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Abstract

This work demonstrates how the World Wide Web can be mined in a fully automated manner for discovering the semantic

similarity relationships among the concepts surfaced during an electronic brainstorming session, and thus improving the

accuracy of automated clustering meeting messages. Our novel Context Sensitive Similarity Discovery (CSSD) method takes

advantage of the meeting context when selecting a subset of Web pages for data mining, and then conducts regular concept co-

occurrence analysis within that subset. Our results have implications on reducing information overload in applications of text

technologies such as email filtering, document retrieval, text summarization, and knowledge management.
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1. Introduction

Many researchers and practitioners believe that the

World Wide Web is a gold mine filled with useful

information. Indeed, such vast amount of textual and

multimedia information was not available for

researchers before the mid 90s. According to Lyman

and Varian [18], the Web currently contains more than

2.5 billion of pages, consisting of at least 10 terabytes

of textual information. What also makes it a novel and

exciting opportunity is its massive hyperlink structure

and the ability to trace people’s browsing patterns.

Although the term ‘‘Web mining’’ started to appear

frequently in journals and magazines, not many suc-

cessfully tested applications have been reported yet.

This paper presents our empirically proven Web

mining approach that is capable of discovering seman-

tic relationships between specified concepts, and as a

result, helps to organize messages produced during

electronic meetings supported by Group Decision

Support Systems.

Electronic meeting support has been proven to

have great impact on productivity of group discus-

sions [6,20]. However, it has been reported that Group

Decision Support Systems (GDSS) meetings (or com-

puter-mediated meetings in general) very often result

in information overload [2,11,14]. Indeed, due to

anonymity, the ability to contribute in parallel and

automated record keeping, the number of text mes-

sages generated by a dozen of participants can exceed
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a thousand within an hour. Consequently, it becomes

very cumbersome to sort the text messages before

moving to the decision-making stage. As a result,

better techniques for clustering meeting messages are

very important to improve the effectiveness of elec-

tronic meetings.

Several studies have explored automated summa-

rization of meeting messages, for example by repre-

senting them with a list of most representative topics

[2], or using concept maps [21], or clustering mes-

sages into semantically homogeneous groups [23].

The common belief behind those approaches is that

automated processing techniques can reduce the cog-

nitive load of meeting participants even if manual

post-processing is still required.

All those approaches inherently rely on the algo-

rithms representing content of the text messages

through a vector space model [25], in which each

message is represented by a vector. The coordinates of

a vector are determined by the words or phrases

(called terms) contained in the message. To perform

the required processing, those algorithms compute the

similarities between the documents based on their

vector representations. The more common terms

documents share, the more similar their vector repre-

sentations are and the more similar the documents are

believed to be by the algorithm.

This vector space model has apparent limitations

and the results are not always accurate. For example,

as the experiment in Ref. [23] indicates, the message

‘‘Effective transmission of video over net-
works’’ was typically placed by human experts into

the same cluster with the message ‘‘bandwidth
concerns—impact of remote collaboration’’
presumably since both relate to networking issues.

However, because those two comments (messages) do

not have any common terms, the vector space model

would never detect any similarity between them, and

thus the algorithm would unlikely place them into the

same cluster or within proximity in a generated

semantic map.

In short, the common approach does not take

similarities between different words and phrases into

account. As another example, meeting and brain-
storming would be treated as different words by the

algorithm, although in the context of collaborative

computing they would be nearly synonyms from the

participants’ perspective.

We believe that a potential solution to this problem

is to discover and to take into account the semantic

similarity relationships among the terms in the spe-

cific context such as an organization, a project or a

meeting. We extend the framework of Organizational

Concept Space (OCS) introduced recently by Zhao et

al. [29]. OCS captures similarities between different

concepts in the context of organizational workflow by

representing similar concepts with nodes in a graph,

called similarity networks. The Web mining algorithm

for automatic discovery of similarity relationships

complements the OCS approach by making it more

powerful in large business applications.

Our research objectives were to explore the possi-

bility of mining semantic similarity relationships from

the World Wide Web, to validate the use of OCS as

possible representation of those relationships, and to

demonstrate the usefulness of applying the ‘‘mined’’

OCS to automated clustering of meeting messages.

Specifically, our investigation consisted of the follow-

ing steps.

(1) We conducted experiments in which subjects

familiar with the meeting were asked to identify the

relationships between the most frequently occurring

concepts during the meeting. We established that the

results generated by the subjects were consistent, and

thus concluded that the similarity relationships can be

captured by an organizational concept space (OCS) or

some other framework. We also established that this

consistency of similarity relationships is context spe-

cific.

(2) We asked the subjects to cluster manually the

meeting messages and compared the output of auto-

mated clustering with/without OCS. Our results indi-

cated that OCS (if manually created by subjects

familiar with the meeting) indeed makes clustering

closer to what subjects would expect. Again, we also

found that this result was context specific.

(3) We designed, implemented and tested a Web

mining algorithm that created OCS in a fully auto-

mated manner based on the contents of web pages

semantically close to the contents of the meeting. We

verified that the automatically created OCS (called I-

OCS) resembles the manually created OCS (called M-

OCS) and can help improve the accuracy of automated

clustering as well. We also demonstrated that taking

the meeting context into consideration improved the

accuracy of message clustering.
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Although our study focuses on resolving the infor-

mation overload problem in computer-supported

meetings, the approach developed in our study is

useful to more general textual information processing

tasks such as search/retrieval, filtering, categorization,

and summarization.

The next section briefly reviews the pertinent

literature. Section 3 presents the research questions

and the research methodology. Section 4 gives the

details of the algorithms and their implementation

used in our experiments. Section 5 contains the results

of our experiments and their interpretation and impli-

cation. Finally, Section 6 concludes the paper and

outlines several directions for future research.

2. Literature review

2.1. Clustering and summarizing electronic meeting

messages

Several previous studies have explored automated

detection and summarization of structures in meeting

messages by identifying and listing the most impor-

tant concepts [2], representing the messages with

semantic maps [21], or clustering the messages into

automatically created subsets of topics [23]. These

studies established the ability to organize the meeting

contents and to help prepare the meeting participants

for the decision making phase. However, the auto-

mated message clustering techniques do not always

offer satisfactory accuracy. When compared with the

results of manual clustering, researchers have found

that the outputs of computer algorithms do not always

match human expectations [21,23].

As we wrote in Introduction, these automatic mes-

sage clustering approaches, along with other widely

accepted text technologies, inherently rely on auto-

mated indexing, by which each message is represented

with a vector, while the vector coordinates are deter-

mined by the words or phrases (called terms) in the

message. To perform clustering or to build semantic

maps, the algorithms rely on the computation of

similarity between the messages. While the particular

scoring formulas may be different (cosine, Jaccard,

Euclidean, etc.), all of them just implement simple

intuitive consideration that the more common words

the messages share the more similar they are. Mes-

sages that do not share any common words or phrases

would be considered the least similar.

The weakness of this approach is that it treats each

word or phrase as a unique feature. Thus, the words

meeting and brainstorming are not considered

as semantically similar features by the algorithm, and

a pair of messages, one containing the word meet-
ing, and the other brainstorming would never be

treated as similar in this framework unless they share

some other words. Therefore, they may end up in

different clusters or in distant areas of a semantic map,

certainly not that would the participants expect.

This problem has also been noticed in a more

general domain of text technologies [25] and tradi-

tionally known as vocabulary problem [10]. However,

there has not been an effective solution to it. Since

natural languages are very ambiguous and diverse,

solving this problem would require knowing semantic

relationships between all possible words and phrases.

This task is believed to be ‘‘AI-complete,’’ [17] which

means solving it would require solving all the other

Artificial Intelligence (AI) tasks such as natural lan-

guage understanding, common sense reasoning and

logical thinking.

Nevertheless, we believe that some progress in the

right direction can be made. Our study has explored

one step towards alleviating this problem. In partic-

ular, we have studied how the relationships of seman-

tic similarity can be represented and can be mined

from such a large knowledge repository as the World

Wide Web.

2.2. Organizational concept space

A concept space approach [1,3,5] has been pro-

posed to create meaningful and understandable

domain-specific networks of terms and weighted

associations, which are used to represent the under-

lying information spaces, i.e., documents in different

text collections. The concept space approach consists

of (1) acquiring complete and recent collections of

documents as the sources of vocabularies, (2) auto-

matically indexing all the terms in the documents, (3)

clustering the documents based on the term frequency

and the document frequency, and (4) organizing the

documents based on the multi-term associations. The

research on conceptual clustering and concept spaces

indicates that techniques exist that are capable of
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automatically creating conceptual networks of mil-

lions of domain-specific terms [3].

Zhao et al. [29] recently extended concept space

techniques by incorporating organizational informa-

tion directly in a data structure called Organizational

Concept Space. An organizational concept space

(OCS) stores the user interests in an organization via

an interest matrix and a similarity network. A sim-

ilarity network is a collection of similarity sets that

form a network based on levels of generalization/

specialization. Fig. 1 illustrates a simple similarity

network.

A similarity set is a collection of concepts that are

closely related semantically. For instance, ‘‘group

systems’’ and ‘‘electronic meeting systems’’ are two

concepts that are used interchangeably by many

people in certain contexts. The concepts can be

associated to the similarity set with a membership

value between 0 and 1 denoting the degree of asso-

ciation (not shown in Fig. 1 for simplicity). An

interest matrix is a two-dimensional matrix with

‘‘concept’’ as one dimension and ‘‘user’’ as the other.

The combination of similarity sets and a user interest

matrix is used to determine useful information objects

for each user in a corporation, thus reducing informa-

tion overload. Zhao et al. [29] described the algo-

rithms to build the Organizational Concept Space

(OCS) from employee feedback and a corporate

information repository, but did not report any imple-

mentation and empirical results of the research.

The notion of OCS is relevant to our study because

it provides an elegant way of capturing the organiza-

tional context of the messages we want to cluster

automatically. OCS is different from a traditional

manually built thesaurus in two important aspects:

(1) OCS is specific to particular organization (or even

to a particular context within organization such as

meeting topic, project, etc.) and (2) OCS represents a

degree of association between concepts by a number

(e.g., ranging from 0 to 1) whereas a traditional,

manually built thesaurus, is typically limited to binary

(0 or 1) associations (e.g., synonymic, antonymic,

generalization/specialization, ‘‘part-of’’ or other

semantic relationships).

Although the OCS framework also includes another

data structure called the user interest matrix, we have

not utilized it in this work and did not attempt to mine

user interests. Without the interest matrix, an OCS

framework is very similar to an automatically build

thesaurus [1,8,12]: both represent relationships

between concepts as weighted graphs. However, since

OCS was specifically introduced for business work-

flow applications, we decided to follow OCS formal-

ism in this study since we targeted GDSS applications.

2.3. Semantic mining and the Web

It has been known for a long time that the relation-

ships between concepts (words or phrases) can be

discovered by their co-occurrence in the same docu-

ments or in the vicinity of each other within docu-

ments. Firth [9], a leading figure in British linguistics

during the 1950s, summarized the approach with the

memorable line: ‘‘You shall know a word by the

company it keeps.’’ The classical work of van Rijs-

bergen [26] initiated the use of co-occurrence infor-

mation for text retrieval and categorization. Until the

1990s, the studies exploring co-occurrence informa-

tion in automated query expansion (adding similar

words to the user query) resulted in mixed results

[19,22], a good review can be found in Houston [15].

In the 1990s, the research scale increased dramati-

cally, from hundreds to millions of documents, some-

times even using available supercomputer power [3].

The researchers also started to explore interactive

systems, which only suggest concepts to the user for

possibly extending his/her search instead of making

that decision on the user’s behalf. In the latter sce-

nario, convincing positive results were reported [15].

We believe that the earlier difficulties resulted from

several major factors: (1) there was only a small amount

of data available for mining, and (2) the context in

which the relationships were mined was not taken into

account. In this study, we used the entire Web for

mining a set of similarity relationships, thus providing

enough ‘‘ore.’’ Furthermore, we also mined the rela-Fig. 1. A generic similarity network (adapted from [Ref. 29]).
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tionships in a specific context. Since the World Wide

Web is very diverse, a surfer or a computerized agent

can usually find a subset of pages related to a particular

context and mine them for semantic relationships. We

hoped to find those context specific relationships more

reliable. By following Cardinal Richelieu’s advice, we

turn our ‘‘enemy’’ (the sheer volume of the Web) into

our ‘‘friend’’ (ability to find the specified context).

According to Cooley et al. [7], the term Web

mining has been used in two distinct ways. The first

refers to Web content mining as the process of

discovering useful resources from millions of sources

across the World Wide Web. The second refers to the

Web usage mining as the process of mining the Web

access logs or other user information such as browsing

and access patterns on one or more Web localities. In

this study, we are interested in mining semantic

associations between the specified concepts from the

content of pages available in the entire Web, so our

approach would approximately fall in the first cate-

gory. For a comprehensive review of the Web mining

literature, refer to Cooley et al. [7].

3. Research design

In this section, we first set up the research questions

that we examine in this study. Then, we discuss the

experiments designed to answer our research questions

followed by the explanation of the metrics we used and

our hypothesis in the operationalized form.

3.1. Research questions

We pose four research questions that will accom-

plish our research objective aforementioned:

Q1: What is the degree of the agreement among

subjects with respect to the perceived relationships

between concepts mentioned in the meeting?

This was a basic and necessary question. If there

was no agreement among the meeting participants with

respect to the relationships between concepts, then the

entire idea of trying to represent them using any

framework would likely to be futile. On the other

hand, if the agreement was high, then we may try to

capture them by an OCS or a similar framework. This

leads to our second question:

Q2: Can Organizational Concept Space capture the

relationships between concepts mentioned in a meet-

ing in such a way that it would help to cluster those

messages into more meaningful topics?

As presented in Ref. [29], OCS can be used to

modify vector representation of text documents

(including brainstorming messages) so that similar

concepts are added even if they are not originally

presented in the document. For example, the message

‘‘bandwidth concerns—impact of remote collabora-

tion’’ originally represented by concepts BAND-
WIDTH, CONCERNS, IMPACT, REMOTE and

COLLABORATION would also receive the concept

NETWORKS if OCS captured semantic similarity

between the concepts of NETWORKS and BAND-
WIDTH (as shown in Algorithms and implementa-

tions and Fig. 3). We tested if such OCS-based

modification improves accuracy of clustering, i.e.,

grouping the messages in the way closer to what

people would expect. Later sections in the paper

provide more details on our experiment.

Q3: Can Organizational Concept Space be success-

fully mined from the Web?

Large-scale OCSs are difficult and time consuming

to derive manually and therefore lacking automatic

means may hinder the application of OCS and dimin-

ish its practical value. Consequently, an experiment of

deriving OCS from the Web automatically is signifi-

cant. Since a negative answer to this question would

require an exhaustive evaluation of all possible min-

ing algorithms, we deliberately look for a positive

answer by testing if our heuristic mining algorithm

discovers similarity relationships between the con-

cepts mentioned during the meeting in such a way

that the mined result (I-OCS) resembles the manually

created OCS (M-OCS).

Q4: Does the Organizational Concept Space mined

from the Web help cluster messages in a more mean-

ingful way?

Q4 was similar to Q2 as both questions address the

effectiveness of OCS. The difference between the two

lies in the way the OCS was generated. Q4 was a

special version of Q2 because it focuses on similarity

relationships created automatically by a Web mining

procedure.
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In addition to the four questions given above, we

also explored and tested a number of other supporting

questions and hypothesis that we mention in Section 5.

3.2. Experiment design

In order to test our research hypotheses outlined

below, we performed an experiment. We asked eleven

(11) volunteers to (1) manually cluster messages

recorded earlier by GDSS into semantically similar

groups and (2) to specify the relationships between the

most frequently mentioned concepts during the same

meeting. The subjects were volunteering graduate

students in the Information Management program.

We used the transcripts from the same brainstorm-

ing session as the one reported in Roussinov and Chen

[23]. Thus, there was a time lapse between the actual

meeting and our experiment. Since the topic of the

meeting (‘‘The Future of GroupWare’’) was very

general and our subjects demonstrated familiarity with

the contents, we believe our subjects not being actual

meeting participants does not considerably affect our

findings. The original brainstorming transcript (con-

taining 206 messages) was automatically recorded by

electronic meeting support software called Groupsys-

tems [20].

In order to address research question Q2 (effect on

clustering), we compared the results of automated

clustering meeting messages against clustering done

by subjects. Each subject received the same text file

with the meeting comments shuffled at random. We

asked the same subjects to re-arrange the comments in

the file using a text editor of their choice into groups

(called clusters or topics throughout our paper) so that

the messages in the same clusters are more similar to

each other, and messages in different clusters are less

similar, according to the subjects’ judgment. This

grouping technique resembled the process of organiz-

ing messages into topics that Electronic Brainstorm-

ing Sessions (EBS) participants usually do before

moving to the decision making stage of the meeting

[20]. The message grouping process took 40–50 min

on average for each subject. To reduce the time

consumption of manual message clustering, we used

only a subset of 80 messages, the same as in Roussi-

nov and Chen [23].

Upon completing the clustering task, the subjects

were given a list L, consisting of the 20 most

frequently mentioned concepts that were identified

in the process of automated indexing of the messages

as explained in Algorithms and implementations and

represented in Table 1. For each concept c in the list L,

the subjects had to choose three (3) other concepts

from L, those that seemed to be the most semantically

related to c according to the subjects’ judgment. We

used the data collected this way to test research

question Q1 (agreement on similarity relationships)

through a statistical analysis.

As one can see, some concepts are the words with

the same roots, e.g., NETWORKS and NETWORK.

As in prior related studies [2,21,23], we did not use

any stemming algorithms while representing mes-

sages, thus treating words like NETWORKS and

NETWORK as totally different terms (concepts).

Although stemming sometimes helps in certain appli-

cations [25], it is not always reliable, nor desirable in a

more general class of text technologies. For example,

stemming results in collation of the words POLICY

and POLICE—A clear case of failure. Xu and Croft

[28] had suggested an algorithm that combined co-

occurrence mining and linguistic stemming. We plan

to study the issue of stemming in a future study. The

discussion section presents some tests that we ran to

isolate effects of same-root word similarity from none

same-root.

Table 1

List L: 20 most frequently occurring concepts during the meeting

0 MEETINGS

1 MEETING

2 TECHNOLOGY

3 COLLABORATIVE SYSTEMS

4 INFORMATION

5 COLLABORATIVE

6 DISTRIBUTED

7 SYSTEMS

8 LINEAR THREAD MEETING

9 ENVIRONMENTS

10 NETWORKS

11 SUPPORT

12 NOTES

13 HARDWARE

14 FACILITATORS

15 TECHNOLOGIES

16 LANGUAGE

17 WIRELESS

18 NETWORK

19 BANDWIDTH
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One can possibly identify several semantic

‘‘islands’’ of related concepts in the subset listed in

Table 1, e.g., ‘‘networking’’ (NETWORK, NET-

WORKS, BANDWIDTH, WIRELESS, DISTRIB-

UTED) , ‘‘ t e c hno l ogy ’’ (TECHNOLOGY,

TECHNOLOGIES, HARDWARE), ‘‘meetings’’

(MEETING,MEETINGS, FACILITATORS), ‘‘collab-

orative computing’’ (NOTES, COLLABORARIVE

SYSTEMS), etc. We test through our experiment if

the subjects agree on those relationships and if the

relationships can help automate message clustering.

It was also obvious that the meanings of our

selected concepts were very context specific. For

example, NOTES actually referred to ‘‘Lotus Notes,’’

and LINEAR THREAD MEETING is jargon standing

for a distributed brainstorming meeting narrowing

down to a single issue. FACILITATORS was also

used to refer to a meaning specific to GDSS. One can

see that even such simple examples would fail those

mining approaches that do not take advantage of the

context specific knowledge.

To test research question Q3 (the possibility to

mine context specific similarity relationships), we ran

our semantic Web mining algorithms to test if our

implementation can come up with a set of relation-

ships similar to those established by our subjects.

Finally, to test research question Q4 (the effect of

the mined concept space on clustering accuracy), we

constructed an OCS based on the mined relationships

(called I-OCS or Internet-based OCS) and ran the

same clustering comparison tests that we performed to

test our second question.

3.3. Metrics

3.3.1. Q1 and Q3: overlap in concept selection

To test the consistency in the subjects’ choice of

the most similar concepts, we computed the average

overlap. For example, given the target concept

BANDWIDTH, if subject 1 selected NETWORKS,
TECHNOLOGY, WIRELESS and subject 2

selected NETWORKS, TECHNOLOGY, SYS-
TEMS, the overlap for the concept BANDWIDTH
would be 2. In order to have a metric independent of

the number of subjects and the number of concepts,

we normalized this overlap by the maximum number

of overlaps (three from each subject–concept pair). If

we had one target concept and two subjects in the

above example, the overlap would be 2 and the

maximum number of overlaps would be 3 (in the

case of the same choices). Then our normalized

overlap metric should be 2 out of 3 = 66.67%.

To test the agreement between the subjects’ choice

and the relationships mined from the Web, we used

the same metric of a normalized overlap. We com-

puted the overlap for the same top 20 concepts that

were given to the subjects (L-list), and truncated the

mined relationships to the top 3 most related, thus

simulating subjects’ actions.

3.3.2. Q2 and Q4: accuracy of clustering

We now discuss the metrics that were used to

evaluate the accuracy of automated clustering. As

we described in the literature review section, to

measure the quality of clusters obtained automatically,

we used their ‘‘closeness’’ to the clusters created by

humans in terms of the number of wrong or missed

associations. Same metrics were used and justified in

Ref. [23] and resemble the so called adjusted Rand

index [16] widely used in clustering applications in

genetics. The definitions below explain the metric.

Grouping messages into non-overlapping clusters

is called a partition. We call a partition created by a

human subject the manual partition. The automatic

partition is the one created by a computer. Inside any

partition, an association is a pair of documents

belonging to the same cluster. The Incorrect associa-

tions are those that exist in the automatic partition but

do not exist in the manual partition. The missed

associations are those that exist in the manual parti-

tion but do not exist in the automatic partition. We

define a metric of normalized clustering error as:

NCE ¼ E

At

ð1Þ

Here, E represents the total number of incorrect (Ei) or

missed (Em) associations: E =Ei +Em. At is the total

number of all associations in both partitions without

removal of duplicates (associations existing in both

partitions). It is computed as At =Am +Aa, where Am is

the total number of associations in the manual parti-

tion and Aa is the total number of associations in the

automatic partition. We considered only associations

from clusters representing three or more documents. It

is easy to verify that this measure belongs to a [0,1]

interval.
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Fig. 2 shows an example of manual partition (the

top) and automatic partition (the bottom). In this

example, the clustering algorithm made a mistake by

placing document 5 with documents 1, 2, 3, 4 instead

of 6, 7, 8. The incorrect associations (four total) are

therefore 5-1, 5-2, 5-3, 5-4. The missing associations

(three total) are 5-6, 5-7, 5-8. So, E = 4 + 3 = 7.

The total number of associations in the manual

partition Am = 6 + 6 = 12. The total number of associ-

ations in the automatic partition Aa = 10 + 3 = 13. So,

At = 12 + 13 = 25. The normalized clustering error

NCE ¼ E
At
¼ 7=25 ¼ 0:28:

By performing random permutations in the par-

titions generated during our experiment, we also em-

pirically verified that this metric has the desired

‘‘smoothness.’’ The automatic partition identical to

the manual partition resulted in the metric value of 0.

If some clusters were split or merged, the increase in the

metrics was approximately proportional to the number

of changes (‘‘splits’’ or ‘‘merges’’). As the number of

permutation grew, the metrics approached the value of

0.9, the case of an entirely random partition. It never

achieved 1, because even entirely random partition still

correctly ‘‘guessed’’ some associations. After the sim-

ulations, we accepted 0.9 as the upper limit of the error.

3.4. Hypothesis

Using the metrics discussed above, we operation-

alized our research questions Q1–Q4 by the following

null hypothesis:

H10. The average normalized overlap between the

subjects’ selections was not different from the random

normalized overlap. The alternative would be that the

overlap was higher than the one created by the random

selection and would imply that there was agreement

between the subjects with respect to the perceived

similarity relationships.

H20. Clustering with the use of the manually created

OCS (M-OCS) had the same normalized cluster error

as clustering without using M-OCS. The alternative

was that the error was smaller when M-OCS was

used, and would indicate that M-OCS positively

affected the accuracy of clustering.

H30. The average normalized overlap between the

subjects’ selections and the mining algorithm selec-

tions was not different from the average normalized

overlap between the subjects’ and random selection.

The alternative was that there was a non-random

agreement between the mined similarities from the

Web and those indicated by the subjects. It would

indicate that the mined OCS resembles the manually

built OCS.

H40. Clustering with the use of OCS created by Web

mining (I-OCS) has the same normalized cluster error

as clustering without using I-OCS. The alternative

hypothesis was that the error was smaller when I-OCS

was used, and would indicate that I-OCS positively

affected the accuracy of clustering.

4. Algorithms and implementations

4.1. Message clustering

For automated clustering, we used the same algo-

rithm as reported in Roussinov and Chen [23]. It

consisted of the following steps:

(1) automatic indexing

(2) vector space representation

(3) applying clustering technique.

We briefly explain each step below.
. Automatic Indexing: The general purpose of

automatic indexing is to identify the contents of each

textual document automatically in terms of associated

features, i.e., words or phrases. Automatic indexing

first extracts all words and possible phrases in the

document. Then it removes words from a ‘‘stop-
Fig. 2. An example of normalized clustering error (adapted from

Ref. [23]).
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word’’ list to eliminate non-semantic bearing words

such as ‘‘the’’, ‘‘a’’, ‘‘on’’, and ‘‘in’’. Our automatic

indexing program also created phrases from adjacent

words. In this study, we used the automatic indexing

technique described in Orwig et al. [21]. We did not

attempt any modifications of the indexing program for

our study and deliberately did not change any param-

eters or the stop-word list once we had started our

experiments.
. Vector Space Representation: Each coordinate in

the vector space corresponds to a term. If a term is

present in the document, the coordinate is set to 1,

otherwise to 0. We also normalized the vectors to unit

length. Prior research [2,21,23] suggested that this

scheme is adequate for representing electronic meet-

ing messages. Although normalization is generally

optional, it was necessary in our case because the size

of a message varied several fold, and would affect the

use the similarity metric that we used—negative

Euclidean distance. The smaller the distance, the more

similar the documents are believed to be.

For computational efficiency and accuracy of rep-

resentation, we preserved only the top 100 terms

(words or phrases) that were most frequently included

in the collection. According to Chen et al. [2], Orwig

et al. [21], Roussinov and Chen [23], this approach

works best with small collections consisting of short

text messages, since it provides the greatest overlap in

representations. Table 1 shows the list of the 20 most

frequently appearing terms in the collection. The

average number of terms preserved in the document

representations was 3.7.

. Clustering: We used Ward’s [27] hierarchical

agglomerating clustering technique in this particular

study, similar to Roussinov and Chen [23]. The

algorithm starts with each document in a cluster of

its own and iterates by merging the two most similar

clusters until all the documents are merged into a

single cluster. By keeping track of all the mergers, the

algorithm produces a balanced binary tree called a

dendrogram. Since for our study we needed non-

overlapping partitions of messages into topics (clus-

ters), we converted the dendrogram into a partition

simply by traversing the tree in pre-order stopping

when the nodes were representing the clusters smaller

or equal in size than the specified threshold. Since the

subjects typically did not create clusters larger than

10, we also set our threshold to 10. This way, the

distribution of cluster size among the automatically

generated clusters was the most similar to those

produced manually. Although our accuracy metrics

were not very sensitive to the cluster size, we still

wanted to approximate manual output as closely as

possible.

4.2. Application of organizational concept space

In this study, we used a simplified version of OCS,

namely a similarity network represented with a sym-

metric matrix. Each row or a column represented a

term (word or phrase). Each cell contained a numer-

ical value representing the similarity between the

corresponding two terms, ranging from 0 (no similar-

ity) to 1 (synonyms). Fig. 3 shows an example of a

Fig. 3. An example of similarity network and its matrix representation.
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similarity network as used in our study. Each node in

the figure corresponds to a concept, e.g., BAND-

WIDTH. If a concept is similar to another concept,

they are connected by a weighted arc. There are three

similarity arcs in Fig. 3: (NETWORK, BAND-

WIDTH, 0.5), (TRAFFIC, BANDWIDTH, 0.4), and

(COST, HARDWARE, 0.2). For large-scale imple-

mentations in the future, we may need to take advant-

age of the sparseness of the similarity matrix in order

to keep the processing time under control, similarly as

it was done in Roussinov and Chen [23].

To obtain an OCS, we averaged the choices made

by the subjects. For example, if 5 out of 11 subjects

picked BANDWIDTH as one of the three most closely

related concepts to NETWORK, the averaged simi-

larity between them would be recorded as 5/11 = 0.46.

This simple implementation suffices our need in

this study because: (1) we want to test if a valid OCS

could be obtained and was useful without trying to

optimize its overall effect, and (2) a simple imple-

mentation is much easier to replicate in subsequent

studies. We plan to explore more fine-grained imple-

mentations in the future.

Our objective of applying OCS was to utilize the

similarity relationships between terms, so that the

vector space representation of the messages can be

enhanced by the similar terms. For example, if a

message has a term BRAINSTORMING and the

OCS tells us that BRAINSTORMING has a non-zero

similarity to the term MEETING, then the coordinate

corresponding to the term MEETING in the message

vector would appear even if it was not originally there.

We used the most simple and straightforward

implementation of the above enhancement. We modi-

fied each message vector V by the following linear

transformation written in a matrix form:

V ¼ V þ a S� V;

where S is the matrix representing the similarity

network, and a is the adjustment factor. The product

S�V is the vector V multiplied by the matrix S

defined by a common linear algebra. Depending on

the range of values in S and the adjustment factor a,

the changes in the representations of the messages

may be very small or dramatic. In our experiment, the

values Sij ranged from 0 to 1. To perform our

hypothesis testing, prior to the experiment, we chose

a = 1, just for the sake of simplicity. We also analyzed

the impact of different values of a afterwards.

The following example demonstrates the algorithm.

Let us assume we only use the concepts NETWORK,

TRAFFIC, PROBLEM, CURRENT, TECHNOLOGY,

BANDWIDTH to represent meeting messages, so the

vector space dimensionality is 6. The message ‘‘Net-
work traffic is going to be a problem with
current technology,’’ originally would be repre-

sented as the vector (1, 1, 1, 1, 1, 0). ‘‘0’’ signifies that

BANDWIDTH is not in the message. After applying

the OCS shown in the Fig. 3, with a = 1, it would

become (1, 1, 1, 1, 1, 0.9). Since BANDWIDTH is

associated with NETWORK with the weight 0.5 and

BANDWIDTH is associated with TRAFFIC with the

weight 0.4, the total increment along BANDWIDTH

coordinate was 0.4 + 0.5 = 0.9 After this modification,

all vectors were normalized to the unit length.

It is worth noting that even when the modifications

are small, the resulting accuracy increase may be still

significant. This is because without the modifications,

most messages did not share any common terms and

had the similarity of �M2 since we used negative

Euclidean distance. Jaccard or cosine scores would

result in 0 similarity in that case. This poses a problem

for clustering algorithms that have to resolve many

‘‘ties’’ in order to form clusters. Even small changes in

the coordinates can break those ‘‘ties’’ in the right

direction, thus considerably helping the clustering

algorithm to make better choices.

4.3. Mining OCS from the Web

There are many mining algorithms for discovering

semantic similarities among given concepts [4,25,26].

However, we are not aware of any empirical studies

specifically targeting the World Wide Web. In this

study, we implemented techniques based on the co-

occurrence approach [4,25,26] used earlier in non-

Web text collections. Those techniques explored the

observation that semantically similar concepts (words

or phrases) tend to co-occur in text documents or in

close proximity inside documents.

Since mining the entire Web would be cost pro-

hibitive, an important decision was to be made in how

to select a subset of Web documents as a collection for

mining. We implemented a heuristic algorithm that

takes advantage of the commercial web search
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engines. In our study, we used AltaVista http://

www.altavista.com), but most search engine would

also qualify for the task.

Ideally, we would like to obtain web pages that refer

to the tested used in our study and are semantically

close to the topic of the meeting. For this purpose, we

created a Web search spider that interfaces with Alta-

Vista to retrieve Web pages using queries created from

the top 30 concepts surfaced during the meeting. Our

spider ran 30 unique queries and gathered 3272 unique

Web pages. As shown in Table 2, each query consisted

of 30 concepts (phrases were connected by ‘-’, as

required by AltaVista syntax), and exactly one word

(phrase), different in each query, was preceded by ‘ + ’

sign to request this word to be in the returned pages.

For example, according to the AltaVista syntax, the

query ‘‘meetings meeting + technology col-
laborative-systems information collabora-
tive distributed systems linear-thread-
meeting environments networks support
notes hardware facilitators technologies
language wireless network,’’ required the

returned pages to contain the word ‘‘technology.’’

Other words were optional in the returned pages, but

the Web pages containing them had a higher chance of

being selected by the underlying search engine. This

way, the queries were requesting the pages semanti-

cally similar to the meting context, which we subse-

quently manually verified.

Although not in our current implementation, the

above query construction algorithm can be imple-

mented in a fully automated manner. We limited the

number of phrases in the query to 30 because the

underlying search engine limited the size of the query

string. More sophisticated implementations can be

done in future studies. Our spider collected 200 pages

from each query, thus the total number would be

200� 30 = 6000, but it dropped to 3270 after remov-

ing the duplicates and non-existing pages. The HTML

pages were converted into plain text using the ‘‘lynx’’

shareware program http://lynx.browser.org/) for the

UNIX operating system and truncated to the first

20,000 bytes of text in order to avoid overly long

web pages. Once the pages were collected, they were

processed by the same automatic indexing procedure

as mentioned in the preceding section and represented

by vectors normalized to the unit length.

The entire downloading and conversion process

was performed automatically in a sequential manner.

Since conversion is a one-pass algorithm, it can be

implemented relatively quickly so downloading would

be the only bottleneck for performance. However, if

performed in parallel, it can be sped up considerably,

for example as reported in Ref. [24], so that the entire

process can be implemented to run in real time.

As mentioned in Section 2, conceptual similarity

mining exploits the fact that similar concepts (words

or phrases) tend to co-occur in the same documents.

To obtain the numerical value of similarity, we used

the previously suggested [25,26] formula:

Sij ¼ ti � tj=AtiAAtjA;

where Sij is the similarity between terms i and j; ti and

tj are vectors representing occurrences of the terms i

and j in the documents in the mined collection. This

Table 2

A fragment of the list of the queries used to collect Web pages for mining
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formula represents the cosine of the angle between the

term vectors. This formula was has been demonstrated

to work well in automated applications. For semi-

automated concept space based expansion, other for-

mulas were have been also successfully used [4]. We

discarded as spurious all the co-occurrences that

happened only within one web page.

To make our comparisons more objective and the

mined concept spaces comparable with the concept

spaces selected by the subjects, we truncated the

mined relationships to only three most strongly related

concepts (as in the subjects’ case). A fragment of the

mined Concept Space is shown in Table 3, where each

concept is followed by three most closely concepts

along with the similarity between them. The resulting

OCS was applied in the same manner to modify

vector representation of the messages as the manually

created Concept Space described in the previous

section. Prior to running experiments, we decided to

use the same adjustment factor a = 1.

5. Experimental results

5.1. Analysis of results

This section presents our results using the metrics

introduced earlier in Section 3 and discusses their

implications.

5.1.1. H1: Consistency in subjects’ choice

The average overlap in the subjects’ selection was

found to be 31%. Selecting related concepts at random

would result in 15% overlap. We obtained this number

by randomly shuffling the selected concepts in the

lists obtained from the subjects. Following the Monte-

Carlo technique [13], we computed the statistic sig-

nificance of this deviation by testing 100 different

shuffling of the selected concepts. The largest average

overlap out of 100 shuffling tests was 18%. Since it

was still much less than 31%, the test ensured that the

difference was statistically significant at least at the

level a= 1/100 = 0.01. Thus, we have to reject H10
and conclude that there was significant degree of

agreement among the subjects with respect to select-

ing the most relevant concepts.

5.1.2. H2: Improvement in the accuracy of clustering

Table 4 shows the normalized cluster error subject

by subject, with and without M-OCS. We ran paired t-

test to check if the mean difference still could be 0.

We had to reject H20 ( p = 0.0005) and conclude that

the manually built OCS (M-OCS) improved the accu-

racy of clustering. Very low p-value was observed

because the standard deviation of the difference was

low, less than the standard deviation of the metrics

themselves (0.07 vs. 0.10 and 0.15). This indicated

that the subjects agreed on the difference more than

they agreed on the accuracy of clustering itself.

Table 3

A fragment of a listing with mined similarity relationships
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Fig. 4 illustrates the error reduction effect of using

OCS. In order to interpret the effect as large or small we

needed to estimate the lower and the upper limits of the

error. As we wrote in Section 3.3, the upper limit

corresponding to entirely random clustering, was 0.9.

Obviously, the low limit could not be 0, since there was

no perfect agreement among the subjects themselves.

We accepted the average disagreement among the

subjects as the lower limit of the clustering error. In

order to compute this disagreement, we took every pair

of subjects and treated one subject’s partition as the

manual partition and the other subject’s partition as the

automatic partition to apply Formula (1). Then, we

averaged this metric across all the subject pairs and

finally obtained the lower limit to be 0.66. This number

being large indicates low agreement across the subjects

with respect to the clustering decisions, which does not

come as a surprise considering the subjectivity of the

task. However, the agreement among the subjects with

respect to the improvement due to using OCS was still

quite high, and as a results, the improvement itself was

statistically significant.

Another interpretation of the average across subject

disagreement is that it is equal to the average evalua-

tion of each subject’s clustering accuracy by the other

subjects. We assumed, that the algorithm could not do

better than a human subject. That is why we accepted

the average across subject disagreement as the low

bound of the error.

Taking the upper and low bounds into consideration,

we can interpret that clustering without OCS resulted in

the performance somewhere in the middle (0.76)

between the worst (0.9) and the best possible (0.66),

slightly closer to the best side. The M-OCS-based

clustering (0.69) was closer to the best possible side

and the reduction was quite noticeable (70% of max-

imum possible reduction!) even for such a simplified

implementation as in our experiment. This result indi-

cated potential of OCS framework for dramatically

improving the accuracy of clustering.

5.1.3. H3: Mined relationships make sense

The average overlap between the mined relation-

ships and those indicated by the subjects was 28%.

Similar to H1, we ran Monte-Carlo tests and estab-

lished that it was different from the random overlap at

the level of significance < 0.01. We have to reject H30
and conclude that there was a resemblance between

mined relationships and those identified by the sub-

jects. The actual overlap of 28% was remarkably high,

considering that the average overlap in the subjects’

selections was 31%. Since the algorithm would

unlikely surpass a human, we accepted the average

subject’s overlap (31%) as the upper limit for the

algorithm accuracy.

5.1.4. H4: Mined relationships improve the accuracy

of clustering

Table 5 shows the normalized cluster error subject

by subject, with and without the OCS mined from the

Table 4

Normalized cluster error with and without M-OCS

Subject No OCS With M-OCS Difference

1 0.63 0.50 0.13

2 0.89 0.82 0.06

3 0.84 0.77 0.07

4 0.61 0.48 0.13

5 0.60 0.47 0.13

6 0.79 0.76 0.03

7 0.84 0.89 � 0.05

8 0.82 0.78 0.04

9 0.81 0.82 � 0.02

10 0.74 0.73 0.02

11 0.78 0.62 0.17

Average 0.76 0.69 0.07

Standard deviation 0.10 0.15 0.07

Standard mean error 0.03 0.05 0.02

t-test, p-value 0.004346

Fig. 4. Normalized cluster error for different concept spaces.
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Web (I-OCS). We ran paired t-test to check if the

mean difference was equal to 0. Similar to H1, we

detected a statistically significant ( p = 0.0005) reduc-

tion in the cluster error due to using mined OCS: from

0.76 to 0.72. Again, as in H2, there was a good

agreement among the subjects about the difference,

resulting in a low standard deviation of 0.03. We have

to reject H40 and conclude that the mined Concept

Space (I-OCS) improved the accuracy of clustering.

As Fig. 4 illustrates, the performance of using I-OCS

was in the middle between the one without OCS and

the one manually built from subjects’ data (M-OCS),

closer to the one with M-OCS. Thus, I-OCS achieved

40% of maximum possible reduction of error! This

result indicated the potential of the semantic mining to

dramatically improve the accuracy of clustering even

in such a simplified implementation.

5.2. Discussion

This section discusses the limitations of the study

and some additional findings.

5.2.1. Across subjects agreement

While the across subjects disagreement (0.66)

seems to be quite high due to the subjectivity of

the decisions involved in manual clustering, we

believe that the overall idea of applying clustering

techniques to GDSS supported meetings is still sound

due to enormous information overload that the par-

ticipants endure. Although we did not test the effect

of using clustering on the productivity of meetings,

we believe that even pre-organizing messages into

clusters would help to identify the important issues

and to move into the decision making phase. The

participants can always clean up the clusters (topics)

altogether as a group during the meeting if the initial

starting point provided by GDSS does not seem to be

adequate for them.

5.2.2. Stemming

By looking at the mined or manually identified

relationships, we concluded that many of them were

between words with the same roots, e.g., NETWORK

and NETWORKS. It is noteworthy that the mining

algorithm was able to discover those relationships

without using any linguistic resources. However, if

almost all discovered relationships were between

words with the same roots, our results would be much

less interesting, since those relationships still could be

obtained by finding the appropriate linguistic resour-

ces without any mining involved. In order to differ-

entiate same-root from different-root similarity

relationships, we randomly shuffled all the subjects’

choices, except those with the same root. This way,

we re-tested H1 for only the relationships among

words with different roots. Remarkably, the average

overlap dropped to 22%, thus testifying that a sig-

nificant proportion of the established relationships

was between words with different roots, which

defends the validity of our findings.

5.2.3. Change in statistical distributions

One other possible fallacy to our findings was that

the improvement in clustering accuracy could be due

to the changes in the statistical properties of the vector

representations, but not really due to the semantic

similarity taken into account. Indeed, after the OCS

was applied, the vectors became less sparse. What if it

was only the reduction in sparsity that improved the

accuracy of clustering? In order to investigate this, we

randomly shuffled discovered similarities. For exam-

ple, if we had only two discovered similarity pairs

(BRAINSTORMING, MEETING, 0.5) and (NET-

WORK, BANDWIDTH, 0.6), the shuffling would

change them to (BRAINSTORMING, BAND-

WIDTH, 0.5), (NETWORK, MEETING, 0.6). Once

the similarity matrix was shuffled, no improvement in

Table 5

Normalized cluster error with and without I-OCS

Subject No OCS With I-OCS Difference

1 0.63 0.62 0.02

2 0.89 0.84 0.05

3 0.84 0.84 0.00

4 0.61 0.56 0.05

5 0.60 0.54 0.06

6 0.79 0.78 0.02

7 0.84 0.82 0.03

8 0.82 0.74 0.08

9 0.81 0.77 0.04

10 0.74 0.73 0.02

11 0.78 0.68 0.10

Average 0.76 0.72 0.04

Standard deviation 0.10 0.11 0.03

Standard mean error 0.03 0.03 0.01

t-test, p-value 0.0004489
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clustering accuracy was detected under any combina-

tions of parameters in either the manually built or the

mined concept spaces. This finding supported our

belief that the correctness of similarity relationships

was crucial for the discovered effects.

5.2.4. Importance of knowing the context

We also investigated the importance of knowing

the context for both manual and mined concept

spaces. To explore the M-OCS case, we asked three

(3) other subjects to perform the concept selection

tasks, but without preceding it with the clustering

tasks. Thus, those three subjects were not familiar

with the context of the meeting. We built and applied

the OCS built from this non-context specific data the

same way as we described above. In that case the

accuracy of clustering became only worse! The nor-

malized clustering error was in 0.78–0.85 range,

under any combination of parameters. This finding

confirmed our conjecture that knowing the context

was crucial for the effectiveness when OCS was built

manually. Having only three subjects for this simple

test was a limitation, but we still think it is worth

mentioning this additional finding.

To test the importance of the context to the mined

OCS case, we created a different collection for mining

in such a way that we did not provide contextual cues

to the underlying search engine. Specifically, we

simplified our heuristic querying algorithm by remov-

ing all the nonrequired keywords (not preceded with

‘ + ’ sign in Table 2). Each of the 30 queries consisted

of exactly one of the top 30 most frequent concepts.

Those queries resulted in the pages about each of the

concepts taken stand-along, i.e., the top 200 pages

from AltaVista about ‘‘MEETING,’’ then the top 200

about ‘‘LOTUS NOTES,’’ etc., ignoring the context in

which the concepts were mentioned. We also man-

ually double-checked that those pages were more

general, thus as we hoped, much less context specific.

We obtained 5241 pages after removing duplicates

and empty pages. We randomly selected 3270 from

them, the same number as for context specific mining

in order to make comparison more objective. Then,

we mined the OCS from the selected documents in the

same way as described above. The resulting improve-

ment was indeed smaller than with the I-OCS using

context (0.74 normalized clustering error, instead of

0.72), with the difference between them being statisti-

cally significant ( p-value = 0.045), which confirmed

that knowing the context was important for similarity

mining on the Web.

5.2.5. Adjustment factor

Fig. 5 shows the clustering improvement as a

function of the adjustment parameter a. As one can

see, the error reaches an upper limit about 0.77 when

a approaches 0. The effect fluctuates significantly, due

to randomness involved in automated clustering espe-

cially when many similarities have to be ‘‘tie-bro-

ken.’’ Nevertheless, it was possible to identify the

improvement from the original 0.76 for a wide range

of values in a.

5.2.6. Other clustering algorithms

Using only one clustering algorithm in our study

was of course a limitation. However, our result was

more general because all text-clustering algorithms

rely on the notion of similarity between documents

(messages). Since our context sensitive similarity

discovery (CSSD) framework resulted in a more

accurate similarity computation, it should improve

the results under other clustering algorithms as well.

Instead of testing a wide range of clustering algo-

rithms, we directly verified that CSSD resulted in

improvement in the accuracy of similarity computa-

tion as follows.

We derived the matrix of similarities (called S-

matrix) between each pair of documents based on the

fraction of the subjects who placed this pair into the

same cluster. The entry value in the matrix ranged from

0 (least similar) to 1 (most similar). For example, if

two out of three subjects placed the message ‘‘Effec-

Fig. 5. Normalized clustering error as a function of the adjustment

factor a.
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tive transmission of video over networks’’
into the same cluster with the message ‘‘bandwidth
concerns—impact of remote collaboration,’’
the similarity between them recorded in S-matrix

would be 2/3 = 0.67. If they never were placed into

the same cluster, the similarity would be 0 (least

similar). If all subjects placed them into the same

cluster, the value would be 1 (most similar).

Then, we computed the correlation between the

elements in the S-matrix and the automatically com-

puted matrix of similarities (referred to as C-matrix).

To compute the similarity in the C-matrix, we used

negative Euclidean distance in the document vector

space as Ward’s (and many other) clustering algo-

rithms are based on Euclidean distance. Since the S-

matrix reflects the average of the subjects’ evaluation

of similarities between every pair of documents, the

correlation between its elements and the correspond-

ing elements in the C-matrix measures the accuracy

of automated similarity computation. Indeed, if an

element of S-matrix representing the similarity

between a pair of documents (D1 and D2) was larger

than the average, thus indicating a very similar pair,

then the corresponding element in the computed

similarity between (D1 and D2) also should be larger

than the average, thus also indicating a very similar

pair. So, an ideal algorithm should result in the

correlation coefficient (Pearson’s) close to 1, and

conversely, a random assignment of similarities

should result in a 0 correlation. In theory, the ideal

correlation of 1 is only possible to achieve in the case

of similarities statistically distributed in the same

way, which is not usually the case. In our situation

specifically, the S-matrix was manually constructed

and the C-matrix was the result of the mining

process. Therefore, even large positive values would

still indicate good accuracy.

This metric is more fundamental than those based

on clustering since it does not depend on a particular

clustering algorithm, and thus can attest the accuracy

of the automated similarity computation in many text-

related tasks such as retrieval, clustering, filtering,

categorization, etc.

Fig. 6 demonstrates the variation in the correlation

coefficient (i.e., the similarity accuracy) as a function

of parameter a. It is purely a coincidence that the

maximum happens very close to a = 1. The improve-

ment in the similarity accuracy was visibly significant.

Since all clustering algorithms rely on similarity

computation, we can generalize our findings that our

CSSD method improves accuracy to all similarity-

based clustering algorithms.

5.2.7. Size of messages

Testing our method with only meeting messages

had certain limitation since those messages are typi-

cally short. Many text documents in other applica-

tions (e.g., research articles, web pages, CRM reports)

are much longer and thus represented by more key-

words. Although we believe our approach works best

with smaller documents, it should be useful for longer

ones, especially when there is a need to bridge

vocabulary gaps: even two long documents may use

different terminology (e.g., car vs. automobile) and

the computed similarity between them would never be

accurate without some kind of similarity discovery

method.

6. Conclusions and future research

In this study, we proposed context sensitive sim-

ilarity discovery, a new method, for computing sim-

ilarity relationships among concepts surfaced during

an electronic brainstorming session. Our experiment

indicated that there are semantic similarity relation-

ships between the concepts occurring in the context of

an electronic meeting and demonstrated that those

similarities can be captured by a specially designed

data structure called Organizational Concept Space

(OCS). Our test of hypotheses confirmed that those

semantic similarities can be taken into consideration

Fig. 6. Similarity accuracy measured by the correlation coefficient

between computed message-to-message similarity and the one

derived from subjects’ data.
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while representing meeting comments and, as a result,

the accuracy of clustering was greatly improved. Our

experiments also demonstrated that context specific

similarity relationships can be derived through Web

mining in a fully automated manner, thus making the

context sensitive similarity discovering (CSSD)

method more powerful to use in a wide range of

knowledge processing applications.

We discovered that taking the context of the

messages into account was crucial for the consistency

of the similarity relationships and for the success of

the tested mining algorithms. We suggest that ignoring

context in several prior studies may account for the

reported failures.

Our research showed that using the discovered

similarity relationships, the meeting messages can be

grouped into topics (clusters) in a more meaningful

way, thus reducing information overload. Since the

concept of Organizational Concept Space is not

limited to the GDSS domain, it may be used to

capture similarities in many other applications where

the notion of similarity among text documents is used.

We plan to conduct studies that will test a wider range

of parameters (such as the number of clusters, selec-

tion of clustering algorithms, the vector sizes, and the

particular implementations of the CSSD method) in

various business applications. Specific applications

may include email filtering, document sharing, and

knowledge distribution where the proliferation and

ambiguity of vocabulary poses a potential problem to

the accuracy and effectiveness of text clustering and

matching.
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