9.4 A Browsing Example

A typical step in browsing a technical report might lead to the representation shown in
Figure 9.1. This is a Netscape rendering of the HTML page for the first section of a particular
technical report. The top frame indicates that the current node in the hierarchy is a section,
provides its heading, and offers direct links up to the set of sections, right to the next section,
and down to the heading. The “left” link leads nowhere, as the first section has no left sibling.
It also contains links to control the form of presentation in the other frames.

The middle frame shows the relevant structure. In Figure 9.1, it shows the local structure
only, of the parent, siblings, and children of the section, together with links to them. The
parent, of course, is the set of sections; the siblings are the other sections; the children are
the heading and section body. Figure 9.2 shows the structure in context, in its own window.

94

Here, the entire path from root to the current node is shown, together with the children of
each node on this path and at least the first line of the representative leaf of each structure.
(The path from the root is: Document — Body — Sections — Section_1.)

The bottom frame shows the contents of the node. Its default value is the results of ocr
for precisely the node itself, as shown in Figure 9.1. The GIF images of all pages containing
any of the node can also be displayed, by choosing the corresponding link. Figure 9.3 shows
part of this result in its own window.

Portions of the Mosaic rendering of the non-frames version of the page are given in
Figures 9.4 through 9.5.

95

T [5) Netscape: TR93-1326: Section K
Fle Edit View Go Bookmarks Options Directory Window Help
Gl [M| Q| | 2 e
Back |i¥oreeni]i Home Feload | £ Images DpEk Print Find

Location: |[file: /ome/sunmers/Output /TRI3-1326 /Body/Sections /Sectio

What’s Hew| What’s Cool|: Handbook |; Het Search|: Net Directory |: Software |

SECTION
Heading:
1 Hilbert Irreducibility Theorem

Up (Sections) || Left || Bight (Section_2) || Down (Heading)

Show strwctwre: local only or n context.
Show text: from OCR or as GIF images (of covering pages).

Structure
Loecal Stroctare

Parent: Sections

Siblings: Secton 1 |l Section 2 [Secdon 3 1l Section 4 || Section 5 1| Secton 6 Il Section 7 || Section 8
Il Secton 9

Children: Heading || Section_Body

Stmetnira in Contaxt
Content
Full text from OCR

1 Hilbert Irredwcibility Theorem

We make strong wse of the Hilbert irredvucibilitp theorem, which saps that fou
= , Wiy, where Vi E ¥, the uwniwvariate polpnomial P{X,wl,... , n¥) ha
nomber of irreducible factors as the multivariate polpnomial BOX,%1, ... , ¥n)p
degree diztributions are the zame.

| Tl I b ¥ _'}

Figure 9.1: A representation of the first section of a technical report

96

f@ Metscape: struc.html#icontext (Untitled) T
Fle Edit View Go Bookmarks Options Directory Window Help
@ [o | £y Wl | &
Back |iforceni]i Home Feload |§ Images Dpen Frint Find
Location: |Ifile s Shome Ssumme s S0utput TR93-1326 /BodySections /Sectic
What's Hew |:What’s Cool|; Handbook | Net Search|:Het Directory |: Software|
Strueture in Context
Docunent
(A Mew Modolar Interpolation Algorithon for Factoring Moldvanate Polynormials)
Title Parr 1
[A Mewr Modular Interpolation Algorthm for Factoring huldvariate Polynomials)
Title_Part 2
(A Mewr Modolar Interpolation Algoritlim for Factoring Multvariate Polynomials)
Abstract
(In this paper we present a technique that vzes a new interpolaton scheme to recon-)
Body
(Warious versions of the problem of factoring polynemials, that iz, writdng & polynomdal ...}
Paragraphs
(Warious versions of the problem of factoring polynomials, that iz, writng &
polynomial ..
Sections
(1 Hilbert Irreducibility Theorem ...)
Section I
Heading
(1 Hilbert Irreducibility Theorem ...}
Bection Body
(We make strong use of the Hilbert irreducibility theorem, which
says that for almost all ..}
Section 2
(2 Factoring WMultvariate Polynomdals)
Section 3
(3 Interpolaton 3chemes ...}
Section 4
(4 Acknowledgements ..}
Section 5
(References ...)
Section
(A Example ..}
Hection ¥
(B Finding Linear Factors of Bivariate Polynomials)
Section 8
(¢ MNon-Monde Polynomials ..
Section 8
(can be thanits factodzadon. ...)
Lj"{gﬂ Docurrent: Done. I _J

Figure 9.2: The structure in context from Figure 9.1, in its own window

97

f Netscape: text.html#pages {(Untitled) 1
Fle Edit View Go Bookmarks Options Directory Window Help
Golion [0y [G| | 25 g4
Back |i¥oreeni]i Home Feload | £ Images DpEk Print Find

Location: |[file: /ome/sunmers/Output /TRI3-1326 /Body/Sections /Sectio

What’s Hew| What’s Cool|: Handbook |; Het Search|: Net Directory |: Software |

- The ciassical farm of the Hifberd ircodueibility theorem stases that for almest all chaicw
af iagIrs 4, .. oot the factorization of F{X. g 00} has the same strocture 2z the
facterization of PLX, ¥y, --.. ¥a). Our st step is fo procuoce 4 bisck beo g, e that

© o inpwt of gre. .oy TEGUTES the pet of fackers of FE 1,0 . Hisweves, for different
tmputs, the factor eotresponding te Py may be retusned In difarent positions, Nonethiless,
wging the rachrinues of Ar et al {1} we demaossteste how Lo congtrect & black boxes, eachs
representing an individuad factor B of P These black boxes can then ke interpolted using .
sparse polynorsial Intetpalatlons schemes 12,6, 37,388
The Hibewr irreduaibitity theorem ¢ deoctiled o Section 1, Tn Hection 2 =t prépent -

" the basic factering eigovithin, Tt relies on black box interpelasion bechniques discussed in
Raction 3 which in furn rely on well knovn Henael tochiniques for selving equations that. are
deserihed in Appesdix B.

.1 Hilbest Irreducibitify Theorem

" W make strong use of the Hilbert ireducibility théorem, which s thit R hmowe all
CF = dg1e-- -y, where 3 & {3 the univarinte poiyeemial FLY g,) bes tha same

ntenber of iereduciBie fackors a5 the moltivariabe polfynmznial PEX, T, ..., Voh, and thas the
degres distribstione s the gme, -
Wi coll 2m w-tuple po, oo Silberiion for Pl the Retotization of PiX.gv.... %t
has no mores faclors than that of PLX.YL.. ¥oh We need o quantify how often the
feorouizaticn of PLX.yr.. .. w0 corpesponds to that of FIX Y, YL Bet the member
ol memlil b rbian o nidee, (o el ST % e N For an Sreducible sotenomint of -~

e . BT

Figure 9.3: Part of the relevant gif images for Figure 9.1

98

r‘@ NCSA Mosaic: Document View

File Options Navigate Annotale Help

Document Title: | TR93-1326: Section

Document URL: | file:Mocalhostfaun dfdu skifsummers/Cutput/T R93 -1326/BodySectio

SECTION

Structure

Heading;:
1 Hilbert Irre ducibility Theorem

Local Structure

Parent: Sections

Siblings: Section_1 || Section 2 || Section_3 11 Section_4 || Section_5 | | Section 6 11
Section_? || Section 5 1| Section 9

Children: Heading | | Section_Body

Structure in Context

Document

(4 New Modular Interpolation Algorithm for Factoring Multivariate Polynomials)
Title_Part_1

(4 New Modular Interpolation Algorithm for Factoring Multivariate Polynomials)

Back | Homel F{eloadl Open...l Have ﬁsl CIDnel [ey Windowl Close Wind0w|

Figure 9.4: Beginning of the Mosaic non-frames rendering of the page in Figure 9.1

99

r‘@ NCSA Mosaic: Document View

File Options Navigate Annotale Help

Document Title: | TR93-1326: Section

Document URL: | file:Mocalhostfaun dfdu skifsummers/Cutput/T R93 -1326/BodySectio

Ter l.l.l.ll:l.l_ll_llﬂm.ll.l. (S W3 8 Lot B8 Ly
Section_4

4 Acknowle dgements ...)
Section b

(References ..)

Section_6

(A Example ..

Section_?

(EFinding Linear Factors of Bivariate Polynomials ...)
Section 8

(c Non-Monic Polynomials ...
Section_5

{can he thanits factorization. ...)

Full text from OCR

1 Hilbert Irreducibility Theorem

We make strong use of the Hilkbert irreducibility thec
= e » ¥?), where Ui E 7, the univariate polyno

number of irreducible factors as the multivariate pol
degree distributions are the same.
We call an n-tuple yi,..., ¥? Ililbertian for P 1if
has no more factors than that of P(H,¥1L,... , ¥n). Wel
factorization of P(H,v1l,. . . ,vn) corresponds to thal
of non-Hilkertian n-tuples, (vi,... , ¥?) with 0 < ¥?
degree d be denoted by R(d, n, N). More generally, thj

<

Back| | Homel F{eloadl Open...l Have ﬁsl CIDnel Mew Window|i Close Window

Figure 9.5: More of the Mosaic non-frames rendering of the page in Figure 9.1

Chapter 10

Conclusions

10.1 Contributions

This thesis addresses the problem of deriving a detailed logical hierarchy from the layout of a
document of unknown style. Other work has presented appropriate methods for discovering
logical structure in documents of known style, possibly including small deviations, and for
discovering a single, flat set of blocks in a generic document. This thesis extends such work
by presenting an approach that is appropriate for the version of the problem described above.

This thesis contributes an algorithm that differs from previous work in several ways,
pursuant to the above goal.

e It incorporates the generic observations that structural forms tend to repeat within a
document and that a structure that interrupts another is generally located horizontally
within the latter.

e Classification is based on cues, which amount to a highly approximate matching system,
rather than on precise matches or small deviations from a model.

o It separates the segmentation and classification processes while allowing feedback be-
tween them.

e It incorporates style knowledge (of particular types) when available, but it does not
require this information to proceed.

LABLER implements the described algorithm for the discovery of a hierarchy of logical
structure in a generic document, based on its layout. Its performance is a highly significant
improvement over the simple baseline of forming a hierarchy based on vertical distance
between lines and assigning all nodes to the most common category.

LABLER also generates output that represents the structure of a given document in HTML,
with links to the document itself; this makes the logical hierarchy suitable for browsing.

100

101

10.2 Future Work

The performance of LABLER suggests several areas for future work.

OCR Errors LABLER relies heavily on accurate OCR input, with respect to line indentation,
but such input may not be available. (For instance, several OCR errors were hand-
corrected for the experiments in Chapter 8.) It would be a great improvement to the
usability of LABLER’s approach to have an automatic method of accounting for such
errors. The approach in [16], based on probabilities of flipped pixels, is promising;
how to combine this with the much looser comparisons used in a generic system like
LABLER remains to be explored.

Separation Indentation patterns are sometimes repeated by chance, leading to segmenta-
tion errors. An accurate method of determining which layout attributes may serve
as separators would diminish this problems; a pattern would only be identified as
indicating a structure if it began and ended with indications of structure separation.

Integration with Block Segmentation The segmenter might also be substantially im-
proved by integrating it with a flat block segmenter, such as one of those described
in 2.1. Depending on their level of granularity, such blocks could be used as the origi-
nal blocks for LABLER’s algorithm, or they could form a required internal level of the
hierarchy. In the latter case, one possibility would be to insert the blocks whenever
LABLER’s usual next level would have crossed their boundaries.

Parts and Wholes Many of LABLER’s classification errors involve confusing two structures
with a part/whole relationship, such as a paragraph and a paragraph part. This
mistake follows naturally from the use of cues for classification; a part will contain
many, if not all, of the cues that a whole does. Special processing may be required to
provide reliable part/whole distinctions.

Character-Based Processing The other primary source of classification errors lies in
identifying structures that are primarily identified by content, such as equations.
This difficulty suggests that a more sophisticated form of character processing than
LABLER’s prototypes may be required in some cases; an extremely useful area of future
work would be to find an appropriate middle ground between LABLER’s simple measure
of character presence and frequency and a costly analysis of content. Perhaps Infor-
mation Retrieval techniques may be adapted to apply to the collection of characters
found in a structure.

Evaluation The measurements in Chapter 8 offer a reasonable representation of the perfor-
mance of a logical structure discovery algorithm, but they do not complete the picture.
As discussed in Chapter 3, some structures have a greater significance than others, in
general or for a particular application. A formal specification of how to reflect this fact
in performance measures would be a great asset in presenting and comparing document
analysis results.

102

Another open question in evaluation is how to combine the issue of generality with that
of performance on appropriate documents, so that an approach, such as error-tolerant
parsing, designed for use on documents of a single type with perhaps small deviations,
may be compared to an approach designed for more general applicability. The former
should yield better results than the latter on the documents to which it applies, but
this should be a smaller set. How these issues are combined should probably be task-
specific, but unless the task specification makes the choice of approach obvious, some
kind of combination is needed for comparison.

Queries and Retrieval Approachesto querying structured documents and integrating log-
ical structure with Information Retrieval were discussed in Section 2.5; these generally
assume knowledge of the document type. Does the preferred approach change for a
heterogeneous collection of documents of unknown types?

Semi-Structured Documents LABLER starts from the document layout, assuming no
structure is available. In some cases, however, a document may be available in a form
that mixes logical and layout specifications. For instance, many I¥TEX documents have
this property; an author may mix the use of logically-named macros with visual com-
mands. (The ideal BTEX author would define a macro with a logical name for every
command in the document, but many authors are not primarily concerned with spec-
ifying logical structure.) The primary observations still apply, but structure discovery
should work around the known structures; this situation is similar to the incorporation
of partial style knowledge, but the known structures may be intermixed with structures
to discover in any manner. HTML documents may also be considered semi-structured,
although they incorporate the additional challenge that the provided logical labels are
often misused [31, 72].

LABLER provides one step towards the use of layout-based documents in a structure-
based setting, such as a digital library. With additional work on topics such as those outlined
above, we can hope to advance to a point at which unstructured documents, both physical
and electronically page-based, can be seamlessly incorporated into a structured environment.

Appendix A

Prototypes and Attributes

This appendix describes the generic prototypes used to classify primary structures. It also
provides a list of all the attributes included in this process.

For the purposes of these specifications, let C be the set of all possible node classifications,
both primary and secondary. Let 7 be the set of all node classifications that represent part
or all of the title part of a document.

A.1 Prototypes
Necessary attributes are marked with asterisks.

Paragraph

Geometry: General: Left In, Left Out
Local: Left In, Left Out

Context: Pred.: Blank: yes
Succ.: Blank: yes

Children: Negative: { List-Item, List }, unmerged only
*Negative: { Section, Section Body, Sections,
Abstract, Body } U T

Fonts: Main Font: normal weight, medium size

First Paragraph

Geometry: General: Left In, Left Out
Local: Left In, Left Out

103

104

Context: Pred.: Blank: yes, *Category: Heading
Succ.: Blank: yes
Typical: no

Children: Negative: { List-Item, List }, unmerged only

*Negative: { Section, Section Body, Sections,
Abstract, Body } U T

Fonts: Main Font: normal weight, medium size

Theorem

Geometry: General: Left In, Left Out
Local: Left In, Left Out

Context: Pred.: Blank: yes
Succ.: Blank: yes
Typical: no

*Symbols: Positive: ({ Theorem, Lemma, Corollary, Proposition,
Claim }, start)

Children: Negative: { List-Item, List }, unmerged only
*Negative: { Section, Section Body, Sections,
Abstract, Body } U T

Fonts: Main Font: normal weight, medium size

Proof

Geometry: General: Left In, Left Out
Local: Left In, Left Out

Context: Pred.: Blank: yes, *Category: Theorem
Succ.: Blank: yes
Typical: no

*Symbols: Positive: ({ Proof }, start)

105

Children: Negative: { List-Item, List }, unmerged only
*Negative: { Section, Section Body, Sections,
Abstract, Body } U T

Fonts: Main Font: normal weight, medium size

Definition

Geometry: General: Left In, Left Out
Local: Left In, Left Out

Context: Pred.: Blank: yes
Succ.: Blank: yes
Typical: no

*Symbols: Positive: ({ Definition }, start)
Children: Negative: { List-Item, List }, unmerged only
*Negative: { Section, Section Body, Sections,

Abstract, Body } U T

Fonts: Main Font: normal weight, medium size

Heading

Context: Pred.: Blank: yes, Same: no
Succ.: *Blank: yes Same: no

Symbols: Positive: ({0,1,2,3,4,5,6,7,8,9,
Chapter, Section, Sub, Part, Book, Volume },
start)
Negative: ({(,),!,.,7 }, end)

Height: 1
Fonts: Main Font: heavy weight, large size

Title Start Geometry: (General: Centered

*Context: Pred.: Blank: yes, Same: no,
Category: Top, Geometry: Top

106

*Children: Negative: C — 7
Fonts: Main Font: heavy weight, large size

Title Element Geometry: General: Centered
Context: Pred.: Blank: yes, Same: yes, *Category: 7
Children: Negative: C — 7
Fonts: Main Font: heavy weight, large size

Equation Geometry: General: Left In
Context: Pred.: Blank: yes, Same: no,
Category: { Paragraph, First Paragraph,
Theorem, Proof, Definition }
Symbols: Positive: ({: }, end)
Succ.: Blank: yes, Same: no
Height: 1
Symbols: Positive: ({=,>,<,>=,<=,+,/,0,1,2,3,4,5,6,7,8,9},
all)
*Positive: ({=,>,<,>=,<=,+,/}, any)
List Item

Geometry: General: Left In, Left In
Local: Left Justified, Left In

Context: Pred.: Blank: yes, Same: yes, Category: List Item
Succ.: Blank: yes, Same: yes

Symbols: Positive: ({0,1,2,3,4,5,6,7,8,9}, start)
Fonts: Main Font:: normal weight, medium size

List

Geometry: General: Left In
Local: Left Justified

Context: Pred.: Blank: yes, Same: no
Succ.: Blank: yes, Same: no

107
Children: *Positive: List Item, List
Negative: C — { List Item, List }
Fonts: Main Font: normal weight, medium size
Abstract

Context: Pred.: Blank: yes, Same: no, *Category: 7
Succ.: Blank: yes, Same: no

*Symbols: Positive: ({ Abstract }, start)
Children: Positive: Paragraph

A.2 Attributes

Geometry
General
o Left In, Left Out
e Left In, Left In
o Left In
e Centered
Local
o Left In, Left Out
o Left Justified, Left In
o Left Justified
Context
Predecessor
Blank : yes

Same : yes, no

Geometry : Top

Symbols : ({: }, end)

Category :
o Top
e { Title Start, Title Element }
e Heading

108

o List Item
e { Paragraph, First-Paragraph, Theorem, Proof, Definition }
e Theorem
Successor
Blank : yes
Same : yes, no

Typicality : no

Height: 1
Symbols
Positive
e ({ Theorem, Lemma, Corollary, Proposition, Claim }, start)
e ({ Proof }, start)
e ({ Definition }, start)
e ({0,1,2,3,4,5,6,7,8,9, Chapter, Section, Sub, Part, Book, Volume}, start)
e ({0,1,2,3,4,5,6,7,8,9}, start)
o ({=,><,>=,<=,+,/,0,1,2,3,4,5,6,7,8,9}, all)
o ({=,>,<,>=,<=,+,/},any)
o ({ Abstract }, start)
Negative

’<{(7)7!>-,?},end)

Children
Positive
o { List Item, List }
e { Paragraph }
Negative
e { List-Item, List }, unmerged only
e { Section, Section Body, Sections, Abstract, Body } U T
o C—-T
e C — { List Item, List }
Fonts
Main Font

e normal weight, medium size
e heavy weight, large size

Appendix B

Style Knowledge for Cornell
Computer Science Technical Reports

This appendix describes the specific knowledge LABLER uses in processing technical reports
from the Cornell Department of Computer Science. These technical reports follow a strict
format for the title page. A context-free grammar describing this format is given in Fig-
ure B.1. In this grammar, as well as all others in this thesis, the following conventions are
observed: terminal symbols begin with lowercase letters; nonterminal symbols begin with
uppercase letters; the left hand side of the first rule is the start symbol; right hand sides are
given as regular expressions with concatenation represented by -, optionality by ?, inclusion
0 or more times by *, inclusion 1 or more times by +, and grouping by parentheses.

Ideally, the Figure B.1 grammar would suffice, with all its terminals recognizable by the
pattern of spacing and certain fixed linguistic patterns, such as dates. Errors in OCR can
interfere with this identification, and the initial grouping of adjacent lines with identical left
margins can also interfere. LABLER therefore uses a slightly more flexible grammar, in which
many of the original terminals become nonterminals, which can be fuzzily matched. When
parsing is complete, irrelevant nonterminals nodes in the parse tree are discarded.

Title - Author - id - date - address - thanks ?

TitlePage —
Title — title start - Title’ ?
Title’ — title line - Title’ ?
Author — name | Names
Names — name - Names'
Names' — name - Names' ?

Figure B.1: Grammar for Cornell CS Technical Report Title Pages

109

Document Start
Title Part

Title

Title'

Authors
Authors’
Author

Names

Names'

Author Information
Abstract
Abstract Body

Abstract Paragraphs

Middle Paragraph
End Paragraph

L T A S A A A A

l

110

Title Part - Abstract

Title - ((Author - date ?) | Authors)

title start - Title’ ?

title line - Title’ ?

Author - Authors’

Author - Authors’ ?

(name | Names) - Author Information ?
name - Names'

name - Names' ?

affiliation line - Author Information ?
abstract heading - Abstract Body

sole paragraph |

(start paragraph 7 - Abstract Paragraphs)
Last Paragraph |

(Middle Paragraph - Abstract Paragraphs)
indent - outdent_followed _by _text

indent - outdent_followed by _blank

Figure B.2: Grammar for Cornell CS Technical Report Text Following Title Page

The observed group of technical reports also displays consistency in the text immediately
following the title page. This text includes a reiteration of title and author information
followed by an abstract. The format is not strict, but the style can be expressed by the

grammar in Figure B.2.

Bibliography

1]

[10]

O.T. Akindele and A. Belaid. Construction of generic models of document structures
using inference of tree grammars. In Proceedings of the Third International Conference
on Document Analysis and Recognition [44], pages 206—2009.

James Allan, Jim Davis, Dean Krafft, Daniela Rus, and Devika Subramanian. In-
formation agents for building hyperlinks. In Proceedings of the ACM Conference on
Information and Knowledge Management, Washington DC, November 1993.

A. Antonacopoulos and R. T. Ritchings. Representation and classification of complex-
shaped printed regions using white tiles. In Proceedings of the Third International
Conference on Document Analysis and Recognition [44], pages 1132-1135.

Dennis S. Arnon. Scrimshaw: A language for document queries and transformations.
Electronic Publishing: Origination, Dissemination and Design, 6(4):385-396, 1993.

Nick Ayres and Tom Wesley. Using structure within electronic documents to make
editors more accessible. In Zagler et al. [97], pages 198-205.

Antoine Azokly and Rolf Ingold. A language for document generic layout description
and its use for segmentation into regions. In Proceedings of the Third International
Conference on Document Analysis and Recognition [44], pages 1123-1126.

Henry S. Baird. Anatomy of a versatile page reader. Proceedings of the IEEFE,
80(7):1059-1065, 1992.

Bart Bauwens, Jan Engelen, Filip Evenepoel, Chris Tobin, and Tom Wesley. Structuring
documents: the key to increasing access to information for the print disabled. In Zagler
et al. [97], pages 214-221.

T. A. Bayer and H. Walischewski. Experiments on extracting structural information
from paper documents using syntactic pattern analysis. In Proceedings of the Third
International Conference on Document Analysis and Recognition [44], pages 476-479.

Abdel Belaid, Julian C. Anigbogu, and Yannick Chenevoy. Qualitative analysis of low-
level logical structures. FElectronic Publishing: Origination, Dissemination and Design,
6(4):435-446, 1993.

111

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

112

Allen Brown, Anne Bruggemann-Klein, and An Feng, editors. FElectronic Publish-
ing: Origination, Dissemination and Design, 8(2-3). Special Issue: Proceedings of
the Sixth International Conference on Electronic Publishing, Document Manipulation
and Typography. Wiley, 1996.

R. Brugger, A. Zramdini, and R. Ingold. Modeling documents for structure recognition
using generalized N-Grams. In Proceedings of the Fourth International Conference on
Document Analysis and Recognition [45], pages 56—60.

John F. Buford. Evaluation of a query language for structured hypermedia documents.
In James Ford, Fillia Makedon, and Samuel A. Rebelsky, editors, Electronic Publishing
and the Information Superhighway: Proceedings of the Dartmouth Institute for Advanced
Graduate Studies, pages 105-116, Boston, May 1995. Birkhauser.

Victoria A. Burrill. VORTEXT: VictORias TEXT reading and authoring system. In
J. C. van Vliet, editor, Text Processing and Document Manipulation: Proceedings of
the International Conference, British Computer Society Workshop Series, pages 43-57,
Nottingham, April 1986. Cambridge University Press.

Francine R. Chen and Dan S. Bloomberg. Extraction of indicative summary sentences
from imaged documents. In Proceedings of the Fourth International Conference on
Document Analysis and Recognition [45], pages 227-232.

Philip A. Chou and Gary E. Kopec. A stochastic attribute grammar model of document
production and its use in document image decoding. In Luc M. Vincent and Henry S.
Baird, editors, Proceedings: Document Recognition 11, volume 2422 of SPIE Proceedings
Series, pages 66—73. SPIE-The International Society for Optical Engineering, 1995.

C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. An algebra for structured text
search and a framework for its implementation. Computer Journal, 38(1):43-56, 1995.

Charles L. A. Clarke, G. V. Cormack, and F. J. Burkowski. An algebra for
structured text search and a framework for its implementation, August 1994.
URL: ftp://cs-archive.uwaterloo.ca/cs-archive/CS-94-30/structxt.dvi.

Nelson Cowan. Attention and Memory: An Integrated Framework. Oxford Psychology
Series. Oxford University Press, Clarendon Press, New York, 1995.

Bruce Croft. What do people want from information retrieval? (The top 10 research
issues for companies that use and sell IR systems). D-Lib Magazine, November 1995.
URL: http://www.dlib.org/dlib.november95/11croft.html.

Olivier Déforges and Barba Dominique. Segmentation of complex documents multilevel
images: a robust and fast text bodies-headers detection and extraction scheme. In Pro-

ceedings of the Third International Conference on Document Analysis and Recognition
[44], pages T70-773.

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

[33]

113

Andreas Dengel and Frank Dubiel. Computer understanding of document structure. In
International Journal of Imaging Systems and Technology, 7(4) [81], pages 271-278.

Denise Derrien and Michel Habib. Approche objet pour I’analyse de la structure logique
des documents. In Jacques André and Jean Bézivin, editors, Woodman °89: Workshop
on Object-Oriented Document Manipulation, pages 226-235, Rennes, May 1989.

D. Doermann, A. Rosenfeld, and E. Rivlin. The function of documents. In Proceedings

of the Fourth International Conference on Document Analysis and Recognition [45),
pages 1077-1081.

Shona Douglas, Matthew Hurst, and David Quinn. Using natural language pro-
cessing for identifying and interpreting tables in plain text, September 1994. URL:
file://ftp.cogsci.ed.ac.uk/pub/shona/Tables.ps.gz.

Floriana Esposito, Donato Malerba, and Giovanni Semeraro. A knowledge-based ap-
proach to layout analysis. In Proceedings of the Third International Conference on
Document Analysis and Recognition [44], pages 466—471.

Peter Fankhauser and Yi Xu. MarkltUp! An incremental approach to document

structure recognition. FElectronic Publishing: Origination, Dissemination and Design,
6(4):447-456, 1993.

Jon Fausey and Keith Shafer. All my data is in SGML. Now what? Journal of the
American Society for Information Science, 48(7):638-643, 1997.

An Feng and Toshiro Wakayama. SIMON: A grammar based transformation system for

structured documents. FElectronic Publishing: Origination, Dissemination and Design,
6(4), 1993.

Lloyd Alan Fletcher and Rangachar Kasturi. A robust algorithm for text string sepa-
ration from mixed text/graphics images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 10(6):910-918, November 1988.

Peter Flynn. Wrh]ither the Web? the extension or replacement of HTML. Journal of
the American Society for Information Science, 48(7):614-621, 1997.

Peter Flynn, Terry Allen, Tom Borgman, Tim Bray, Robin Cover, Chirstopher Maden,
Eve Maler, Peter Murray-Rust, Liam Quin, Michael Sperberg-McQueen, Joel Weber,
and Makoto Murata. Frequently Asked Questions about the Extensible Markup Lan-
quage: The XML FAQ, Version 1.21, February 1998. URL: http://www.ucc.ie./xml/.

E. Fox, Q. Chen, and R. France. Integrating search and retrieval with hypertext.
In E. Berk and J. Devlin, editors, Hypertext/Hypermedia Handbook, pages 329-355.
McGraw-Hill, New York, 1991.

[34]

[35]

[36]

[37]
[38]

39]

[40]

[41]

[42]

[43]

[44]

114

Hiromichi Fujisawa, Itsuko Kiuchi, Takuo Koguchi, and Hidefumi Kondo. A visual user
interface for a personal information base using a concept network. In Database Systems
for Advanced Applications ’91: Proceedings of the Second International Symposium,
pages 69-78, Tokyo, April 1991. World Scientific.

Hiromichi Fujisawa, Yoshihiro Shima, Masashi Koga, and Tatsuya Murakami. Automat-
ically organizing document bases using document understanding techniques. In Future
Databases ’92: Proceedings of the Second Far-East Workshop on Future Database Sys-
tems, pages 244-253, Kyoto, April 1992. World Scientific.

Hiromichi Fujisawa, Hiroshi Yashiro, Jun’ichi Higashino, Yoshihiro Shima, Yasuaki
Nakano, and Tatsuya Murakami. Document analysis and decomposition method for
multimedia contents retrieval. In Proceedings of the Second International Syposium on
Interoperable Information Systems, pages 231-238, Tokyo, November 1988.

Charles F. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1990.

Jaekya Ha, Robert Haralick, and Ihsin Phillips. Document page decomposition by the
bounding-box projection technique. In Proceedings of the Third International Confer-
ence on Document Analysis and Recognition [44], pages 1119-1122.

Xiaolong Hao, Jason T. L. Wang, and Peter A. Ng. Information extraction from the
structured part of office documents. Information Sciences, 91(3-4):245-274, 1996.

Marti A. Hearst and Christian Plaunt. Subtopic structuring for full-length document
access. In Proceedings of the Sixteenth Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 59-68, Pittsburgh, 1993.

M. H. Heine. A provisional notation for describing the information structure of docu-
ments. Journal of Documentation, 51(4):339-359, 1995.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, 1979.

Tao Hu and Rolf Ingold. A mixed approach toward an efficient logical structure recog-
nition from document images. FElectronic Publishing: Origination, Dissemination and
Design, 6(4):457-468, 1993.

International Assocation for Pattern Recognition TC-11, TC-10, Canadian Image Pro-
cessing and Pattern Recognition Society, Centre for Pattern Recognition and Machine
Intelligence, Institute of Electrical and Electronics Engineers, Section Montréal, Labo-
ratoire Scribens, International Graphonomics Society, Centre de recherche Informatique
de Montréal, and Institute for Robotics and Intelligent Systems. Proceedings of the Third
International Conference on Document Analysis and Recognition. IEEE Computer So-
ciety Press, August 1995.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

115

International Association for Pattern Recognition, TC 10 and 11, International Grapho-
nomics Society, German Association for Computer Science, and German Association for
Information Technology. Proceedings of the Fourth International Conference on Docu-
ment Analysis and Recognition. IEEE Computer Society Press, August 1997.

Yasuto Ishitani. Document layout analysis based on emergent computation. In Pro-

ceedings of the Fourth International Conference on Document Analysis and Recognition
[45], pages 45-50.

D. J. Ittner and H. S. Baird. Language-free layout analysis. In Proceedings of the
Second Annual International Conference on Document Analysis and Recognition, pages
336-340. IEEE Computer Society Press, October 1993.

A. Jain and S. Bhattacharjee. Address block location on envelopes using Gabor filters.
Pattern Recognition, 25(12), 1992.

Anil K. Jain and Bin Yu. Page segmentation using document model. In Proceedings of
the Fourth International Conference on Document Analysis and Recognition [45], pages
34-37.

Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees — an alternative to
tree edit. In Combinatorial Pattern Matching: 5th Annual Symposium, CPM 94, Lecture
Notes in Computer Science, pages 75—-86. Springer-Verlag, Asilomar, California, June
1994.

Kunihiko Kaneko and Akifumi Makinouchi. Data storage and query processing for
structured document databases. In Roland R. Wagner, editor, Proceedings: Fighth
International Workshop on Database and Fxpert Systems Applications, pages 92-97.
IEEE Computer Society, 1997.

Michael H. Kay. Textmaster — document filing and retrieval using ODA. In J. C. van
Vliet, editor, Text Processing and Document Manipulation: Proceedings of the Interna-
tional Conference, British Computer Society Workshop Series, pages 125-139, Notting-
ham, April 1986. Cambridge University Press.

Bertin Klein and Peter Fankhauser. Error tolerant document structure analysis. In
IEEE International Forum on Research and Technology on Advances in Digital Li-
braries: ADL 97, pages 116-127. IEEE Computer Society Press, 1997.

Gary E. Kopec. Document image decoding in the UC Berkeley digital library. In
Luc M. Vincent and Jonathon J. Hull, editors, Proceedings: Document Recognition III,
volume 2660 of SPIE Proceedings Series, pages 2—13. SPIE-The International Society
for Optical Engineering, 1996.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

116

D. Kroemker, editor. Computer Networks and ISDN Systems: The International Jour-
nal of Computer and Telecommunications Networking, 27(6). Special Issue: Proceedings
of the Third International World-Wide Web Conference., 1995.

E. Kuikka and M. Penttonen. Transformation of structured documents. FElectronic
Publishing: Origination, Dissemination, and Design, 8(4):319-341, 1995.

E. Kuikka and A. Salminen. Filtering structured documents in the SYNDOC environ-
ment. In FElectronic Publishing: Origination, Dissemination and Design, 8(2-3) [11],
pages 181-193.

Mounia Lalmas. Dempster-Shafer’s theory of evidence applied to structured docu-
ments: modelling uncertainty. In Nicholas J. Belkin, A. Desai Narasimhalu, and Peter
Willett, editors, Proceedings of the 20th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. Special Issue of the SIGIR
Forum, pages 110-118, 1997.

Christopher Lewis, Daniela Rus, and Matthew Scott. A structure detector for tables.
Forthcoming Technical Report.

Y. H. Liu-Gong, B. Dubuisson, and H. N. Pham. A general analysis system for docu-
ment’s layout structure recognition. In Proceedings of the Third International Confer-
ence on Document Analysis and Recognition [44], pages 597-600.

William S. Lovegrove and David F. Brailsford. Document analysis of PDF files: meth-
ods, results and implications. In Electronic Publishing: Origination, Dissemination and
Design, 8(2-3) [11], pages 207-220.

Yves Marcoux and Martin S’evigny. Why SGML? Why now? Journal of the American
Society for Information Science, 48(7):584-592, 1997.

Ethan V. Munson. A new presentation language for structured documents. In Electronic
Publishing: Origination, Dissemination and Design, 8(2-3) [11], pages 125-138.

Makoto Murata. File format for documents containing both logical and layout struc-
tures. FElectronic Publishing: Origination, Dissemination and Design, 8(4):295-317,
1995.

G. Nagy, S. Seth, and M. Vishwanathan. A prototype document image analysis system
for technical journals. Computer, 25(7), 1992.

Debashish Niyogi and Sargur Srihari. An integrated approach to document decompo-
sition and structural analysis. In International Journal of Imaging Systems and Tech-
nology, 7(4) [81], pages 330-342.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

117

Debashish Niyogi and Sargur Srihari. The use of document structure analysis to retrieve
information from documents in digital libraries. In Luc M. Vincent and Jonathon J.
Hull, editors, Proceedings: Document Recognition IV, volume 3027 of SPIFE Proceedings
Series, pages 207-218. SPIE-The International Society for Optical Engineering, 1997.

Pat Norrish. Semantic structures of text. In Jacques André, Richard Furuta, and
Vincent Quint, editors, Structured Documents, The Cambridge Series on Electronic
Publishing, pages 143-159. Cambridge University Press, Cambridge, 1989.

Ulrich Pfeifer, Norbert Fuhr, and Tung Huynh. Searching structured documents with
the enhanced retrieval functionality of free WAIS-sf and SFgate. In Computer Networks
and ISDN Systems: The International Journal of Computer and Telecommunications
Networking, 27(6) [55], pages 1027-1036.

Benoit Poirier and Michel Dagenais. An interactive system to extract structured text
from a geometrical representation. In Proceedings of the Fourth International Conference
on Document Analysis and Recognition [45], pages 342-346.

Gilbert B. Porter and Emil V. Rainero. Document reconstruction: A system for recov-
ering document structure from layout. In Proceedings of the Conference on Electronic
Publishing, pages 127-141, 1992.

Vincent Quint, Cécile Roisin, and Irene Vatton. A structured authoring environment
for the World-Wide Web. In Kroemker [55], pages 831-840.

Dave Raggett, Arnaud Le Hors, and lan Jacobs. HTML 4.0 Specification, 1997.
URL: http://www.w3.org/TR/REC-html40/.

M. Armon Rahgozar, Zhigang Fan, and Emil V. Rainero. Tabular document recognition.
In SPIE Proceedings, San Jose, February 1994.

T. V. Raman. Audio System for Technical Readings. PhD thesis, Cornell University,
May 1994. URL: http://www.cs.cornell.edu/Info/People/raman/phd-thesis/.

Daniela Rus and Devika Subramanian. Multi-media RISSC Informatics: Retrieving
Information with Simple Structural Components. In Proceedings of the ACM Conference
on Information and Knowledge Management, Washington DC, November 1993.

Daniela Rus and Kristen Summers. Using non-textual cues for electronic document
browsing. In Nabil R. Adam, Bharat K. Bhargava, and Yelena Yesha, editors, Digital
Libraries: Current Issues, Lecture Notes in Computer Science, chapter 9, pages 129 —
162. Springer-Verlag, 1995.

Gerard Salton. Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison-Wesley Publishing Company, Reading,
1989.

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[38]

[89]

[90]

[91]

118

D. Sankoff and J. Kruskal. Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison. Addison-Wesley, 1983.

Philip N. Smith and David F. Brailsford. Towards structured, block-based PDF. In
Electronic Publishing: Origination, Dissemination and Design, 8(2-3) [11], pages 153—
165.

Sargur N. Srihari and Debashish Niyogi, editors. International Journal of Imaging
Systems and Technology, 7(4). Special Issue: Document Analysis and Recognition, 1996.

Kazuo Sumita, Seiji Miike, and Kenji Ono. Automatic abstract generation based on
document structure. Systems and Computers in Japan, 26(13):32-42, 1995. Translated
from Denshi Joho Rsushin Gakkai Ronbunshi, Volume J78-D-II, Number 3, pp. 511-519.

Atsuhiro Takasu, Shin’ichi Satoh, and Eishi Katsura. A rule learning method for aca-
demic document image processing. In Proceedings of the Third International Conference
on Document Analysis and Recognition [44], pages 239-242.

Jacco van Ossenbruggen, Anton Eliéns, and Bastiaan Schonhage. Web applications and
SGML. In Brown et al. [11], pages 51-62.

Mahesh Viswanathan, Edward Green, and M. S. Krishnamoorthy. Document recogni-
tion: an attribute grammar approach. In Luc M. Vincent and Jonathon J. Hull, editors,
Proceedings: Document Recognition I1I, volume 2660 of SPIE Proceedings Series, pages
101-111. SPIE-The International Society for Optical Engineering, 1996.

Hanno Walischewski. Automatic knowledge acquisition for spatial document interpre-
tation. In Proceedings of the Fourth International Conference on Document Analysis
and Recognition [45], pages 243-247.

Bing Wang. The design of an integrated information system. In Roland R. Wagner and
Helmut Thoma, editors, Database and Expert Systems Applications: 7th International
Conference, DEXA 96 Proceedings, pages 479-488. Springer-Verlag, 1996.

Toyohide Watanabe and Xiaou Huang. Automatic acquisition of layout knowledge for
understanding business cards. In Proceedings of the Fourth International Conference on
Document Analysis and Recognition [45], pages 216—220.

Toyohide Watanabe, Qin Luo, and Noboru Sugie. Structure recognition methods for
various types of documents. Machine Vision and Applications, 6:163—-176, 1993.

Gio Wiederhold. Mediators in the architecture of future information systems. Computer,
pages 38-49, March 1992.

Tan H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing
and Indezing Documents and Images, chapter 8 (Mixed Text and Images), pages 295—
327. Van Nostrand Reinhold, New York, 1994.

[92]

[93]

[94]
[95]

[96]

[97]

119

K. Y. Wong, R.G. Casey, and F. M. Wahl. Document analysis system. IBM Journal of
Research and Development, 26(6):647-656, November 1982.

W3C’s HTTML home page. URL: http://www.w3.org/MarkUp/, March 1998. Main-
tained by the World Wide Web Consortium.

Haviland Wright. SGML frees information. Byte, 17, June 1992.

Hiroshi Yashiro, Tatsuya Murakami, Yoshihiro Shima, Yasuaki Nakano, and Hiromichi
Fujisawa. A new method of document structure extraction using generic layout knowl-
edge. In International Workshop on Industrial Applications of Machine Intelligence and
Vision, Tokyo, April 1989.

Lin-Ju Yeh, Hsiu-Hsen Yao, and Yuan-Kuo Chen. SSQL: a semi-structured query
language for SGML document retrievals. In The 14th Annual International Conference
on Computer Documentation: Conference Proceedings, pages 221-228, 1996.

Wolfgang L. Zagler, Geoffrey Busby, and Roland R. Wagner, editors. Computers for
Handicapped Persons: jth International Conference, ICCHP ’9j Proceedings. Lecture
Notes in Computer Science. Springer-Verlag, 1994.

