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To meet the challenge of modeling the conformational dynamics of biological macromolecules over

long time scales, much recent effort has been devoted to constructing stochastic kinetic models,

often in the form of discrete-state Markov models, from short molecular dynamics simulations. To

construct useful models that faithfully represent dynamics at the time scales of interest, it is

necessary to decompose configuration space into a set of kinetically metastable states. Previous

attempts to define these states have relied upon either prior knowledge of the slow degrees of

freedom or on the application of conformational clustering techniques which assume that

conformationally distinct clusters are also kinetically distinct. Here, we present a first version of an

automatic algorithm for the discovery of kinetically metastable states that is generally applicable to

solvated macromolecules. Given molecular dynamics trajectories initiated from a well-defined

starting distribution, the algorithm discovers long lived, kinetically metastable states through

successive iterations of partitioning and aggregating conformation space into kinetically related

regions. The authors apply this method to three peptides in explicit solvent—terminally blocked

alanine, the 21-residue helical Fs peptide, and the engineered 12-residue �-hairpin trpzip2—to

assess its ability to generate physically meaningful states and faithful kinetic models. © 2007

American Institute of Physics. �DOI: 10.1063/1.2714538�

I. INTRODUCTION

Many biomolecular processes are fundamentally dy-

namic in nature. Protein folding, for example, involves the

ordering of a polypeptide chain into a particular topology

over the course of microseconds to seconds, a process which

can go awry and can lead to misfolding or aggregation, caus-

ing disease.
1

Enzymatic catalysis may involve transitions be-

tween multiple conformational substates, only some of

which may allow substrate access or catalysis.
2–4

Post-

translational modification events, ligand binding, or catalytic

events may alter the transition kinetics among multiple con-

formational states by modulating catalytic function, allowing

work to be performed, or transducing a signal through allos-

teric change.
5–7

A purely static description of these processes

is insufficient for mechanistic understanding—the dynamical

nature of these events must be accounted for as well.

Unfortunately, these processes may involve molecular

time scales of microseconds or longer, placing them well

outside the range of typical detailed atomistic simulations

employing explicit models of solvent. However, due to the

presence of many energetic barriers on the order of the ther-

mal energy, the uncertainty in initial microscopic conditions,

and the stochasticity introduced into the system by the sur-

rounding solvent in contact with a heat bath, any suitable

description of conformational dynamics must by necessity be

statistical in nature. This has motivated the development of

stochastic kinetic models of macromolecular dynamics

which might conceivably be constructed from short dynam-

ics simulations, yet provide a useful and accurate statistical

description of dynamical evolution over long times.

Several approaches have been used to construct these

models. Transition interface sampling,
8

milestoning,
9

and

methods based on commitment probability distributions
10,11

describe dynamics on a one-dimensional reaction coordinate,

but can only be applied if an appropriate reaction coordinate

can be identified such that relaxation transverse to this coor-

dinate is fast compared to diffusion along it. Discrete-state,

continuous-time master equation models, characterized by a

matrix of phenomenological rate constants describing the

rate of interconversion between states,
12

can be constructed

by identifying local potential energy minima as states and
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estimating interstate transition rates by transition state

theory.
13–19

Unfortunately, the number of minima, and hence

the number of states, grows exponentially with system size,

making the procedure prohibitively expensive for larger pro-

teins or systems containing explicit solvent molecules. Oth-

ers have suggested that stochastic models of dynamics can be

constructed by expansion of the appropriate dynamical op-

erator in a basis set,
20–22

but this approach appears to be

limited by the great difficulty of choosing rapidly convergent

basis sets for large molecules, a process that is not funda-

mentally different from identifying the slow degrees of free-

dom.

Instead, much work has focused on the construction of

discrete- or continuous-time Markov models to describe dy-

namics among a small number of states which may each

contain many minima within large regions of configuration

space.
23–33

In these models, it is hoped that a separation of

time scales between fast intrastate motion and slow inter-

state motion allows the statistical dynamics to be modeled by

stochastic transitions among the discrete set of metastable

conformational states governed by first-order kinetics. Con-

sider, for example, the isomerization of butane, which has

three main metastable conformational states �gauche-plus,

gauche-minus, and trans�. At sufficiently low temperature,

dynamics is dominated by long dwell times within each of

these three states, punctuated by infrequent transitions be-

tween them. The slow interstate transition process is well

described by first-order reaction kinetics for observation in-

tervals longer than the fast molecular relaxation time for in-

trastate dynamics due to the presence of a separation of time

scales.
34

Such a separation of time scales would be a natural

consequence of the widely held belief that the nature of the

energy landscape of biomacromolecules is

hierarchical.
16,35–38

If the system reaches local equilibrium

within the state before attempting to exit, the probability of

transitioning to any other state will be independent of all but

the current state. This allows the process to be modeled with

either a discrete-time Markov chain �e.g., Ref. 26� or a

continuous-time master equation model with coarse-grained

time �e.g., Ref. 29�. In either model, processes occurring on

time scales faster than the time to reach equilibrium within

each state cannot be resolved.

Markov models embody a concise description of the

various kinetic pathways and their relative likelihood, facili-

tating comparison with experimental data and providing a

powerful tool for mechanistic insight. Once the model is

constructed and the time scale for Markovian behavior deter-

mined, it can be used to compute the stochastic temporal

evolution of either a single macromolecule or a population of

noninteracting macromolecules, allowing direct comparison

of simulated and experimental observables for both single-

molecule or ensemble kinetics experiments. In addition, use-

ful properties difficult to access experimentally, such as state

lifetimes,
39

relaxation from experimentally inaccessible pre-

pared states,
40

mean first-passage times,
26

the existence of

hidden intermediates,
41

and Pfold values or transmission

coefficients,
42

can easily be obtained. This allows for both a

thorough understanding of mechanism and the generation of

new, experimentally testable hypotheses.

To build such a model, it is necessary to decompose

configuration space into an appropriate set of metastable

states. If the low-dimensional manifold containing all the

slow degrees of freedom is known a priori, then this can be

partitioned into free energy basins to define the states, such

as by examination of the potential of mean force.
25,28,29,32,40

In the absence of this knowledge, others have turned to con-

formational clustering techniques to identify conformation-

ally distinct regions which may also be kinetically

distinct.
24,26,27,43

Instead, we adopt a strategy first suggested for

the discovery of metastable states in biomolecular systems

by researchers at the Konrad-Zuse-Zentrum für

Informationstechnik.
44

The principal idea is this: If configu-

ration space could be decomposed into a large number of

small cells, the probability of transitioning between these

cells in a fixed evolution time could be measured. This prob-

ability is a measure of kinetic connectivity among the cells,

which allows the identification of aggregates of these cells

that approximate true metastable states.
45

Unfortunately, the

choice of how to divide configuration space into cells is not

straightforward. Suppose one is to consider the analysis of

some fixed amount of simulation data. If configuration space

is decomposed very finely, the boundaries between meta-

stable states can in principle be well approximated, but the

estimated cell-to-cell transition probabilities will become sta-

tistically unreliable. On the other hand, if configuration space

is decomposed too coarsely, the transition probabilities may

be well determined, but the boundaries between metastable

states cannot be resolved clearly, potentially disrupting or

destroying the Markovian behavior of interstate dynamics.

An optimal choice would ultimately require knowledge of

the metastable regions in order to determine the best decom-

position of configuration space into cells.

In this work, we propose an iterative procedure to deter-

mine both the choice of cells and their aggregates to approxi-

mate the desired metastable states. We use a conformational

clustering method to carve configuration space into an initial

crude set of cells �splitting� and a Monte Carlo simulated

annealing procedure to collect metastable collections of cells

into states �lumping�. This cycle is repeated, with the split-

ting procedure now applied individually to each state to gen-

erate a new set of cells, and the lumping procedure applied to

the entire set of cells to redefine states until further applica-

tion of this procedure leaves the approximations to meta-

stable states unchanged. This procedure allows state bound-

aries to be iteratively refined, as regions that mistakenly have

been included in one state can be split off and regrouped

with the proper state. Throughout this process, we require

that the cells never become so small that estimation of the

relevant transition matrix elements is statistically unreliable.

Our proposed method is efficient, of O�N� complexity in the

number of stored configurations, and can easily be parallel-

ized.

This paper is organized as follows: In Sec. II, we give an

overview of the Markov chain model and its construction,

elaborate on desirable properties of an algorithm to partition

configuration space into states, and outline the principles un-

derlying the algorithm we present here. In Sec. III, we pro-
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vide a detailed description of the automatic state decompo-

sition algorithm and its implementation. In Sec. IV, we apply

this algorithm to three model peptide systems in explicit sol-

vent to assess its performance: alanine dipeptide, the 21-

residue Fs helix-forming peptide, and the 12-residue engi-

neered trpzip2 hairpin. Finally, in Sec. V, we discuss the

advantages and shortcomings of our algorithm, with the hope

that future state decomposition algorithms can address the

remaining challenges.

II. THEORY

Some discussion of the stochastic model of kinetics con-

sidered here and the theory underlying the method is appro-

priate before describing the algorithmic implementation in

detail. The actual implementation of the algorithm used here

is described in detail in Sec. III.

A. Markov chain and master equation models of
conformational dynamics

Consider the dynamics of a macromolecule immersed in

solvent, where the solvent is at equilibrium at some particu-

lar temperature of interest. We presume that all of configu-

ration space has already been decomposed into a set of non-

overlapping regions, or states, which together form a

complete decomposition of configuration space. The method

by which these states are identified is described in subse-

quent sections.

If we observe the evolution of this system at times

t=0,� ,2� , . . ., where � denotes the observation interval, we

can represent this sequence of observations in terms of the

state the system visits at each of these discrete times. The

sequence of states produced is a realization of a discrete-time

stochastic process. For this process to be described by a Mar-

kov chain, it must satisfy the Markov property, whereby the

probability of observing the system in any state in the se-

quence is independent of all but the previous state. For a

stationary process on a finite set of L states, this process can

be completely characterized by an L�L transition matrix

T��� dependent only on the observation interval or lag time

�. �We adopt the notation for a column-stochastic transition

matrix, in which the columns sum to unity; this differs from

the notation in some previously cited references, which use a

row-stochastic transition matrix, equal to the transpose of the

column-stochastic matrix used here.� The element T ji��� de-

notes the probability of observing the system in state j at

time t given that it was previously in state i at time t−�. If

this process satisfies detailed balance �which we will assume

to be the case for physical systems of the sort we consider

here
12

� we additionally have the requirement

T jipeq,i = Tijpeq,j , �1�

where peq,i denotes the equilibrium probability of state i.

The vector of probabilities of occupying any of the L

states at time t �here also referred to as the vector of state

populations, such as in an experiment involving a population

of noninteracting macromolecules� can be written as p�t�. If

the initial probability vector is given by p�0�, we can write

the probability vector at some later time n� as

p�n�� = T�n��p�0� = �T����np�0� . �2�

This is a form of the Chapman-Kolmogorov equation.

Alternatively, the process can be characterized in con-

tinuous time by a matrix of phenomenological rate constants

K, where the element K ji, j� i denotes the non-negative phe-

nomenological rate from state i to state j. The diagonal ele-

ments are determined by Kii=−� j�iK ji to ensure the columns

sum to zero so as to conserve probability mass. Time evolu-

tion is then governed by the equation

ṗ�t� = Kp�t� , �3�

where the dot represents differentiation with respect to time.

This evolution equation has the formal solution

p�t� = eKtp�0� , �4�

where the exponential denotes the formal matrix exponential.

Equation �3� is often referred to as a master equation
12,46

describing evolution among a discrete set of states in con-

tinuous time. It is important to note that, despite the fact that

p�t� is formally defined for all times t, we do not expect Eq.

�4� to hold for all times t for physical systems of the sort we

consider here. In particular, for states of finite extent in con-

figuration space, there exists a corresponding limit for the

time resolution for which dynamics will appear Markovian;

processes that occur on time scales shorter than this will be

incorrectly described by the master equation.

There is an obvious relationship between the transition

matrix T��� and the rate matrix K evident from comparison

of Eqs. �2� and �4�,

T��� = eK�. �5�

If the process can be described by a continuous-time Markov

process at all times, then this process can be equivalently

described at discrete time intervals by the corresponding

transition matrix. The converse may not always be true due

to sampling errors in T���, though methods exist to recover

rate matrices K consistent with the observed data and the

requirements of detailed balance and nonnegative rates.
23,29

The transition and rate matrices have eigenvalues �k���

and �k, respectively, and share corresponding right eigenvec-

tors uk. The detailed balance requirement additionally en-

sures that all eigenvalues are real, and we here presume them

to be sorted in descending order. �k��� and �k are related by

�k��� = e�k�. �6�

The eigenvalues each imply a time scale

�k = − �k
−1 = − ��ln �k����−1, �7�

and the associated eigenvector gives information about the

aggregate conformational transitions that are associated with

this time scale.
44,45,47,48

In particular, the components of uk

sum to zero for each k�2, and the aggregate dynamical

mode corresponds to transitions from states with positive

eigenvector components to states with negative components

and vice versa, with the degree of participation in the mode

governed by the magnitude of the eigenvector component.

This property can be useful in identifying metastable states.
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For the remainder of this manuscript, we will refer ex-

clusively to the discrete-time Markov chain model picture

without loss of generality �Eq. �2��.

B. Markov model construction from simulation data
given a state partitioning

Once a statistical-mechanical ensemble describing equi-

librium and a microscopic model describing dynamical evo-

lution in phase space have been selected, the transition ma-

trix T��� can be estimated from molecular dynamics

simulations. For a system in which dynamical evolution is

Newtonian and, at equilibrium, configurations are distributed

according to a canonical distribution at a given temperature,

Swope et al.
39

show that the transition probability T ji��� can

be written as the following ratio of canonical ensemble av-

erages:

T ji��� =
�dz�0�e−�H�z�0��� j�z�����i�z�0��

�dz�0�e−�H�z�0���i�z�0��
�8�

=
�� j����i�0��

��i�
, �9�

where z�t� denotes a point in phase space visited by a trajec-

tory at time t, �i�z� denotes the indicator function for state i

�which assumes a value of unity if z is in state i, and zero

otherwise�, �	�kBT�−1 the inverse temperature, H�z� the

Hamiltonian, and �A� the canonical ensemble expectation of

a phase function A�z� at inverse temperature �.

Given a set of simulations initiated from an equilibrium

distribution, the expectations in Eq. �9� can be computed

independently by standard analysis methods.
49

Estimation of

the correlation function in the numerator can make use of

both the stationarity of an equilibrium distribution �by con-

sidering overlapping intervals of time �� and the microscopic

reversibility �by considering also time-reversed versions of

the simulations� of Newtonian trajectories. Alternatively, if

an equilibrium distribution within each state can be prepared,

one can also directly estimate a column of transition matrix

elements by computing the fraction of trajectories initially at

equilibrium within state i that terminate in state j a time �
later. More elaborate methods based on equilibrium en-

sembles prepared within special selection cells that are not

coincident with the states
25,39

or partition of unity restraints
50

can also be used to compute transition matrix elements effi-

ciently.

C. Requirements for a useful Markov model

For any given state partitioning, the dynamics of the

system will be Markovian on some time scale. For example,

if the lag time � is so long as to approach the time for the

system to relax to an equilibrium distribution from any arbi-

trary starting distribution, a single application of the transi-

tion matrix T��� produces the invariant equilibrium distribu-

tion. However, if this � exceeds the time scale of the process

of interest, our model is not useful for describing it, and

therefore it is advantageous to attempt to find a state decom-

position that is Markovian on a shorter time scale in order to

extract useful dynamical information about this process.

�Equilibrium probabilities can still be extracted from the sta-

tionary eigenvector, the eigenvector corresponding to an ei-

genvalue of unity, of such a transition matrix, which may

have some utility if one had constructed the transition matrix

from trajectories not initiated from distributions at equilib-

rium globally.�

For a given state i, we will define its internal equilibra-

tion time, �int,i, as the characteristic time one must wait be-

fore the system, initially in a configuration within state i,

generates a new uncorrelated configuration within the state

by dynamical evolution. This internal equilibration time, or

memory time, closely related to the molecular relaxation time

scale �mol in Chandler’s reactive flux formulation of transi-

tion state theory,
34

depends, of course, on the choice of state

decomposition. We can denote the longest of these times

over all states by �int. If the lag time is longer than �int, we

will expect the system to have lost memory of its previous

location within any state it may have been in, either remain-

ing within that state or transitioning to a new one, and for

dynamics on this set of states to be independent of history.

On the other hand, for lag times shorter than �int, we cannot

guarantee that transition probabilities are independent of his-

tory everywhere. This suggests a way in which the utility of

various decompositions can be measured. For a fixed number

of states, the most useful model will partition configuration

space to yield the shortest �int, as this model can be used to

study the widest range of dynamical processes.

In addition to producing transition probabilities that are

history independent at a relevant lag time, we impose an

additional condition on our states to ensure the resulting

model also provides physical and chemical insight. In order

for the states to be defined such that equilibration within a

state is rapid, we desire that the region of configuration space

defining each state be connected. A state composed of two or

more unconnected regions of configuration space defies the

assumption that equilibration within the state is much faster

than the characteristic time to leave it.

D. Validation of Markov models

Once a decomposition of configuration space is chosen,

we are faced with the task of determining the observation

time interval � at which dynamics in this state space appears

Markovian. Unfortunately, we cannot directly compute the

internal state equilibration times, though examination of the

eigenvalues of the transition matrix restricted to a state may

give a lower bound on this time in the absence of statistical

uncertainty.
51

The most rigorous test for Markovian behavior

would be a direct check of history independence. The sim-

plest test of this type is to compute second-order transition

probabilities and compare them to the appropriate products

of the first-order transition probabilities to see if their dis-

agreement is statistically significant. While it is possible to

estimate the second-order probabilities from the simulation

data, this requires the estimation of three-time correlation

functions, which often possess statistical uncertainties so

large as to render them useless for this kind of test.
52

Addi-

tionally, this would miss possible yet unlikely higher order

history dependencies.
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1. Information-theoretic metric

Another approach, from Park and Pande
33

uses concepts

from information theory to compute the conditional mutual

information conveyed by the second-to-last state, which

quantifies the discrepancy between observed second-order

transition probabilities and the estimate modeled from first-

order transition probabilities. The result of this analysis is a

scalar that quantifies the degree of history dependence. For a

pure first-order Markov process, the mutual information will

be zero, as no additional information is gained by including

additional history. While this method also requires comput-

ing three-time correlation functions, which may individually

have substantial uncertainties, the weighted combination of

these into a single value reduces the uncertainty in the result-

ing metric. Unfortunately, there is no rigorous criteria for

how small this measure must be in order for the model to be

considered acceptably Markovian.

2. Chapman-Kolmogorov

Alternatively, raising the transition matrix to a power n

�hence summing over the intermediate states� and comparing

with the observed transition probabilities for a lag time of n�,

such that one is effectively determining whether the

Chapman-Kolmogorov equation �Eq. �2�� is satisfied, helps

to reduce the uncertainty so that the test becomes practical.

This is equivalent to propagating the population in time out

of a probability distribution confined to each state i initially

and comparing the model evolution with the observed tran-

sition probabilities over times much longer than �int. This

serves as a check to ensure that the model is at least consis-

tent with the data set from which it was constructed, to

within the statistical uncertainty of the transition matrices

obtained from the data set. This method was employed, for

example, in Refs. 39 and 40 and is used here as well.

3. Implied time scales

Swope et al.
39

suggested a number of additional tests for

signatures of Markov behavior, the most sensitive of which

appears to be examining the behavior of the implied time

scales of the transition matrix T���, which can be computed

from the eigenvalues of the transition matrix by Eq. �7�, as a

function of increasing lag time �.
52

At sufficiently large �, the

implied time scales will be independent of �, implying that

exponentiation of the transition matrix is nearly identical to

constructing the transition matrix using longer observation

time intervals �Eq. �2��. The shortest observation time inter-

val for which this holds can be correlated with the internal

equilibration time �int, and descriptions of the behavior of the

system using that state decomposition should be Markovian

for all lag times ���int. This is also a test of whether the

Chapman-Kolmogorov equation holds, but as it computes

only L numbers and orders them by time scale, it allows

emphasis to be placed on the longest time scales in the sys-

tem. Implied time scales were used for all systems consid-

ered here.

Unfortunately, this last method has some drawbacks.

First, small uncertainties in the eigenvalues of the transition

matrix can induce very large uncertainties in the implied

time scales. With increasing lag time �, the number of statis-

tically independent observed transitions from which T��� is

estimated diminishes, and the statistical uncertainty in the

implied time scales �k will grow. Second, while stability of

the implied time scales with respect to lag time is a neces-

sary consequence of history independence, it is not itself

sufficient to guarantee history independence, though we may

be unlikely to encounter physical systems for which this is

problematic. However, tests on simple models indicate that

the information-theoretic metric suggests the emergence of

Markovian behavior on similar lag times to this method, sug-

gesting some degree of fundamental equivalence.
33

III. THE AUTOMATIC STATE DECOMPOSITION
ALGORITHM

Based on the theory above, we provide a list of practical

considerations for an automatic state decomposition algo-

rithm and then present an algorithm that meets them. The

algorithm operates on an ensemble of molecular dynamics

trajectories where conformations have been stored at regular

time intervals. In this work, we apply the method to a set of

equilibrium trajectories at the temperature of interest, but the

algorithm can in principle be applied to trajectories gener-

ated from biased initial conditions, provided the unbiased

transition probabilities between regions of configuration

space can be computed. We stress that the algorithm pre-

sented here is simply a first attempt at a truly general and

automatic algorithm for use with biomacromolecules.

A. Practical considerations for an automatic state
decomposition algorithm

There are several desirable properties that a state decom-

position should possess to be both useful and practical.

�1� It is not uncommon for simulations conducted on su-

percomputers such as Blue Gene,
53,54

distributed com-

puting platforms such as Folding@Home,
55,56

or even

computer clusters to generate data sets that may contain

105–107 configurations in up to 104 trajectories, there-

fore rendering impractical the use of any algorithm

with a computational complexity greater than

O�N log N� in the number of configurations.

�2� We assume configurations lie exclusively in the con-

figuration space of the macromolecule. We presume

decorrelation of momenta and reorganization of the sol-

vent is faster than the processes of interest. �We recog-

nize that solvent coordinates may be critical in some

phenomena, but dealing with solvent degrees of free-

dom would also require accounting for the indistin-

guishability of solvent molecules upon their exchange.

We leave this to further versions of the algorithm.�

�3� Molecules may have symmetries due to the presence of

chemically equivalent atoms such as in aromatic rings,

methyl protons, and the oxygens of carboxylate groups.

The state decomposition should be invariant to permu-

tations of these atoms.
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�4� The state decomposition algorithm should produce a

decomposition for which dynamics appears to be Mar-

kovian at the shortest possible lag time �, so as to pro-

duce the most useful model.

�5� The resulting model should not include so many states

so that the elements of the transition matrix will be

statistically unreliable.

B. Sketch of the method

A state decomposition algorithm intended to produce the

most useful Markov models, as discussed in Sec. II C above,

would generate models that minimize the internal equilibra-

tion time �int, the minimum time for which the model be-

haves in a Markovian fashion. If states can be constructed

where the time scale for equilibration within each state is

much shorter than the time scale for transitions among the

states, we would expect interstate dynamics to be well mod-

eled by a Markov chain after sufficiently long observation

intervals. Unfortunately, �int is difficult to determine directly,

so we are instead forced to identify some surrogate quantity

whose maximization will hopefully lead to improved separa-

tion between the time scales for intrastate and interstate tran-

sitions. Following the approach of Ref. 57, we define a mea-

sure of the metastability Q of a partitioning into L

macrostates as the sum of the self-transition probabilities for

a given lag time �,

Q 	 �
i=1

L

Tii��� . �10�

For �=0, Q=L, and Q decays to unity as � grows large

enough for the self-transition probabilities Tii to reach the

equilibrium probabilities of each macrostate. Poor partition-

ings will result in a small Q, as trajectories started in some

states will rapidly exit; conversely, good partitionings into

strongly metastable states will result in a large Q, as trajec-

tories will remain in each macrostate for long times. In the

absence of statistical uncertainty, Q is bounded from above

by the sum of the L largest eigenvalues of the true dynamical

propagator for the system.
57

The goal of our algorithm is to identify a partitioning

into L contiguous macrostates that maximizes the metastabil-

ity Q. While in principle, the boundaries between these mac-

rostates can be varied directly to optimize Q, in analogy to

variational transition state theory,
58

a complicated parameter-

ization may be necessary to describe the potentially highly

convoluted hypersurfaces separating the states, and Q may

have multiple maxima in these parameters. Instead, we

choose an approach based on splitting the conformation

space into a large number of small contiguous microstates

and then lumping these microstates into macrostates to maxi-

mize the metastability.

This approach is similar to the approach of Schütte et al.

described in Ref. 44, but with a substantial difference. In

their work, each degree of freedom of the molecule �such as

a torsion angle� is subdivided independently to produce a

multidimensional grid. As the number of states is exponential

in the number of degrees of freedom, this approach quickly

becomes intractable for macromolecules that possess large

numbers of degrees of freedom, even if the sparsity of the

transition matrix is taken into account. Instead, we choose to

let the data define the low-dimensional manifold of configu-

ration space accessible to the macromolecule, and we can

apply any clustering algorithm that is O�N log N� in the

number of configurations to decompose the sampled confor-

mation space into a set of K contiguous microstates. This

step corresponds to the first split step in Fig. 1.

Once the conformation space is divided into K mi-

crostates, we lump the microstates together to produce L

�K macrostates with high metastability Q. This corresponds

to the first lump step in Fig. 1. The difficulty here is that the

uncertainty in the metastability of a partitioning can be large

if any macrostate contains very few configurations. Since a

macrostate may consist of a single microstate, the mi-

crostates must be large enough for the self-transition ele-

ments to be statistically well determined. This comes at a

price: with large microstates, the procedure may have diffi-

culty accurately determining the boundaries between mac-

rostates because the resolution of partitioning is limited by

the finite extent of the microstates. Additionally, the choice

of decomposition into microstates is arbitrary, whereas we

would like the state decomposition algorithm to produce

equivalent sets of macrostates regardless of the quality of the

initial partitioning.

To overcome these difficulties, we iterate the aforemen-

tioned procedure. After microstates are combined into mac-

rostates, each macrostate is again fragmented into a new set

FIG. 1. Flow chart of the automatic state decomposition algorithm. We

consider K microstates which are used as the basis to construct L�K mac-

rostates that are the approximations to the true metastable states in the

system.
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of microstates �the second split step in Fig. 1�. The refined

set of all microstates is then lumped to form refined mac-

rostates �the second lump step in Fig. 1�. In this way, the

boundaries between macrostates are iteratively refined, and

regions incorrectly lumped in previous iterations may be

split off and lumped with the correct macrostate in subse-

quent iterations. At convergence, no shuffling of conforma-

tions between macrostates should occur.

There is unfortunately no unambiguous way to choose

the number of states L. If there is a clean separation of time

scales, examination of the eigenvalue spectrum of the mi-

crostate transition matrix may suggest an appropriate value

of L.
45

In a hierarchical system, there will be many gaps in

the eigenvalue spectrum and many choices of L will lead to

good Markovian models of varying complexity. There is,

however, a tradeoff between the number of states and the

amount of data needed to obtain a model with the same

statistical precision. It may be necessary to apply the algo-

rithm repeatedly with different choices of L to produce a

model adequate for describing the time scales of interest. L

could even be chosen dynamically at each iteration of the

algorithm, though we did not choose to do so in this version.

C. Implementation

There are a number of implementation choices to be

made in the algorithm given above, and here we briefly sum-

marize and justify our selections.

1. Splitting

For the split step, we choose to apply K-medoid

clustering
59

for a fixed number of iterations because of its

O�KN� time complexity �where K can be taken to be con-

stant� and ease of parallelization. Additionally, K-medoid

clustering has an advantage over the more popular K-means

clustering
60

in this application, as it does not require averag-

ing over conformations, which may produce nonsensical

constructs when drastically different conformations are in-

cluded in the average. Splitting by K-medoid clustering is

initiated from a random choice of K unique conformations to

function as generators. All conformations are assigned to the

microstate identified by the generator they are closest to by

some distance metric �defined below�. Next, an attempt is

made to update the generator of each microstate. K members

of the microstate, drawn at random, are evaluated to see if

they reduce the intrastate variance of some distance metric

from the generator. If so, the configuration for which the

intrastate variance is minimal is assigned as the new genera-

tor. All conformations are then reassigned to the closest gen-

erator, and the process of updating the generators is repeated.

In standard K-medoid applications, this procedure is iterated

to convergence, but since the purpose of the splitting phase is

simply to divide the sampled manifold of configuration space

into contiguous states, ensuring that each state is signifi-

cantly populated, only five iterations of this procedure were

used.

For the distance metric, we selected the root-mean

squared deviation �RMSD�, computed after a minimizing

rigid body translation and rotation using the rapid algorithm

of Theobald.
61

In the first splitting iteration, only C	 atoms

were used to compute the RMSD due to the expense of hav-

ing to cluster all conformations in the data set; in subsequent

iterations, all heavy atoms �excepting those indistinguishable

by symmetry� were used, as well as side chain polar hydro-

gens. This metric was chosen because it possesses all the

qualities of a proper distance metric,
62

accounts for both lo-

cal similarities between pairs of conformations as well as

global ones, and runs in time proportional to the number of

atoms, as opposed to a metric such as distance matrix error

�or dRMSD�, which scales as the square of the number of

atoms. In molecules with additional symmetry, the distance

metric can be adjusted accordingly. Our choice of distance

metric is not the only one that would suffice; any distance

metric which can distinguish between kinetically distinct

conformations is sufficient for this algorithm. In constrast,

using something like backbone RMSD throughout the pro-

cess may be a poor distance metric since it would ignore

potentially relevant side chain kinetics.

2. Lumping

Lumping to L states so as to maximize the metastability

Q of the macrostates proceeds in two stages. In the first

stage, information on the metastable state structure contained

in the eigenvectors associated with the slowest time

scales
45,47,48,63

is used to construct an initial guess at the op-

timal lumping. Because the eigenvectors contain statistical

noise, this may not actually be optimal, so we include a

second stage that uses a Monte Carlo simulated annealing

�MCSA� optimization algorithm to further improve the meta-

stability. Though the MCSA algorithm could in principle be

used without the first stage to find optimal lumpings, we find

its convergence is greatly accelerated by use of the initial

guess. Ensuring connectivity during the lumping stage would

be difficult due to the need to enumerate neighbors in con-

figuration space, but in practice, we find this unnecessary.

In the first stage, a transition matrix among microstates

is computed �using Eq. �9�� taking advantage of both station-

arity and time reversibility for a short lag time �, typically

the shortest interval at which configurations were stored.

Motivated by the Perron cluster cluster analysis algorithm of

Deuflhard et al.,
63

an initial guess for the optimal lumping of

microstates to macrostates is generated using the left eigen-

vectors �the left eigenvector vk is simply related to the right

eigenvector uk by �vk�i= peq,i
−1 �uk�i

46
� associated with the larg-

est eigenvalues of the microstate transition matrix. We begin

by assigning all microstates to a single macrostate. For each

eigenvalue, the corresponding eigenvector contains informa-

tion about an aggregate transition between the set of mi-

crostates with positive eigenvector components and the set

with negative components, with a time scale determined by

the eigenvalue. Equilibration within each set must occur on a

faster time scale, provided the eigenvalues are nondegener-

ate. We can therefore use this information to identify one

macrostate to divide in two. We select the macrostate with

the largest L1 norm of eigenvector components �restricted to

microstates belonging to the macrostate� after subtracting the

mean of these components. In Ref. 63, the sign structure

alone was used to split these sets, but since we restrict the
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splitting to a single macrostate, we split about the mean, so

that microstates with eigenvector components above the

mean become one macrostate and the rest go into another.

This procedure is performed for eigenvectors k=2, . . . ,L in

order, which should correspond to the slowest processes in

the system, generating a total of L macrostates.

Due to statistical noise in the eigenvectors and near de-

generacy in the eigenvalues, this procedure does not always

result in the lumping with the maximal metastability Q.

Therefore, in the second stage, the metastability was maxi-

mized using a MCSA algorithm, using the eigenvector-

generated lumping as an initial seed. In each step of the

Monte Carlo procedure, a microstate was selected with uni-

form probability and assigned to a random macrostate. If this

proposed move would leave a macrostate empty or did not

change the partitioning, it was rejected immediately. The

proposed partitioning was accepted with probability

min
1,e�
Q�. The effective inverse temperature parameter �
was set to be equal to the step number, and the MCSA pro-

cedure run for 20 000 steps. Twenty independent MCSA runs

were initiated from the initial eigenvector-based partitioning,

and the partitioning with the highest metastability sampled in

any run was selected to define the lumping into macrostates.

No attempt was made to optimize the annealing schedule.

It should be noted that the metastability Q is not the only

surrogate that could be optimized in order to produce a use-

ful state decomposition. One could choose to maximize the

largest eigenvalues or fastest time scales of the lumped tran-

sition matrix, the product of eigenvalues �which would give

more weight to faster time scales�, or even a weighted sum of

the eigenvalues, where the weights might be due to the equi-

librium importance of the eigenmode in dynamics or in mod-

eling a process of interest. Unfortunately, these quantities all

necessitate computing some eigenvalues or the determinant

of the lumped transition matrix for every proposed lumping

to be evaluated by the MCSA algorithm, which would add a

significant computational burden. Alternatively, other quan-

tities could be computed from the transition matrix directly,

such as the state lifetimes estimated from the self-transition

probabilities as �L,i= �1−Tii�
−1. However, the combination of

computational and theoretical convenience makes the use of

metastability a natural choice here.

3. Iteration

For the remaining iterations, the K-medoid clustering is

repeated independently on each macrostate for five itera-

tions. In general, we split each macrostate into ten mi-

crostates, unless otherwise noted. However, we wish to en-

sure statistical reliability of the transition probability matrix.

If the expected microstate size �estimated by the population

of the macrostate divided by K� falls below some threshold

�100 configurations unless otherwise noted�, we split to a

smaller number of states such that the expected size is above

the threshold. The lumping step is then repeated on all re-

sulting microstates. The entire procedure of splitting and

lumping is repeated for a total of ten iterations, which for the

applications considered here was sufficient for convergence

of the metastability.

D. Validation

To validate the model, we examine the largest implied

time scales as a function of lag time, as computed from the

eigenvalues of the transition matrix by Eq. �7�. In particular,

we attempt to determine the minimum lag time after which

the implied time scales appear to be independent of lag time

to within the estimated statistical uncertainty �see Sec. II D�.

To estimate statistical uncertainties in the implied time scales

and other quantities, we perform a bootstrap procedure
64

on

the pool of independent trajectories. Forty bootstrap repli-

cates, each consisting of a number of trajectories equal to the

number of independent trajectories in the data set pool, are

generated by drawing from the pool with replacement. For

alanine dipeptide, 100 bootstrap replicates were used. For

each replicate, the implied time scales or other quantity is

computed, and either the standard deviation over the sample

of replicates computed �if reported in the text as a±b� or a

68% confidence interval centered on the sample mean esti-

mated �if depicted in a figure as vertical error bars�.

We also estimate the number of statistically independent

visits to each macrostate. Since sequential samples from a

single trajectory are temporally correlated, we compute the

integrated autocorrelation time
65,66 �ac,i for each macrostate i.

Ignoring statistical uncertainty, this correlation time is an up-

per bound on the equilibration time within a state; long-lived

states will necessarily have long autocorrelation times, but

trajectories trapped within them may contain many uncorre-

lated samples if the internal equilibration time is short. In the

absence of a convenient way to quantify the internal equili-

bration time for each state, the autocorrelation time provides

a better estimate of the appropriate time scale than the time

to reach global equilibrium �eq. The effective number of in-

dependent samples for each state is estimated by summing

the number of independent samples from each trajectory

�which are assumed independent�, where the effective num-

ber of independent samples of state i from trajectory n is

computed as Nni
eff�min
1,Nni /gi�, where Nni is the number

of configurations from trajectory n in state i, and gi=1

+2�ac,i /�sample is the statistical inefficiency of state i, where

�sample is the sampling interval between conformations.

IV. APPLICATIONS

A. Alanine dipeptide

We first demonstrate the application of the automatic

state decomposition algorithm to a simple model system, ter-

minally blocked alanine peptide �sequence Ace-Ala-Nme� in

explicit solvent. Because the slow degrees of freedom �� and

� torsions, labeled in Fig. 2, left� are known a priori �simu-

lations of alanine dipeptide examining the committor distri-

bution have implicated solvent coordinates as the next-

slowest degrees of freedom,
68,71

but we have previously

verified that � and � torsions form a sufficient basis for the

slow degrees of freedom on time scales of 6 ps and

greater
40

�, it is relatively straightforward to manually identify

metastable states from examination of the potential of mean

force, making it a popular choice for the study of biomolecu-

lar dynamics.
17,40,67–70

Previously, a master equation model

constructed using six manually identified states �Fig. 2, right�
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was shown to reproduce dynamics over long times �with the

time to reach equilibrium over 100 ps at 302 K� given tra-

jectories only 6 ps in length.
40

We therefore determine

whether the automatic algorithm can recover a model of

equivalent utility to this manually constructed six-state de-

composition for this system, as well as study its convergence

properties. Because the algorithm uses the solute Cartesian

coordinates, rather than the �� ,�� torsions, this is a good test

of whether good approximations to the true metastable states

can be discovered without prior knowledge of the slow de-

grees of freedom. For ease of visualization, however, we

project the state assignments onto the �� ,�� torsion map for

comparison with our manually constructed states.

1. Simulation details

Trajectories were obtained from the 400 K replica of a

20 ns/ replica parallel tempering simulation �note that only

10 ns/ replica were used in Ref. 40—the data presented here

includes an additional 10 ns/ replica of production simula-

tion; additionally configurations containing cis- torsions

discussed in the text were not observed in the first

10 ns/ replica cited in the previous study—these conforma-

tions only appeared in the latter 10 ns/ replica� described in

Ref. 40, and consisted of an equilibrium pool of 1000

constant-energy, constant-volume trajectory segments 20 ps

in length with configurations stored every 0.1 ps. The pep-

tide was modeled by the AMBER 96 forcefield
72

and sol-

vated in TIP3P water.
73

The previous study
40

considered the

dynamics at 302 K, but resorted to a focused sampling strat-

egy where a number of trajectories were initiated from equi-

librium distributions within constricted selection cells
39

in

order to obtain statistically reliable estimates of the transition

matrix. Here, as the focus was on locating these metastable

states from equilibrium data, we found it necessary to use

equilibrium data from a higher temperature—here, the 400 K

replica—in order to obtain sufficient numbers of trajectories

covering the entirety of the landscape. A two-dimensional

potential of mean force �PMF� at 400 K in the �� ,�� back-

bone torsions was estimated from the parallel tempering

simulation using the weighted histogram analysis method
74,75

by discretizing each degree of freedom into 10° bins �Fig. 2�.

Because the �� ,�� torsions are supposed to be the only slow

degrees of freedom in the system, we can associate basins in

the potential of mean force with metastable states. The six

such states identified from the 302 K PMF in the previous

study,
40

identified as dark lines in Fig. 2, can be seen to

adequately separate the free energy basins observed at

400 K. We take this decomposition as our reference “gold

standard” and compare the one obtained from our automatic

state decomposition algorithm with it.

2. Automatic state decomposition

First, the automatic state decomposition method de-

scribed in Sec. III was applied to this dataset in a fully au-

tomatic way to obtain six macrostates that could be com-

pared with the gold standard. Since there is only one C	

atom in the peptide, we opted to use the backbone RMSD

�including the amide proton and carbonyl oxygen� in the first

stage, splitting to 100 microstates; subsequent iterations used

the distance metric and splitting procedure described in Sec.

III C. A single sampling interval—0.1 ps—was used for the

calculation of the metastability metric Q used in lumping, as

described in Sec. III B. Application of the state decomposi-

tion algorithm to the entire data set revealed a state that

heavily overlapped with several others when projected onto

the �� ,�� map, along with an extremely long time scale

associated with its transitions �data not shown�. Closer ex-

amination of the ensembles of configurations contained in

this overlapping state revealed that the overlapping regions

differed by a peptide bond isomerization; a small population

of the trajectories contained a N-terminal  peptide bond in

the cis state, rather than the typical trans state. The number

of trajectories that connected these states was extremely

small. Examination of the parallel tempering data revealed

that the majority of these transitions had occurred at a much

higher temperature, and that the cis- configurations found

at 400 K had reached this temperature by annealing from the

higher temperature. In the majority of trajectories at 400 K

that contained cis- configurations, the peptide remained in

this state over the duration of the trajectory. This is a clear

demonstration of how the automatic algorithm can discover

additional slow degrees of freedom that the experimenters

may not realize are important. For subsequent investigation,

due to the extremely small number of transitions, trajectories

containing conformations that included cis- bonds �a total

of 25 trajectories� were removed from the set of trajectories

used for analysis, leaving 975 trajectories.

3. Comparison with manual state decomposition

The results of the automatic state decomposition algo-

rithm applied to this reduced data set can be seen in Fig. 3, in

comparison with the gold standard manual state decomposi-

tion from Ref. 40 and a “poor” manual decomposition that is

expected to fail to reproduce kinetics because its states in-

clude internal kinetic barriers. �The poor partitioning was

defined as follows: �1� �� ��179,−135��, �� �98,48�;

�2� �� �−135,−60�, �� �98,48�; �3� �� �179,−135�,

�� �48,98�; �4� �� �−135,−60�, �� �48,98�; �5�

FIG. 2. �Color� Potential of mean force and manual state decomposition for

alanine dipeptide. Left: The terminally blocked alanine peptide with �, �,

and  backbone torsions labeled. Right: The potential of mean force in the

�� ,�� torsions at 400 K estimated from the parallel tempering simulation,

truncated at 10kBT �white regions�, with reference scale �far right� labeled in

units of kBT. Boundaries defining the six states manually identified in Ref.

40 from examining the 300 K PMF are superimposed, and the states labeled.
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�� �−60,179�, �� �98,−45�; �6� �� �−60,179�,

�� �−45,98�. Specified intervals denote intervals on the

torus, which is continuous from −180 to +180. All torsion

angles are specified in degrees.� Independent applications of

the automatic method were observed to yield two distinct

decompositions with metastabilities within statistical uncer-

tainty, both of which slightly exceeded the metastability of

the manual decomposition �Fig. 3, bottom two plots�. In the

first automatic decomposition, six states in the same general

locations as the manual gold standard decomposition are ob-

served, though the boundaries are somewhat perturbed.

However, the time scales as a function of lag time are not

significantly different from those of the manual gold standard

decomposition �Fig. 3, right�. In the other automatic decom-

position, states 3 and 4 of the manual decomposition �num-

bering given in Fig. 2� have been merged into a single state,

and state 5 of the manual decomposition has been frag-

mented into two states. Despite this, the time scales as a

function of lag time again appear to be statistically indistin-

guishable from those of the gold standard, suggesting that

this model may have equal utility. This suggests that the

phenomenological rates may not be very sensitive to the ex-

act choice of state boundaries after the Markov time, as re-

crossings will have been suppressed by this time. The fact

that this lumping does not disrupt the behavior of the model

substantially is not altogether surprising, because the barrier

separating states 3 and 4 is rather small, and these states act

like a single state even on time scales of a few picoseconds

or greater. In contrast, the poor decomposition has extremely

short time scales which do not appear to level off over the

course of 10 ps.

4. Stability of state decomposition

To examine the ability of the algorithm to recover opti-

mal partitionings, the automatic state decomposition algo-

rithm was applied to both the gold standard and poor manual

decompositions �Fig. 4� to see whether these partitionings

would be maintained over the course of subsequent itera-

tions. Ten iterations were conducted, with each macrostate

split to ten microstates in the first iteration, rather than the

entire configuration space being split into 100 states. In both

cases, the algorithm converged to nearly equivalent partition-

ings after ten iterations �Fig. 4�, as verified by examination

of the converged time scales �data not shown�. This suggests

the method yields partitionings that are relatively stable and

optimal. From the poor manual decomposition, however, a

number of conformations in manual states 5 and 6 are incor-

rectly grouped with state 2, though this did not significantly

affect the time scales. Further investigation showed that the

algorithm never split these conformations from state 2, partly

due to their comprising only 1% of the population of the

state. Splitting each macrostate into more microstates should

alleviate this problem.

B. The Fs helical peptide

To illustrate behavior of the automatic state decomposi-

tion method on a larger peptide system with fast kinetics, we

applied it to the 21-residue helix-forming Fs peptide, which

has been studied extensively both experimentally
76–80

and

computationally.
28,81–83

Since helix formation occurs on the

FIG. 3. �Color� Comparison of manual and automatic state decompositions

for alanine dipeptide. The left panels depict state partitionings, and the right

panels the associated time scales �in picoseconds� as a function of lag time

with uncertainties shown, as estimated from the procedure described in Sec.

III D. Axes are the same in all plots. Top two panels: Manual “good” or

“gold standard” state decomposition from Ref. 40 and manual “poor” state

decomposition, where the state boundaries are grossly distorted so as to

include internal kinetic barriers within the states. Bottom two panels: Two

nearly equivalent partitionings obtained from the automatic state decompo-

sition algorithm.

FIG. 4. �Color� Stability and recovery of the optimal state decomposition for

alanine dipeptide. Top: Ten cycles of automatic state decomposition applied

to a “good” manual partitioning �left� to yield an automatic partitioning

�right�. Bottom: Ten cycles of automatic state decomposition applied to a

“poor” manual partitioning �left� to yield an automatic partitioning �right�.
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nanosecond time scale, Sorin et al. were able to reach equi-

librium from both helix and coil conformations and observe

equilibrium conformational dynamics using ensembles of

molecular dynamics trajectories on the distributed computing

platform Folding@Home.
28

Two sets of 1000 trajectories at

302 K of varying length of the capped Fs peptide �sequence

Ace-A5�AAARA�3A-Nme�, one set initiated from an ideal

helix and another from a random coil, were obtained from

Sorin et al.;
28

details of the simulation protocol are available

therein. The first 40 ns of each trajectory, a conservative

overestimate of the time to reach equilibrium from either

helix or coil, was discarded, and the two sets of trajectories

combined to yield a total of 1689 trajectories varying in

length from 10 to 95 ns with a sampling interval of 100 ps.

In total, this equilibrium data set contained nearly 65 �s of

simulation data in 642 604 conformations. The peptide was

modeled using the AMBER 99� forcefield
28,84

and solvated

in TIP3P water.
74

Though the Berendsen weak-coupling

scheme
85

was employed for thermal and pressure control �we

note that Berendsen thermal control, here applied indepen-

dently to the peptide and solvent, modulates the velocities of

the peptide atoms during the course of the simulation, which

may have a nonphysical effect on dynamics and affect inter-

state transition rates; however, since we compare our Markov

model with the original simulation data set, rather than di-

rectly with experiment, this is not of concern�, we presume

the trajectories still obey microscopic reversibility when only

the coordinates of the macromolecular solute are considered

for the purposes of computing transition probabilities.

1. Comparison of states

We performed automatic state decomposition on this

data set to generate a set of 20 macrostates through ten itera-

tions of splitting and lumping. In the first iteration, the

sampled region of conformation space was split into 400

microstates. In subsequent iterations, each macrostate was

split into 50 microstates �or, if the expected microstate size

was less than 500 configurations, the maximum number of

microstates such that the expected microstate size was above

500�.

Automatic state decomposition produced a structurally

diverse set of states �Table I�, ranging in size from over

350 000 to 500 members, with the majority containing from

5000 to 20 000 members. The states include a large state

�state 1 of Table I�, consisting of slightly over half the total

conformations in the data set containing both extended coil

and helical conformations; a pure helix state �state 15�; a

number of helix/coil states which are bent in half to different

degrees to form tertiary contacts �states 2-14�; and a number

of smaller helical states which are bent into circles to form

tertiary interactions �states 16-20�. A previous analysis
28

of

this data clustered conformations into states based on various

order parameters: the number of helical residues, number of

helical segments �stretches of helical residues�, length of the

longest helical segment, and radius of gyration. We com-

pared the macrostates generated by the automatic algorithm

with these clusters and found that while some states are simi-

lar, namely, the binucleated helices of different sizes, most

were quite different. The most significant difference was the

grouping of helix and coil conformations into a single mac-

rostate in the lumping phase of the automatic algorithm,

whereas the order parameter-based clustering kept helix and

coil states distinct.
28

When examining individual trajectories,

we noticed conformations would rapidly transition between

helices and coils between consecutive 100 ps frames of the

trajectory, suggesting that their rapid interconversion justifies

their lumping into a single macrostate. Additionally, the clus-

tering based on helical order parameters was unable to dis-

tinguish certain structures that involved long-lived tertiary

contacts, such as the bent and circular helical states. Interest-

ingly, a previous study employing the related AMBER parm03

forcefield
86

identified similar configurations to those noted

by the automatic state decomposition, terming these states

helix �state 15�, helix-turn-helix �states 3, 6–8�, adjusted

helix-turn-helix �states 4–5, 9–12, 14�, and globular helix

�states 16–20�.

2. Kinetic analysis

We then examined the implied time scales as a function

of lag time �Fig. 5�. Lumping appeared to preserve the long-

est time scales found in the microstate transition matrix �data

TABLE I. �Color� Macrostates from a 20-state state decomposition of the Fs helical peptide. The backbone is

depicted in alpha carbon trace, and arginine sidechains are shown in blue �Arg10�, magenta �Arg15�, and green

�Arg20� for clarity.
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not shown�, indicating that our lumping scheme had been

successful in identifying a nondestructive lumping into ki-

netically metastable states at each iteration. Over the course

of ten iterations, the metastability �as optimized with a lag

time of 100 ps� increased from 12.5±0.3 to 14.5±0.1, sug-

gesting that the iterative refinement was improving the qual-

ity of the state decomposition. On the first iteration, the long-

est time scales increase nearly linearly with lag time, while

on the last iteration, some of the longest time scales become

stable by a lag time of 4–5 ns, suggesting Markovian behav-

ior for some of the processes.

Using the interpretation of eigenvector components in

terms of aggregate modes described in Sec. II A, the longest

time scale was found to correspond to movement between

the extended helix/coil state �state 1� and one of the twisted

helix-turn-helix states �state 18� with only 500 members. We

found, however, that state 18 appeared a small number of

times in 30 trajectories, and over 450 times in a single tra-

jectory. Further examination revealed that conformations be-

longing to this state were almost exclusively temporally ad-

jacent to conformations belonging to state 5, and structural

comparison of conformations of these two states showed

they were strikingly similar. This suggests that slight confor-

mational differences between conformations in states 18 and

5 allowed the K-medoid clustering algorithm to partition be-

tween these states in a splitting step, and since state 18 was

mainly isolated in a single trajectory, its self-transition prob-

ability was maximized by not lumping it with state 5, even

though the two behaved in a similar kinetic fashion. Indeed,

when we manually lump states 18 and 5, the longest time

scale, corresponding to transitions involving state 18, disap-

pears, but the remaining time scales are all preserved �data

not shown�.

A potential cause of the increase with lag time observed

in some of the other long time scales may be due to the finite

length of trajectories. If the state is long lived and occurs

near the trajectory beginning or end, then it can be seen that

the estimated self-transition probability Tii artificially in-

creases as a function of lag time. This effect is most pro-

nounced when a state occurs in very few trajectories, and

appears to be mitigated when the state occurs in many tra-

jectories at random times within the trajectory.

In order to determine which states are poorly character-

ized, we estimated the number of statistically independent

visits to each macrostate using the autocorrelation time given

in Sec. III D. As the correlation functions became statisti-

cally unreliable at times larger than 10 ns, a least squares

linear fit to the log of the computed correlation function over

the first 10 ns was used to estimate the tail at times greater

than 10 ns, and this combined correlation function was inte-

grated to obtain the autocorrelation time. Computed state au-

tocorrelation times are given in Table I. For many states, the

correlation time was 1–2 ns, giving thousands of indepen-

dent samples; however, for five states, including the four

involved in the four longest time scales, the correlation times

were between 10 and 50 ns, suggesting that the data set con-

tained less than 50 independent samples of these states. Cur-

rently, in the automatic state decomposition algorithm, we try

to reduce the statistical uncertainty in the transition matrix by

limiting the expected population of each state to be greater

than some minimum number of configurations. Since the

conformations appearing within some states may be highly

correlated, the number of conformations within a state is not

the best measure of how statistically well determined its tran-

sition elements are; instead, it may be advantageous to place

a lower limit on the effective number of independent visits to

each state, which is far less than the number of configura-

tions it contains. Alternatively, it may be necessary to ensure

better characterization of these states by conducting addi-

tional simulations from them, provided the equilibrium tran-

sition probabilities can still be computed.

We constructed a Markov model from the transition ma-

trix estimated at a 5 ns lag time, where some �though not all�

of the time scales appear to have stabilized. The Chapman-

Kolmogorov test �Sec. II D 2� can assess how well the model

reproduces the observed kinetics. The time evolution of

probability density out of three states �state 2, a populous

state; state 13, a moderately populated state; and state 19, a

sparsely populated state� over the course of 50 ns is shown in

Fig. 6. The Markov model appears to do a very reasonable

job of predicting the time evolution of the system to within

statistical uncertainty over many times longer than the lag

time used to construct it. In fact, the time evolution was well

modeled for evolution out of all states, except for state 13,

for which dynamics seemed to be particularly poorly repro-

duced. This state has a long correlation time, and many tra-

jectories seem to contain only a single configuration that is

part of this state, suggesting its boundaries are simply poorly

resolved. Regardless, the time evolution is generally well

modeled for this system.

C. The trpzip2 �-peptide

As an illustration of the application of the state decom-

position algorithm to a system with complex kinetics imply-

ing the existence of multiple metastable states,
87

we consid-

ered the engineered 12-residue �-peptide trpzip2.
88

A set of

323 10 ns constant-energy, constant-volume simulations of

FIG. 5. �Color� Implied time scales of the Fs peptide as a function of lag

time for 20-state automatic state decomposition. The five longest time scales

are shown. Circles represent the maximum likelihood estimate, and vertical

bars depict 68% symmetric confidence intervals about the mean. Note the

time scales associated with two processes appear to cross, but are here

colored and uncertainties are estimated using the bootstrap procedure by

ordering the time scales computed from each bootstrap replicate by rank.

This may cause the uncertainties depicted here to be an underestimate of the

true uncertainties of each process.
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the unblocked peptide �note that the peptide studied experi-

mentally in Refs. 87 and 88 was synthesized with an ami-

dated C terminus, whereas the termini of the simulated pep-

tide in the data set considered here were left zwitterionic�

simulated using the AMBER 96 forcefield
72

in TIP3P water
73

was obtained from Pitera et al.,
89

details of the simulation

protocol are provided therein. The trajectories were initiated

from an equilibrium sampling of configurations at 425 K, a

temperature high enough to observe repeated unfolding and

refolding events at equilibrium. Configurations were sampled

every 10 ps, giving a total of 3.23 �s of data in 323 000

configurations.

1. Comparison of states

The automatic state decomposition method was applied

to obtain a set of 40 macrostates in ten iterations of splitting

and lumping. The algorithm was performed as described in

Sec. III C, except for the first iteration, where the conforma-

tions were split into 400 microstates.

Figure 7 depicts some of the final set of 40 macrostates

compared with a set of states identified by consideration of

backbone hydrogen bonding patterns in the previous study

by Pitera et al.
89

�The complete set of macrostates is shown

in a figure included in Ref. 90.� As the trajectories consid-

ered here were resampled to 10 ps intervals �rather than 1 ps

as in Ref. 89�, we found less than five examples of the +2

and −2 hydrogen bonding states identified in Ref. 89, and

therefore exclude them from comparison. The automatic

state decomposition method recovers states corresponding to

the native, +1C, and +1N hydrogen bonding patterns, and

often further resolves them based on the orientation of the

tryptophan side chains �Figs. 7, A, C, and D�. However, the

−1N hydrogen bonding pattern is not further resolved, and

instead is grouped into a state of mostly disordered hairpins;

further examination is necessary to determine whether the

algorithm simply failed to resolve this state or if the state is

simply not long lived. In addition to recovering most of the

manually identified misregistered states, the algorithm was

FIG. 6. �Color� Reproduction of observed state population evolution by a

Markov model for the Fs peptide. The time evolution of the Markov model

constructed from the 5 ns lag time transition matrix is shown by the filled

circles with flat error bars, which denote the 68% confidence interval esti-

mated from a sample of 40 bootstrap realizations, with each realization the

result of a new transition matrix estimated from a bootstrap sample of tra-

jectories. Vertical bars without flat ends denote the 68% confidence interval

centered on the sample mean for the probability of finding the system in the

20 macrostates a given time after initial preparation in a specific state. The

system was originally prepared in state 2 �top, red�, 13 �middle, yellow�, or

19 �bottom, purple�. The most populous states are colored green �state 1�,

red �state 2�, and blue �state 3�.

FIG. 7. �Color� Comparison of some

trpzip2 macrostates found by auto-

matic state decomposition with mis-

registered hydrogen bonding states

identified in a previous study. Left:

The five hydrogen bonding patterns

enumerated in Pitera et al. �Ref. 89�

that occurred in sufficient numbers in

the subsampled trpzip2 data set used

here, with representative conforma-

tional ensembles. Blue squares denote

backbone amide hydrogen bond do-

nors, and red circles denote backbone

carbonyl hydrogen bond acceptors.

Right: A selection of macrostates dis-

covered by automatic state decomposi-

tion that contain the largest numbers

of hydrogen bonding pattern states.

The backbone is depicted in alpha car-

bon trace, and tryptophan side chains

are shown in light blue �Trp2�, orange

�Trp4�, magenta �Trp9�, and teal

�Trp11�. A complete set of macrostates

obtained from the 40-state decomposi-

tion of the trpzip2 data set is available

as supplementary information.
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also able to greatly resolve the state labeled as “unfolded” in

Pitera et al.
89

�in that it did not conform to any of the enu-

merated hydrogen bonding patterns� into substates which ex-

hibit considerable structure �E-J�. Some of these kinetically

resolved states have distinct hydrogen bonding patterns, such

as where both strands are rotated �H�, causing the tryptophan

side chains to appear on the opposite face, or where the

misregistration is greater than two residues �G and J�. This

demonstrates the utility of the method in identifying addi-

tional kinetically relevant states that were not initially part of

the experimental hypothesis space.

2. Kinetic analysis

Figure 8 depicts the implied time scales of the kinetic

model as a function of lag time. The longest time scale

ranges between 25 and 35 ns and appears to stabilize over

the range of lag times considered, though the uncertainty is

quite large. Eigenvector analysis �described in Sec. II A�

shows that this time scale corresponds to transitions between

the unfolded and disordered hairpin states �E� and the hairpin

with both strands rotated �H�. The states labeled H together

totaled 935 conformations, but appeared in only 13 trajecto-

ries, with over 95% of the conformations appearing in a

single trajectory. Correlation time analysis �Sec. III D� sug-

gests there are less than ten independent samples for each of

the three states, so proper resolution of this time scale would

require more data. The second longest time scale grows to

about 15 ns, levels off by around 4 ns, and corresponds to

transitions between the unfolded and disordered hairpin

states �E� and the native backbone states �A�. The states in-

volved in this transition are much better characterized, with a

total of over 25 000 conformations appearing in over half the

trajectories. The next three longest time scales were all be-

tween 3 and 4 ns and correspond to movement between the

unfolded state �E� and various sets of misregistered states,

namely, the newly identified misregistered states I and J, and

the +1C state �C�. Unfortunately, these time scales are on the

order of the time to reach global equilibrium, so it is difficult

to characterize these transitions well.

V. DISCUSSION

Markov models are expected to be effective and efficient

ways to statistically summarize information about the path-

ways �mechanism� and time scales for heterogeneous biomo-

lecular processes such as protein folding. The great challenge

in their use lies in defining an appropriate state space. Here,

we have presented a new algorithm for automatically gener-

ating a set of configurational states that is appropriate for

describing peptide conformational dynamics in terms of a

Markov model, though we expect it to be applicable to mac-

romolecular dynamics in general. The algorithm uses mo-

lecular dynamics simulations as input, and generates state

definitions using information about the temporal order of

conformations seen in the trajectories. The importance of

having an automatic algorithm, i.e., one that requires little or

no human intervention, is that without it, human bias may

inadvertently produce incorrect interpretations of the mecha-

nism of conformational change by imposing a particular

view of the simulation data. Additionally, molecular simula-

tion data sets are becoming so large and complex that effec-

tively summarizing the data or extracting insight becomes

increasingly impractical unless the experimenter analyzes the

data with a specific hypothesis in mind. Construction of a

Markov model, however, allows for a “hypothesis-free” in-

vestigation of conformational dynamics, provided that the

state space is sufficiently well sampled.

Our algorithm is based on the availability of large num-

bers of molecular dynamics simulations of appropriate simu-

lation length such as might be generated by a supercomputer

or a large �possibly distributed� cluster. Current technology

allows for the production of thousands of simulations that

can be tens of nanoseconds in length, hundreds of trajecto-

ries of up to hundreds of nanoseconds in length, or dozens

that are on the order of a microsecond in length. Since our

goal has been to develop Markov models that accurately

characterize the time evolution of ensembles of macromol-

ecules over experimental time scales �that can range from

microseconds to milliseconds� from short simulations of

single molecules, our approach places strong emphasis on

the longest time scales observed in molecular simulations.

For example, recognizing that ill-formed states often result in

artificially shortened time scales, we sought to find states that

maximize the time scales implied by their corresponding

transition matrix for a particular choice of lag time and num-

ber of states. This resulted in the maximization of the meta-

stability as a computationally convenient surrogate for mini-

mizing the internal equilibration time �int.

For the three data sets to which we have applied the

method, there have been a number of important successes.

For alanine dipeptide, the algorithm discovered a distinct

manifold of states that consisted of conformations containing

a cis- peptide bond. This manifold was discovered because

it was kinetically distinct, rather than structurally distinct.

Also, for alanine dipeptide, the method produces states that

are robust and structurally very similar to the best ones pro-

duced manually, as well as kinetically indistinguishable to

within statistical uncertainty according to our validation met-

rics. The application of the method to the Fs peptide data set

FIG. 8. �Color� Implied time scales of trpzip2 as a function of lag time for

40-state automatic state decomposition. The five longest time scales are

shown.

155101-14 Chodera et al. J. Chem. Phys. 126, 155101 �2007�

Downloaded 23 Apr 2007 to 171.66.50.29. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



produced a set of states somewhat different from those iden-

tified previously from the clustering of helical order

parameters.
28

The states produced by the algorithm properly

identified many very long lived �metastable� conformations

whose lifetimes and kinetics might be experimentally rel-

evant. The Markov model produced from this state decom-

position and a 5 ns transition matrix was shown to reproduce

the observed state populations over 50 ns to within statistical

uncertainty. Finally, for the application of the method to the

trpzip2 peptide the states constructed were consistent with

ones previously identified.
89

This was very encouraging

since the previously constructed states used an intramolecu-

lar hydrogen bonding criterion and the automatic algorithm

utilized different observables and metrics, heavy atom

RMSD and kinetics, to resolve states. Moreover, the auto-

matic algorithm more finely resolved what was considered to

be the unfolded ensemble into metastable states that were not

identified by the decomposition based on hydrogen bonding

patterns.

Therefore, the algorithm is achieving many of its design

objectives. It provides a method for identifying and charac-

terizing the slower degrees of freedom of a molecular sys-

tem. It correctly identifies metastable states, dividing struc-

turally similar conformations into multiple sets that have

short times for intraconversion but long times for intercon-

version, and combines conformations that rapidly intercon-

vert even though they may be structurally diverse. This is a

prerequisite to capturing a concise description of the path-

ways for conformational changes. Once meaningful states

are identified, the transition matrix itself encapsulates the

branching ratios for various pathways and the time scales for

overall relaxation to equilibrium from any arbitrary starting

ensemble.

Work is ongoing to establish standards for the amount

and nature of simulation data �number and length of simula-

tions� needed to develop useful and sufficiently precise Mar-

kov models as well as investigations of the effect of quality

metrics other than the metastability on the nature of the re-

sulting states and time scales. Metrics for assessing the qual-

ity of the resulting model also need to be examined to

complement, or as alternatives to, seeking stability of the

implied time scales with respect to lag time. Finally, alterna-

tive approaches to performing this state decomposition are a

further matter of current study, such as the method of Noé

et al. appearing in this issue, motivated by much the same

ideas of metastability but employing different methods for

the construction of a microstate space.
91

A general observation about the models produced using

states defined by our method is that Markovian behavior is

not obtained until lag times that are only an order of magni-

tude shorter than the longest time scales. Recall that the util-

ity of a state space depends to a large extent on how early

Markovian behavior is observed compared to the processes

of interest. There are multiple possibilities for why this might

be the case. For some molecular systems, there may be no

identifiable metastable states in the usual sense. The exis-

tence of experimentally observed metastable states in protein

systems �e.g., native, intermediate, and unfolded� combined

with the observation of metastable states in models of small

solvated peptides
40

argues that this is unlikely. It could be

that statistical uncertainty is undermining both the metasta-

bility quality metric and the tests for Markovian behavior.

Alternatively, the way we establish boundaries between

states may not be flexible enough to adequately divide true

metastable regions. It may also be that we simply need to

allow more states to be produced, resulting in subdivision of

states that have internal barriers, to reduce the Markov times.

Both of these latter possibilities could in principle be easily

addressed by allowing the creation of more states. However,

the creation of more states, especially ones with low popu-

lations, leads inevitably to situations where transition prob-

abilities become statistically unreliable given a fixed quantity

of equilibrium data.

Long time scales are ultimately the result of infrequent

events, and even for large but finite equilibrium data sets

these will be small in number, with resulting small off-

diagonal transition probabilities that are statistically unreli-

able. This has placed us in the particularly difficult but un-

avoidable situation of attempting to optimize a statistically

uncertain objective function. One solution to this problem, of

course, is to consider this algorithm as only the first step of

an iterative process where important states and transitions are

identified, and then further simulations are performed to im-

prove the characterization of important regions of conforma-

tion space. This will allow refinement of the state space and

improved precision for important selected transition prob-

abilities. Information from the subsequent simulations could

be combined with that from the first set using the selection

cell approach described previously.
39

Selection of states, or

regions of configuration space, from which further simula-

tions should be initiated could be chosen based on uncer-

tainty considerations.
31
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